Node_Exporter/vendor/github.com/mdlayher/netlink/conn.go
Ben Kochie 0e77317955
Update netlink vendoring (#1471)
* github.com/ema/qdisc
* github.com/mdlayher/genetlink
* github.com/mdlayher/wifi

Signed-off-by: Ben Kochie <superq@gmail.com>
2019-09-05 15:35:13 +02:00

587 lines
16 KiB
Go

package netlink
import (
"errors"
"math/rand"
"os"
"sync"
"sync/atomic"
"syscall"
"time"
"golang.org/x/net/bpf"
)
// A Conn is a connection to netlink. A Conn can be used to send and
// receives messages to and from netlink.
//
// A Conn is safe for concurrent use, but to avoid contention in
// high-throughput applications, the caller should almost certainly create a
// pool of Conns and distribute them among workers.
//
// A Conn is capable of manipulating netlink subsystems from within a specific
// Linux network namespace, but special care must be taken when doing so. See
// the documentation of Config for details.
type Conn struct {
// sock is the operating system-specific implementation of
// a netlink sockets connection.
sock Socket
// seq is an atomically incremented integer used to provide sequence
// numbers when Conn.Send is called.
seq *uint32
// pid is the PID assigned by netlink.
pid uint32
// d provides debugging capabilities for a Conn if not nil.
d *debugger
// mu serializes access to the netlink socket for the request/response
// transaction within Execute.
mu sync.RWMutex
}
// A Socket is an operating-system specific implementation of netlink
// sockets used by Conn.
type Socket interface {
Close() error
Send(m Message) error
SendMessages(m []Message) error
Receive() ([]Message, error)
}
// Dial dials a connection to netlink, using the specified netlink family.
// Config specifies optional configuration for Conn. If config is nil, a default
// configuration will be used.
func Dial(family int, config *Config) (*Conn, error) {
// Use OS-specific dial() to create Socket
c, pid, err := dial(family, config)
if err != nil {
return nil, err
}
return NewConn(c, pid), nil
}
// NewConn creates a Conn using the specified Socket and PID for netlink
// communications.
//
// NewConn is primarily useful for tests. Most applications should use
// Dial instead.
func NewConn(sock Socket, pid uint32) *Conn {
// Seed the sequence number using a random number generator.
r := rand.New(rand.NewSource(time.Now().UnixNano()))
seq := r.Uint32()
// Configure a debugger if arguments are set.
var d *debugger
if len(debugArgs) > 0 {
d = newDebugger(debugArgs)
}
return &Conn{
sock: sock,
seq: &seq,
pid: pid,
d: d,
}
}
// debug executes fn with the debugger if the debugger is not nil.
func (c *Conn) debug(fn func(d *debugger)) {
if c.d == nil {
return
}
fn(c.d)
}
// Close closes the connection. Close will unblock any concurrent calls to
// Receive which are waiting on a response from the kernel.
func (c *Conn) Close() error {
// Close does not acquire a lock because it must be able to interrupt any
// blocked system calls, such as when Receive is waiting on a multicast
// group message.
//
// We rely on the kernel to deal with concurrent operations to the netlink
// socket itself.
return newOpError("close", c.sock.Close())
}
// Execute sends a single Message to netlink using Send, receives one or more
// replies using Receive, and then checks the validity of the replies against
// the request using Validate.
//
// Execute acquires a lock for the duration of the function call which blocks
// concurrent calls to Send, SendMessages, and Receive, in order to ensure
// consistency between netlink request/reply messages.
//
// See the documentation of Send, Receive, and Validate for details about
// each function.
func (c *Conn) Execute(message Message) ([]Message, error) {
// Acquire the write lock and invoke the internal implementations of Send
// and Receive which require the lock already be held.
c.mu.Lock()
defer c.mu.Unlock()
req, err := c.lockedSend(message)
if err != nil {
return nil, err
}
replies, err := c.lockedReceive()
if err != nil {
return nil, err
}
if err := Validate(req, replies); err != nil {
return nil, err
}
return replies, nil
}
// SendMessages sends multiple Messages to netlink. The handling of
// a Header's Length, Sequence and PID fields is the same as when
// calling Send.
func (c *Conn) SendMessages(messages []Message) ([]Message, error) {
// Wait for any concurrent calls to Execute to finish before proceeding.
c.mu.RLock()
defer c.mu.RUnlock()
for idx, m := range messages {
ml := nlmsgLength(len(m.Data))
// TODO(mdlayher): fine-tune this limit.
if ml > (1024 * 32) {
return nil, errors.New("netlink message data too large")
}
c.fixMsg(&messages[idx], ml)
}
c.debug(func(d *debugger) {
for _, m := range messages {
d.debugf(1, "send msgs: %+v", m)
}
})
if err := c.sock.SendMessages(messages); err != nil {
c.debug(func(d *debugger) {
d.debugf(1, "send msgs: err: %v", err)
})
return nil, newOpError("send-messages", err)
}
return messages, nil
}
// Send sends a single Message to netlink. In most cases, a Header's Length,
// Sequence, and PID fields should be set to 0, so they can be populated
// automatically before the Message is sent. On success, Send returns a copy
// of the Message with all parameters populated, for later validation.
//
// If Header.Length is 0, it will be automatically populated using the
// correct length for the Message, including its payload.
//
// If Header.Sequence is 0, it will be automatically populated using the
// next sequence number for this connection.
//
// If Header.PID is 0, it will be automatically populated using a PID
// assigned by netlink.
func (c *Conn) Send(message Message) (Message, error) {
// Wait for any concurrent calls to Execute to finish before proceeding.
c.mu.RLock()
defer c.mu.RUnlock()
return c.lockedSend(message)
}
// lockedSend implements Send, but must be called with c.mu acquired for reading.
// We rely on the kernel to deal with concurrent reads and writes to the netlink
// socket itself.
func (c *Conn) lockedSend(message Message) (Message, error) {
ml := nlmsgLength(len(message.Data))
// TODO(mdlayher): fine-tune this limit.
if ml > (1024 * 32) {
return Message{}, errors.New("netlink message data too large")
}
c.fixMsg(&message, ml)
c.debug(func(d *debugger) {
d.debugf(1, "send: %+v", message)
})
if err := c.sock.Send(message); err != nil {
c.debug(func(d *debugger) {
d.debugf(1, "send: err: %v", err)
})
return Message{}, newOpError("send", err)
}
return message, nil
}
// Receive receives one or more messages from netlink. Multi-part messages are
// handled transparently and returned as a single slice of Messages, with the
// final empty "multi-part done" message removed.
//
// If any of the messages indicate a netlink error, that error will be returned.
func (c *Conn) Receive() ([]Message, error) {
// Wait for any concurrent calls to Execute to finish before proceeding.
c.mu.RLock()
defer c.mu.RUnlock()
return c.lockedReceive()
}
// lockedReceive implements Receive, but must be called with c.mu acquired for reading.
// We rely on the kernel to deal with concurrent reads and writes to the netlink
// socket itself.
func (c *Conn) lockedReceive() ([]Message, error) {
msgs, err := c.receive()
if err != nil {
c.debug(func(d *debugger) {
d.debugf(1, "recv: err: %v", err)
})
return nil, err
}
c.debug(func(d *debugger) {
for _, m := range msgs {
d.debugf(1, "recv: %+v", m)
}
})
// When using nltest, it's possible for zero messages to be returned by receive.
if len(msgs) == 0 {
return msgs, nil
}
// Trim the final message with multi-part done indicator if
// present.
if m := msgs[len(msgs)-1]; m.Header.Flags&Multi != 0 && m.Header.Type == Done {
return msgs[:len(msgs)-1], nil
}
return msgs, nil
}
// receive is the internal implementation of Conn.Receive, which can be called
// recursively to handle multi-part messages.
func (c *Conn) receive() ([]Message, error) {
// NB: All non-nil errors returned from this function *must* be of type
// OpError in order to maintain the appropriate contract with callers of
// this package.
//
// This contract also applies to functions called within this function,
// such as checkMessage.
var res []Message
for {
msgs, err := c.sock.Receive()
if err != nil {
return nil, newOpError("receive", err)
}
// If this message is multi-part, we will need to perform an recursive call
// to continue draining the socket
var multi bool
for _, m := range msgs {
if err := checkMessage(m); err != nil {
return nil, err
}
// Does this message indicate a multi-part message?
if m.Header.Flags&Multi == 0 {
// No, check the next messages.
continue
}
// Does this message indicate the last message in a series of
// multi-part messages from a single read?
multi = m.Header.Type != Done
}
res = append(res, msgs...)
if !multi {
// No more messages coming.
return res, nil
}
}
}
// A groupJoinLeaver is a Socket that supports joining and leaving
// netlink multicast groups.
type groupJoinLeaver interface {
Socket
JoinGroup(group uint32) error
LeaveGroup(group uint32) error
}
// JoinGroup joins a netlink multicast group by its ID.
func (c *Conn) JoinGroup(group uint32) error {
conn, ok := c.sock.(groupJoinLeaver)
if !ok {
return notSupported("join-group")
}
return newOpError("join-group", conn.JoinGroup(group))
}
// LeaveGroup leaves a netlink multicast group by its ID.
func (c *Conn) LeaveGroup(group uint32) error {
conn, ok := c.sock.(groupJoinLeaver)
if !ok {
return notSupported("leave-group")
}
return newOpError("leave-group", conn.LeaveGroup(group))
}
// A bpfSetter is a Socket that supports setting and removing BPF filters.
type bpfSetter interface {
Socket
bpf.Setter
RemoveBPF() error
}
// SetBPF attaches an assembled BPF program to a Conn.
func (c *Conn) SetBPF(filter []bpf.RawInstruction) error {
conn, ok := c.sock.(bpfSetter)
if !ok {
return notSupported("set-bpf")
}
return newOpError("set-bpf", conn.SetBPF(filter))
}
// RemoveBPF removes a BPF filter from a Conn.
func (c *Conn) RemoveBPF() error {
conn, ok := c.sock.(bpfSetter)
if !ok {
return notSupported("remove-bpf")
}
return newOpError("remove-bpf", conn.RemoveBPF())
}
// A deadlineSetter is a Socket that supports setting deadlines.
type deadlineSetter interface {
Socket
SetDeadline(time.Time) error
SetReadDeadline(time.Time) error
SetWriteDeadline(time.Time) error
}
// SetDeadline sets the read and write deadlines associated with the connection.
//
// Deadline functionality is only supported on Go 1.12+. Calling this function
// on older versions of Go will result in an error.
func (c *Conn) SetDeadline(t time.Time) error {
conn, ok := c.sock.(deadlineSetter)
if !ok {
return notSupported("set-deadline")
}
return newOpError("set-deadline", conn.SetDeadline(t))
}
// SetReadDeadline sets the read deadline associated with the connection.
//
// Deadline functionality is only supported on Go 1.12+. Calling this function
// on older versions of Go will result in an error.
func (c *Conn) SetReadDeadline(t time.Time) error {
conn, ok := c.sock.(deadlineSetter)
if !ok {
return notSupported("set-read-deadline")
}
return newOpError("set-read-deadline", conn.SetReadDeadline(t))
}
// SetWriteDeadline sets the write deadline associated with the connection.
//
// Deadline functionality is only supported on Go 1.12+. Calling this function
// on older versions of Go will result in an error.
func (c *Conn) SetWriteDeadline(t time.Time) error {
conn, ok := c.sock.(deadlineSetter)
if !ok {
return notSupported("set-write-deadline")
}
return newOpError("set-write-deadline", conn.SetWriteDeadline(t))
}
// A ConnOption is a boolean option that may be set for a Conn.
type ConnOption int
// Possible ConnOption values. These constants are equivalent to the Linux
// setsockopt boolean options for netlink sockets.
const (
PacketInfo ConnOption = iota
BroadcastError
NoENOBUFS
ListenAllNSID
CapAcknowledge
ExtendedAcknowledge
)
// An optionSetter is a Socket that supports setting netlink options.
type optionSetter interface {
Socket
SetOption(option ConnOption, enable bool) error
}
// SetOption enables or disables a netlink socket option for the Conn.
func (c *Conn) SetOption(option ConnOption, enable bool) error {
conn, ok := c.sock.(optionSetter)
if !ok {
return notSupported("set-option")
}
return newOpError("set-option", conn.SetOption(option, enable))
}
// A bufferSetter is a Socket that supports setting connection buffer sizes.
type bufferSetter interface {
Socket
SetReadBuffer(bytes int) error
SetWriteBuffer(bytes int) error
}
// SetReadBuffer sets the size of the operating system's receive buffer
// associated with the Conn.
func (c *Conn) SetReadBuffer(bytes int) error {
conn, ok := c.sock.(bufferSetter)
if !ok {
return notSupported("set-read-buffer")
}
return newOpError("set-read-buffer", conn.SetReadBuffer(bytes))
}
// SetWriteBuffer sets the size of the operating system's transmit buffer
// associated with the Conn.
func (c *Conn) SetWriteBuffer(bytes int) error {
conn, ok := c.sock.(bufferSetter)
if !ok {
return notSupported("set-write-buffer")
}
return newOpError("set-write-buffer", conn.SetWriteBuffer(bytes))
}
// A filer is a Socket that supports retrieving its associated *os.File.
type filer interface {
Socket
File() *os.File
}
var _ syscall.Conn = &Conn{}
// TODO(mdlayher): mutex or similar to enforce syscall.RawConn contract of
// FD remaining valid for duration of calls?
// SyscallConn returns a raw network connection. This implements the
// syscall.Conn interface.
//
// On Go 1.12+, all methods of the returned syscall.RawConn are supported and
// the Conn is integrated with the runtime network poller. On versions of Go
// prior to Go 1.12, only the Control method of the returned syscall.RawConn
// is implemented.
//
// SyscallConn is intended for advanced use cases, such as getting and setting
// arbitrary socket options using the netlink socket's file descriptor.
//
// Once invoked, it is the caller's responsibility to ensure that operations
// performed using Conn and the syscall.RawConn do not conflict with
// each other.
func (c *Conn) SyscallConn() (syscall.RawConn, error) {
fc, ok := c.sock.(filer)
if !ok {
return nil, notSupported("syscall-conn")
}
return newRawConn(fc.File())
}
// fixMsg updates the fields of m using the logic specified in Send.
func (c *Conn) fixMsg(m *Message, ml int) {
if m.Header.Length == 0 {
m.Header.Length = uint32(nlmsgAlign(ml))
}
if m.Header.Sequence == 0 {
m.Header.Sequence = c.nextSequence()
}
if m.Header.PID == 0 {
m.Header.PID = c.pid
}
}
// nextSequence atomically increments Conn's sequence number and returns
// the incremented value.
func (c *Conn) nextSequence() uint32 {
return atomic.AddUint32(c.seq, 1)
}
// Validate validates one or more reply Messages against a request Message,
// ensuring that they contain matching sequence numbers and PIDs.
func Validate(request Message, replies []Message) error {
for _, m := range replies {
// Check for mismatched sequence, unless:
// - request had no sequence, meaning we are probably validating
// a multicast reply
if m.Header.Sequence != request.Header.Sequence && request.Header.Sequence != 0 {
return newOpError("validate", errMismatchedSequence)
}
// Check for mismatched PID, unless:
// - request had no PID, meaning we are either:
// - validating a multicast reply
// - netlink has not yet assigned us a PID
// - response had no PID, meaning it's from the kernel as a multicast reply
if m.Header.PID != request.Header.PID && request.Header.PID != 0 && m.Header.PID != 0 {
return newOpError("validate", errMismatchedPID)
}
}
return nil
}
// Config contains options for a Conn.
type Config struct {
// Groups is a bitmask which specifies multicast groups. If set to 0,
// no multicast group subscriptions will be made.
Groups uint32
// NetNS specifies the network namespace the Conn will operate in.
//
// If set (non-zero), Conn will enter the specified network namespace and
// an error will occur in Dial if the operation fails.
//
// If not set (zero), a best-effort attempt will be made to enter the
// network namespace of the calling thread: this means that any changes made
// to the calling thread's network namespace will also be reflected in Conn.
// If this operation fails (due to lack of permissions or because network
// namespaces are disabled by kernel configuration), Dial will not return
// an error, and the Conn will operate in the default network namespace of
// the process. This enables non-privileged use of Conn in applications
// which do not require elevated privileges.
//
// Entering a network namespace is a privileged operation (root or
// CAP_SYS_ADMIN are required), and most applications should leave this set
// to 0.
NetNS int
}