Node_Exporter/vendor/github.com/prometheus/procfs/meminfo.go

454 lines
12 KiB
Go
Raw Normal View History

// Copyright 2019 The Prometheus Authors
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package procfs
import (
"bufio"
"bytes"
"strconv"
"strings"
"github.com/prometheus/procfs/internal/util"
)
// Meminfo represents memory statistics.
type Meminfo struct {
// Total usable ram (i.e. physical ram minus a few reserved
// bits and the kernel binary code)
MemTotal uint64
// The sum of LowFree+HighFree
MemFree uint64
// An estimate of how much memory is available for starting
// new applications, without swapping. Calculated from
// MemFree, SReclaimable, the size of the file LRU lists, and
// the low watermarks in each zone. The estimate takes into
// account that the system needs some page cache to function
// well, and that not all reclaimable slab will be
// reclaimable, due to items being in use. The impact of those
// factors will vary from system to system.
MemAvailable uint64
// Relatively temporary storage for raw disk blocks shouldn't
// get tremendously large (20MB or so)
Buffers uint64
Cached uint64
// Memory that once was swapped out, is swapped back in but
// still also is in the swapfile (if memory is needed it
// doesn't need to be swapped out AGAIN because it is already
// in the swapfile. This saves I/O)
SwapCached uint64
// Memory that has been used more recently and usually not
// reclaimed unless absolutely necessary.
Active uint64
// Memory which has been less recently used. It is more
// eligible to be reclaimed for other purposes
Inactive uint64
ActiveAnon uint64
InactiveAnon uint64
ActiveFile uint64
InactiveFile uint64
Unevictable uint64
Mlocked uint64
// total amount of swap space available
SwapTotal uint64
// Memory which has been evicted from RAM, and is temporarily
// on the disk
SwapFree uint64
// Memory which is waiting to get written back to the disk
Dirty uint64
// Memory which is actively being written back to the disk
Writeback uint64
// Non-file backed pages mapped into userspace page tables
AnonPages uint64
// files which have been mapped, such as libraries
Mapped uint64
Shmem uint64
// in-kernel data structures cache
Slab uint64
// Part of Slab, that might be reclaimed, such as caches
SReclaimable uint64
// Part of Slab, that cannot be reclaimed on memory pressure
SUnreclaim uint64
KernelStack uint64
// amount of memory dedicated to the lowest level of page
// tables.
PageTables uint64
// NFS pages sent to the server, but not yet committed to
// stable storage
NFSUnstable uint64
// Memory used for block device "bounce buffers"
Bounce uint64
// Memory used by FUSE for temporary writeback buffers
WritebackTmp uint64
// Based on the overcommit ratio ('vm.overcommit_ratio'),
// this is the total amount of memory currently available to
// be allocated on the system. This limit is only adhered to
// if strict overcommit accounting is enabled (mode 2 in
// 'vm.overcommit_memory').
// The CommitLimit is calculated with the following formula:
// CommitLimit = ([total RAM pages] - [total huge TLB pages]) *
// overcommit_ratio / 100 + [total swap pages]
// For example, on a system with 1G of physical RAM and 7G
// of swap with a `vm.overcommit_ratio` of 30 it would
// yield a CommitLimit of 7.3G.
// For more details, see the memory overcommit documentation
// in vm/overcommit-accounting.
CommitLimit uint64
// The amount of memory presently allocated on the system.
// The committed memory is a sum of all of the memory which
// has been allocated by processes, even if it has not been
// "used" by them as of yet. A process which malloc()'s 1G
// of memory, but only touches 300M of it will show up as
// using 1G. This 1G is memory which has been "committed" to
// by the VM and can be used at any time by the allocating
// application. With strict overcommit enabled on the system
// (mode 2 in 'vm.overcommit_memory'),allocations which would
// exceed the CommitLimit (detailed above) will not be permitted.
// This is useful if one needs to guarantee that processes will
// not fail due to lack of memory once that memory has been
// successfully allocated.
CommittedAS uint64
// total size of vmalloc memory area
VmallocTotal uint64
// amount of vmalloc area which is used
VmallocUsed uint64
// largest contiguous block of vmalloc area which is free
VmallocChunk uint64
HardwareCorrupted uint64
AnonHugePages uint64
ShmemHugePages uint64
ShmemPmdMapped uint64
CmaTotal uint64
CmaFree uint64
HugePagesTotal uint64
HugePagesFree uint64
HugePagesRsvd uint64
HugePagesSurp uint64
Hugepagesize uint64
DirectMap4k uint64
DirectMap2M uint64
DirectMap1G uint64
}
// Meminfo returns an information about current kernel/system memory statistics.
// See https://www.kernel.org/doc/Documentation/filesystems/proc.txt
func (fs FS) Meminfo() (Meminfo, error) {
data, err := util.ReadFileNoStat(fs.proc.Path("meminfo"))
if err != nil {
return Meminfo{}, err
}
return parseMemInfo(data)
}
func parseMemInfo(info []byte) (m Meminfo, err error) {
scanner := bufio.NewScanner(bytes.NewReader(info))
var line string
for scanner.Scan() {
line = scanner.Text()
field := strings.Fields(line)
switch field[0] {
case "MemTotal:":
v, err := strconv.ParseUint(field[1], 0, 64)
if err != nil {
return Meminfo{}, err
}
m.MemTotal = v
case "MemFree:":
v, err := strconv.ParseUint(field[1], 0, 64)
if err != nil {
return Meminfo{}, err
}
m.MemFree = v
case "MemAvailable:":
v, err := strconv.ParseUint(field[1], 0, 64)
if err != nil {
return Meminfo{}, err
}
m.MemAvailable = v
case "Buffers:":
v, err := strconv.ParseUint(field[1], 0, 64)
if err != nil {
return Meminfo{}, err
}
m.Buffers = v
case "Cached:":
v, err := strconv.ParseUint(field[1], 0, 64)
if err != nil {
return Meminfo{}, err
}
m.Cached = v
case "SwapCached:":
v, err := strconv.ParseUint(field[1], 0, 64)
if err != nil {
return Meminfo{}, err
}
m.SwapCached = v
case "Active:":
v, err := strconv.ParseUint(field[1], 0, 64)
if err != nil {
return Meminfo{}, err
}
m.Active = v
case "Inactive:":
v, err := strconv.ParseUint(field[1], 0, 64)
if err != nil {
return Meminfo{}, err
}
m.Inactive = v
case "Active(anon):":
v, err := strconv.ParseUint(field[1], 0, 64)
if err != nil {
return Meminfo{}, err
}
m.ActiveAnon = v
case "Inactive(anon):":
v, err := strconv.ParseUint(field[1], 0, 64)
if err != nil {
return Meminfo{}, err
}
m.InactiveAnon = v
case "Active(file):":
v, err := strconv.ParseUint(field[1], 0, 64)
if err != nil {
return Meminfo{}, err
}
m.ActiveFile = v
case "Inactive(file):":
v, err := strconv.ParseUint(field[1], 0, 64)
if err != nil {
return Meminfo{}, err
}
m.InactiveFile = v
case "Unevictable:":
v, err := strconv.ParseUint(field[1], 0, 64)
if err != nil {
return Meminfo{}, err
}
m.Unevictable = v
case "Mlocked:":
v, err := strconv.ParseUint(field[1], 0, 64)
if err != nil {
return Meminfo{}, err
}
m.Mlocked = v
case "SwapTotal:":
v, err := strconv.ParseUint(field[1], 0, 64)
if err != nil {
return Meminfo{}, err
}
m.SwapTotal = v
case "SwapFree:":
v, err := strconv.ParseUint(field[1], 0, 64)
if err != nil {
return Meminfo{}, err
}
m.SwapFree = v
case "Dirty:":
v, err := strconv.ParseUint(field[1], 0, 64)
if err != nil {
return Meminfo{}, err
}
m.Dirty = v
case "Writeback:":
v, err := strconv.ParseUint(field[1], 0, 64)
if err != nil {
return Meminfo{}, err
}
m.Writeback = v
case "AnonPages:":
v, err := strconv.ParseUint(field[1], 0, 64)
if err != nil {
return Meminfo{}, err
}
m.AnonPages = v
case "Mapped:":
v, err := strconv.ParseUint(field[1], 0, 64)
if err != nil {
return Meminfo{}, err
}
m.Mapped = v
case "Shmem:":
v, err := strconv.ParseUint(field[1], 0, 64)
if err != nil {
return Meminfo{}, err
}
m.Shmem = v
case "Slab:":
v, err := strconv.ParseUint(field[1], 0, 64)
if err != nil {
return Meminfo{}, err
}
m.Slab = v
case "SReclaimable:":
v, err := strconv.ParseUint(field[1], 0, 64)
if err != nil {
return Meminfo{}, err
}
m.SReclaimable = v
case "SUnreclaim:":
v, err := strconv.ParseUint(field[1], 0, 64)
if err != nil {
return Meminfo{}, err
}
m.SUnreclaim = v
case "KernelStack:":
v, err := strconv.ParseUint(field[1], 0, 64)
if err != nil {
return Meminfo{}, err
}
m.KernelStack = v
case "PageTables:":
v, err := strconv.ParseUint(field[1], 0, 64)
if err != nil {
return Meminfo{}, err
}
m.PageTables = v
case "NFS_Unstable:":
v, err := strconv.ParseUint(field[1], 0, 64)
if err != nil {
return Meminfo{}, err
}
m.NFSUnstable = v
case "Bounce:":
v, err := strconv.ParseUint(field[1], 0, 64)
if err != nil {
return Meminfo{}, err
}
m.Bounce = v
case "WritebackTmp:":
v, err := strconv.ParseUint(field[1], 0, 64)
if err != nil {
return Meminfo{}, err
}
m.WritebackTmp = v
case "CommitLimit:":
v, err := strconv.ParseUint(field[1], 0, 64)
if err != nil {
return Meminfo{}, err
}
m.CommitLimit = v
case "Committed_AS:":
v, err := strconv.ParseUint(field[1], 0, 64)
if err != nil {
return Meminfo{}, err
}
m.CommittedAS = v
case "VmallocTotal:":
v, err := strconv.ParseUint(field[1], 0, 64)
if err != nil {
return Meminfo{}, err
}
m.VmallocTotal = v
case "VmallocUsed:":
v, err := strconv.ParseUint(field[1], 0, 64)
if err != nil {
return Meminfo{}, err
}
m.VmallocUsed = v
case "VmallocChunk:":
v, err := strconv.ParseUint(field[1], 0, 64)
if err != nil {
return Meminfo{}, err
}
m.VmallocChunk = v
case "HardwareCorrupted:":
v, err := strconv.ParseUint(field[1], 0, 64)
if err != nil {
return Meminfo{}, err
}
m.HardwareCorrupted = v
case "AnonHugePages:":
v, err := strconv.ParseUint(field[1], 0, 64)
if err != nil {
return Meminfo{}, err
}
m.AnonHugePages = v
case "ShmemHugePages:":
v, err := strconv.ParseUint(field[1], 0, 64)
if err != nil {
return Meminfo{}, err
}
m.ShmemHugePages = v
case "ShmemPmdMapped:":
v, err := strconv.ParseUint(field[1], 0, 64)
if err != nil {
return Meminfo{}, err
}
m.ShmemPmdMapped = v
case "CmaTotal:":
v, err := strconv.ParseUint(field[1], 0, 64)
if err != nil {
return Meminfo{}, err
}
m.CmaTotal = v
case "CmaFree:":
v, err := strconv.ParseUint(field[1], 0, 64)
if err != nil {
return Meminfo{}, err
}
m.CmaFree = v
case "HugePages_Total:":
v, err := strconv.ParseUint(field[1], 0, 64)
if err != nil {
return Meminfo{}, err
}
m.HugePagesTotal = v
case "HugePages_Free:":
v, err := strconv.ParseUint(field[1], 0, 64)
if err != nil {
return Meminfo{}, err
}
m.HugePagesFree = v
case "HugePages_Rsvd:":
v, err := strconv.ParseUint(field[1], 0, 64)
if err != nil {
return Meminfo{}, err
}
m.HugePagesRsvd = v
case "HugePages_Surp:":
v, err := strconv.ParseUint(field[1], 0, 64)
if err != nil {
return Meminfo{}, err
}
m.HugePagesSurp = v
case "Hugepagesize:":
v, err := strconv.ParseUint(field[1], 0, 64)
if err != nil {
return Meminfo{}, err
}
m.Hugepagesize = v
case "DirectMap4k:":
v, err := strconv.ParseUint(field[1], 0, 64)
if err != nil {
return Meminfo{}, err
}
m.DirectMap4k = v
case "DirectMap2M:":
v, err := strconv.ParseUint(field[1], 0, 64)
if err != nil {
return Meminfo{}, err
}
m.DirectMap2M = v
case "DirectMap1G:":
v, err := strconv.ParseUint(field[1], 0, 64)
if err != nil {
return Meminfo{}, err
}
m.DirectMap1G = v
}
}
return m, nil
}