* Improve stat linux metric names.
cpu is no longer used.
* node_cpu -> node_cpu_seconds_total for Linux
* Improve filesystem metric names with units
* Improve units and names of linux disk stats
Remove sector metrics, the bytes metrics cover those already.
* Infiniband counters should end in _total
* Improve timex metric names, convert to more normal units.
See
3c073991eb/kernel/time/ntp.c (L909)
for what stabil means, looks like a moving average of some form.
* Update test fixture
* For meminfo metrics that had "kB" units, add _bytes
* Interrupts counter should have _total
* Move FreeBSD/DragonflyBSD out of meminfo add kvm.
This gives us SwapUsed, and everything under one roof.
* Fix typos per review.
* Update to use newer API.
* Remove premature optimization per PR feedback.
* Implements meminfo collector for OpenBSD
This is a rework of #151.
* Fix CGO import
* Add some useful metrics
* Rename total -> size for normalization
* remove injection hook for textfile metrics, convert them to prometheus format
* add support for summaries
* add support for histograms
* add logic for handling inconsistent labels within a metric family for counter, gauge, untyped
* change logic for parsing the metrics textfile
* fix logic to adding missing labels
* Export time and error metrics for textfiles
* Add tests for new textfile collector, fix found bugs
* refactor Update() to split into smaller functions
* remove parseTextFiles(), fix import issue
* add mtime metric directly to channel, fix handling of mtime during testing
* rename variables related to labels
* refactor: add default case, remove if guard for metrics, remove extra loop and slice
* refactor: remove extra loop iterating over metric families
* test: add test case for different metric type, fix found bug
* test: add test for metrics with inconsistent labels
* test: add test for histogram
* test: add test for histogram with extra dimension
* test: add test for summary
* test: add test for summary with extra dimension
* remove unnecessary creation of protobuf
* nit: remove extra blank line
It might happen that a given upgrade comes from multiple origins, in
which case the origins are separated by ", " and thus breaking
whitespace-based split. For example:
Inst package [1.2.3] (1.2.4 Debian:8.10/oldstable, Debian-Security:8/oldstable [amd64])
To workaround this case, mangle the apt-get output to remove whitespaces from
the origins list.
* Added text collector conversion for ipmitool output.
* Sort metrics before exporting, add namespace.
* Added HELP string, tidy up a bit.
* Make status a gauge.
Linux "guest" metrics for VMs are already accounted for in node_cpu
`user` and `nice` metrics. Separate these into their own metric to
avoid duplication of data.
* cpu: Support processor-less (memory-only) NUMA nodes
Processor-less (memory-only) NUMA nodes exist e.g. in systems that use
Intel Optane drives for RAM expansion using Intel Memory Drive
Technology (IMDT).
IMDT RAM expansion supports two modes:
* "Unify Remote Memory domains": present a processor-less (memory-only)
NUMA domain, which is the default
* "Expand local memory domains": to expand each processor’s memory domain
with a portion of the memory made available by Optane and IMDT
This commit fixes a crash in the first case (when "cpulist" is empty).
Here's an example of such a system:
$ numastat -m|head -n5
Per-node system memory usage (in MBs):
Node 0 Node 1 Node 2 Total
--------------- --------------- --------------- ---------------
MemTotal 118239.56 130816.00 464384.00 713439.56
$ for i in {0..2}; do echo -n "$i: " ; cat /sys/bus/node/devices/node$i/cpulist ; done
0: 0-7,16-23
1: 8-15,24-31
2:
$ /opt/vsmp/bin/vsmpversion -vvv
Memory Drive Technology: 8.2.1455.74 (Sep 28 2017 13:09:59)
System configuration:
Boards: 3
1 x Proc. + I/O + Memory
2 x NVM devices (Intel SSDPED1K375GAQ)
Processors: 2, Cores: 16, Threads: 32
Intel(R) Xeon(R) CPU E5-2667 v4 @ 3.20GHz Stepping 01
Memory (MB): 713472 (of 977450), Cache: 251416, Private: 12562
1 x 249088MB [262036/ 678/12270]
1 x 232192MB [357707/125369/ 146] 82:00.0#1
1 x 232192MB [357707/125369/ 146] 83:00.0#1
* cpu: rename some variables (pkg => node)
* cpu: Use %v not %q in log.Debugf() format strings
* Update golang.org/x/sys/unix
This allows to use simplified string conversion of Utsname members.
* Simplify Utsname string conversion
Use Utsname from golang.org/x/sys/unix which contains byte array
instead of int8/uint8 array members. This allows to simplify the string
conversions of these members.
* Correct buffer_bytes > INT_MAX on BSD/amd64.
The sysctl vfs.bufspace returns either an int or a long, depending on
the value. Large values of vfs.bufspace will result in error messages
like:
couldn't get meminfo: cannot allocate memory
This will detect the returned data type, and cast appropriately.
* Added explicit length checks per feedback.
* Flatten Value() to make it easier to read.
* Simplify per feedback.
* Fix style.
* Doc updates.
When there are no SMART compatible devices (Raspberry Pi for example) an
error is returned, but the return code is still 0.
`# scan_smart_devices: glob(3) aborted matching pattern /dev/discs/disc*`
* Remove unused `disks` variable.
* Filter for only valid `/dev` devices.
The github.com/beevik/ntp package was recently updated with some
API changes that broke node_exporter. This commit fetches the
latest version of the ntp package and brings node_exporter in
line with the latest API.
This enables native builds to still run the test and all targets without
problems on say 386.
Build failure on Buildkite build 85, prevents enabling native FreeBSD
386 builds.
* Move NodeCollector into package collector
* Refactor collector enabling
* Update README with new collector enabled flags
* Fix out-of-date inline flag reference syntax
* Use new flags in end-to-end tests
* Add flag to disable all default collectors
* Track if a flag has been set explicitly
* Add --collectors.disable-defaults to README
* Revert disable-defaults flag
* Shorten flags
* Fixup timex collector registration
* Fix end-to-end tests
* Change procfs and sysfs path flags
* Fix review comments
This collector is based on adjtimex(2) system call. The collector returns
three values, status if time is synchronised, offset to remote reference,
and local clock frequency adjustment.
Values are taken from kernel time keeping data structures to avoid getting
involved how the synchronisation is implemented. By that I mean one should
not care if time is update using ntpd, systemd.timesyncd, ptpd, and so on.
Since all time sync implementation will always end up telling to kernel what
is the status with time one can simply omit the software in between, and
look results of the syncing. As a positive side effect this makes collector
very quick and conceptually specific, this does not monitor availability of
NTP server, or network in between, or dns resolution, and other unrelated
but necessary things.
Minimum set of values to keep eye on are the following three:
The node_timex_sync_status tells if local clock is in sync with a remote
clock. Value is set to zero when synchronisation to a reliable server
is lost, or a time sync software is misconfigured.
The node_timex_offset_seconds tells how much local clock is off when
compared to reference. In case of multiple time references this value
is outcome of RFC 5905 adjustment algorithm. Ideally offset should be
close to zero, and it depends about use case how large value is
acceptable. For example a typical web server is probably fine if offset
is about 0.1 or less, but that would not be good enough for mobile phone
base station operator.
The node_timex_freq tells amount of adjustment to local clock tick
frequency. For example if offset is one second and growing the local
clock will need instruction to tick quicker. Number value itself is not
very important, and occasional small adjustments are fine. When
frequency is unusually in stable one can assume quality of time stamps
will not be accurate to very far in sub second range. Obviously
explaining why local clock frequency behaves like a passenger in roller
coaster is different matter. Explanations can vary from system load, to
environmental issues such as a machine being physically too hot.
Rest of the measurements can help when debugging. If you run a clock server
do probably want to collect and keep track of everything.
Pull-request: https://github.com/prometheus/node_exporter/pull/664