//+build linux package netlink import ( "errors" "os" "runtime" "sync" "syscall" "unsafe" "golang.org/x/net/bpf" "golang.org/x/sys/unix" ) var ( errInvalidSockaddr = errors.New("expected unix.SockaddrNetlink but received different unix.Sockaddr") errInvalidFamily = errors.New("received invalid netlink family") ) var _ Socket = &conn{} // A conn is the Linux implementation of a netlink sockets connection. type conn struct { s socket sa *unix.SockaddrNetlink } // A socket is an interface over socket system calls. type socket interface { Bind(sa unix.Sockaddr) error Close() error FD() int Getsockname() (unix.Sockaddr, error) Recvmsg(p, oob []byte, flags int) (n int, oobn int, recvflags int, from unix.Sockaddr, err error) Sendmsg(p, oob []byte, to unix.Sockaddr, flags int) error SetSockopt(level, name int, v unsafe.Pointer, l uint32) error } // dial is the entry point for Dial. dial opens a netlink socket using // system calls, and returns its PID. func dial(family int, config *Config) (*conn, uint32, error) { // Prepare sysSocket's internal loop and create the socket. // // The conditional is inverted because a zero value of false is desired // if no config, but it's easier to interpret within this code when the // value is inverted. if config == nil { config = &Config{} } sock, err := newSysSocket(config) if err != nil { return nil, 0, err } if err := sock.Socket(family); err != nil { return nil, 0, err } return bind(sock, config) } // bind binds a connection to netlink using the input socket, which may be // a system call implementation or a mocked one for tests. func bind(s socket, config *Config) (*conn, uint32, error) { if config == nil { config = &Config{} } addr := &unix.SockaddrNetlink{ Family: unix.AF_NETLINK, Groups: config.Groups, } // Socket must be closed in the event of any system call errors, to avoid // leaking file descriptors. if err := s.Bind(addr); err != nil { _ = s.Close() return nil, 0, err } sa, err := s.Getsockname() if err != nil { _ = s.Close() return nil, 0, err } pid := sa.(*unix.SockaddrNetlink).Pid return &conn{ s: s, sa: addr, }, pid, nil } // SendMessages serializes multiple Messages and sends them to netlink. func (c *conn) SendMessages(messages []Message) error { var buf []byte for _, m := range messages { b, err := m.MarshalBinary() if err != nil { return err } buf = append(buf, b...) } addr := &unix.SockaddrNetlink{ Family: unix.AF_NETLINK, } return c.s.Sendmsg(buf, nil, addr, 0) } // Send sends a single Message to netlink. func (c *conn) Send(m Message) error { b, err := m.MarshalBinary() if err != nil { return err } addr := &unix.SockaddrNetlink{ Family: unix.AF_NETLINK, } return c.s.Sendmsg(b, nil, addr, 0) } // Receive receives one or more Messages from netlink. func (c *conn) Receive() ([]Message, error) { b := make([]byte, os.Getpagesize()) for { // Peek at the buffer to see how many bytes are available. // // TODO(mdlayher): deal with OOB message data if available, such as // when PacketInfo ConnOption is true. n, _, _, _, err := c.s.Recvmsg(b, nil, unix.MSG_PEEK) if err != nil { return nil, err } // Break when we can read all messages if n < len(b) { break } // Double in size if not enough bytes b = make([]byte, len(b)*2) } // Read out all available messages n, _, _, from, err := c.s.Recvmsg(b, nil, 0) if err != nil { return nil, err } addr, ok := from.(*unix.SockaddrNetlink) if !ok { return nil, errInvalidSockaddr } if addr.Family != unix.AF_NETLINK { return nil, errInvalidFamily } raw, err := syscall.ParseNetlinkMessage(b[:n]) if err != nil { return nil, err } msgs := make([]Message, 0, len(raw)) for _, r := range raw { m := Message{ Header: sysToHeader(r.Header), Data: r.Data, } msgs = append(msgs, m) } return msgs, nil } // Close closes the connection. func (c *conn) Close() error { return c.s.Close() } // FD retrieves the file descriptor of the Conn. func (c *conn) FD() int { return c.s.FD() } // JoinGroup joins a multicast group by ID. func (c *conn) JoinGroup(group uint32) error { return c.s.SetSockopt( unix.SOL_NETLINK, unix.NETLINK_ADD_MEMBERSHIP, unsafe.Pointer(&group), uint32(unsafe.Sizeof(group)), ) } // LeaveGroup leaves a multicast group by ID. func (c *conn) LeaveGroup(group uint32) error { return c.s.SetSockopt( unix.SOL_NETLINK, unix.NETLINK_DROP_MEMBERSHIP, unsafe.Pointer(&group), uint32(unsafe.Sizeof(group)), ) } // SetBPF attaches an assembled BPF program to a conn. func (c *conn) SetBPF(filter []bpf.RawInstruction) error { prog := unix.SockFprog{ Len: uint16(len(filter)), Filter: (*unix.SockFilter)(unsafe.Pointer(&filter[0])), } return c.s.SetSockopt( unix.SOL_SOCKET, unix.SO_ATTACH_FILTER, unsafe.Pointer(&prog), uint32(unsafe.Sizeof(prog)), ) } // RemoveBPF removes a BPF filter from a conn. func (c *conn) RemoveBPF() error { // dummy is ignored as argument to SO_DETACH_FILTER // but SetSockopt requires it as an argument var dummy uint32 return c.s.SetSockopt( unix.SOL_SOCKET, unix.SO_DETACH_FILTER, unsafe.Pointer(&dummy), uint32(unsafe.Sizeof(dummy)), ) } // SetOption enables or disables a netlink socket option for the Conn. func (c *conn) SetOption(option ConnOption, enable bool) error { o, ok := linuxOption(option) if !ok { // Return the typical Linux error for an unknown ConnOption. return unix.ENOPROTOOPT } var v uint32 if enable { v = 1 } return c.s.SetSockopt( unix.SOL_NETLINK, o, unsafe.Pointer(&v), uint32(unsafe.Sizeof(v)), ) } // SetReadBuffer sets the size of the operating system's receive buffer // associated with the Conn. func (c *conn) SetReadBuffer(bytes int) error { v := uint32(bytes) return c.s.SetSockopt( unix.SOL_SOCKET, unix.SO_RCVBUF, unsafe.Pointer(&v), uint32(unsafe.Sizeof(v)), ) } // SetReadBuffer sets the size of the operating system's transmit buffer // associated with the Conn. func (c *conn) SetWriteBuffer(bytes int) error { v := uint32(bytes) return c.s.SetSockopt( unix.SOL_SOCKET, unix.SO_SNDBUF, unsafe.Pointer(&v), uint32(unsafe.Sizeof(v)), ) } // linuxOption converts a ConnOption to its Linux value. func linuxOption(o ConnOption) (int, bool) { switch o { case PacketInfo: return unix.NETLINK_PKTINFO, true case BroadcastError: return unix.NETLINK_BROADCAST_ERROR, true case NoENOBUFS: return unix.NETLINK_NO_ENOBUFS, true case ListenAllNSID: return unix.NETLINK_LISTEN_ALL_NSID, true case CapAcknowledge: return unix.NETLINK_CAP_ACK, true default: return 0, false } } // sysToHeader converts a syscall.NlMsghdr to a Header. func sysToHeader(r syscall.NlMsghdr) Header { // NB: the memory layout of Header and syscall.NlMsgHdr must be // exactly the same for this unsafe cast to work return *(*Header)(unsafe.Pointer(&r)) } // newError converts an error number from netlink into the appropriate // system call error for Linux. func newError(errno int) error { return syscall.Errno(errno) } var _ socket = &sysSocket{} // A sysSocket is a socket which uses system calls for socket operations. type sysSocket struct { fd int wg *sync.WaitGroup funcC chan<- func() mu sync.RWMutex done bool doneC chan<- bool } // newSysSocket creates a sysSocket that optionally locks its internal goroutine // to a single thread. func newSysSocket(config *Config) (*sysSocket, error) { var wg sync.WaitGroup wg.Add(1) // This system call loop strategy was inspired by: // https://github.com/golang/go/wiki/LockOSThread. Thanks to squeed on // Gophers Slack for providing this useful link. funcC := make(chan func()) doneC := make(chan bool) errC := make(chan error) go func() { // It is important to lock this goroutine to its OS thread for the duration // of the netlink socket being used, or else the kernel may end up routing // messages to the wrong places. // See: http://lists.infradead.org/pipermail/libnl/2017-February/002293.html. // // The intent is to never unlock the OS thread, so that the thread // will terminate when the goroutine exits starting in Go 1.10: // https://go-review.googlesource.com/c/go/+/46038. // // However, due to recent instability and a potential bad interaction // with the Go runtime for threads which are not unlocked, we have // elected to temporarily unlock the thread when the goroutine terminates: // https://github.com/golang/go/issues/25128#issuecomment-410764489. runtime.LockOSThread() defer runtime.UnlockOSThread() defer wg.Done() // The user requested the Conn to operate in a non-default network namespace. if config.NetNS != 0 { // Get the current namespace of the thread the goroutine is locked to. origNetNS, err := getThreadNetNS() if err != nil { errC <- err return } // Set the network namespace of the current thread using // the file descriptor provided by the user. err = setThreadNetNS(config.NetNS) if err != nil { errC <- err return } // Once the thread's namespace has been successfully manipulated, // make sure we change it back when the goroutine returns. defer setThreadNetNS(origNetNS) } // Signal to caller that initialization was successful. errC <- nil for { select { case <-doneC: return case f := <-funcC: f() } } }() // Wait for the goroutine to return err or nil. if err := <-errC; err != nil { return nil, err } return &sysSocket{ wg: &wg, funcC: funcC, doneC: doneC, }, nil } // do runs f in a worker goroutine which can be locked to one thread. func (s *sysSocket) do(f func()) error { done := make(chan bool, 1) // All operations handled by this function are assumed to only // read from s.done. s.mu.RLock() if s.done { s.mu.RUnlock() return syscall.EBADF } s.funcC <- func() { f() done <- true } <-done s.mu.RUnlock() return nil } func (s *sysSocket) Socket(family int) error { var ( fd int err error ) doErr := s.do(func() { fd, err = unix.Socket( unix.AF_NETLINK, unix.SOCK_RAW, family, ) }) if doErr != nil { return doErr } if err != nil { return err } s.fd = fd return nil } func (s *sysSocket) Bind(sa unix.Sockaddr) error { var err error doErr := s.do(func() { err = unix.Bind(s.fd, sa) }) if doErr != nil { return doErr } return err } func (s *sysSocket) Close() error { // Be sure to acquire a write lock because we need to stop any other // goroutines from sending system call requests after close. // Any invocation of do() after this write lock unlocks is guaranteed // to find s.done being true. s.mu.Lock() defer s.mu.Unlock() // Close the socket from the main thread, this operation has no risk // of routing data to the wrong socket. err := unix.Close(s.fd) s.done = true // Signal the syscall worker to exit, wait for the WaitGroup to join, // and close the job channel only when the worker is guaranteed to have stopped. close(s.doneC) s.wg.Wait() close(s.funcC) return err } func (s *sysSocket) FD() int { return s.fd } func (s *sysSocket) Getsockname() (unix.Sockaddr, error) { var ( sa unix.Sockaddr err error ) doErr := s.do(func() { sa, err = unix.Getsockname(s.fd) }) if doErr != nil { return nil, doErr } return sa, err } func (s *sysSocket) Recvmsg(p, oob []byte, flags int) (int, int, int, unix.Sockaddr, error) { var ( n, oobn, recvflags int from unix.Sockaddr err error ) doErr := s.do(func() { n, oobn, recvflags, from, err = unix.Recvmsg(s.fd, p, oob, flags) }) if doErr != nil { return 0, 0, 0, nil, doErr } return n, oobn, recvflags, from, err } func (s *sysSocket) Sendmsg(p, oob []byte, to unix.Sockaddr, flags int) error { var err error doErr := s.do(func() { err = unix.Sendmsg(s.fd, p, oob, to, flags) }) if doErr != nil { return doErr } return err } func (s *sysSocket) SetSockopt(level, name int, v unsafe.Pointer, l uint32) error { var err error doErr := s.do(func() { err = setsockopt(s.fd, level, name, v, l) }) if doErr != nil { return doErr } return err }