mirror of
https://github.com/VictoriaMetrics/VictoriaMetrics.git
synced 2024-12-25 11:50:13 +01:00
211 lines
6.5 KiB
Go
211 lines
6.5 KiB
Go
|
package graphite
|
||
|
|
||
|
import (
|
||
|
"flag"
|
||
|
"fmt"
|
||
|
"time"
|
||
|
|
||
|
"github.com/VictoriaMetrics/VictoriaMetrics/app/vmselect/graphiteql"
|
||
|
"github.com/VictoriaMetrics/VictoriaMetrics/app/vmselect/netstorage"
|
||
|
"github.com/VictoriaMetrics/VictoriaMetrics/app/vmselect/searchutils"
|
||
|
"github.com/VictoriaMetrics/VictoriaMetrics/lib/cgroup"
|
||
|
"github.com/VictoriaMetrics/VictoriaMetrics/lib/logger"
|
||
|
"github.com/VictoriaMetrics/VictoriaMetrics/lib/storage"
|
||
|
"github.com/VictoriaMetrics/VictoriaMetrics/lib/timerpool"
|
||
|
)
|
||
|
|
||
|
var maxGraphiteSeries = flag.Int("search.maxGraphiteSeries", 300e3, "The maximum number of time series, which can be scanned during queries to Graphite Render API. "+
|
||
|
"See https://docs.victoriametrics.com/#graphite-render-api-usage")
|
||
|
|
||
|
type evalConfig struct {
|
||
|
startTime int64
|
||
|
endTime int64
|
||
|
storageStep int64
|
||
|
deadline searchutils.Deadline
|
||
|
|
||
|
currentTime time.Time
|
||
|
|
||
|
// xFilesFactor is used for determining when consolidateFunc must be applied.
|
||
|
//
|
||
|
// 0 means that consolidateFunc should be applied if at least a single non-NaN data point exists on the given step.
|
||
|
// 1 means that consolidateFunc should be applied if all the data points are non-NaN on the given step.
|
||
|
xFilesFactor float64
|
||
|
|
||
|
// Enforced tag filters
|
||
|
etfs [][]storage.TagFilter
|
||
|
|
||
|
// originalQuery contains the original query - used for debug logging.
|
||
|
originalQuery string
|
||
|
}
|
||
|
|
||
|
func (ec *evalConfig) pointsLen(step int64) int {
|
||
|
return int((ec.endTime - ec.startTime) / step)
|
||
|
}
|
||
|
|
||
|
func (ec *evalConfig) newTimestamps(step int64) []int64 {
|
||
|
pointsLen := ec.pointsLen(step)
|
||
|
timestamps := make([]int64, pointsLen)
|
||
|
ts := ec.startTime
|
||
|
for i := 0; i < pointsLen; i++ {
|
||
|
timestamps[i] = ts
|
||
|
ts += step
|
||
|
}
|
||
|
return timestamps
|
||
|
}
|
||
|
|
||
|
type series struct {
|
||
|
Name string
|
||
|
Tags map[string]string
|
||
|
Timestamps []int64
|
||
|
Values []float64
|
||
|
|
||
|
// holds current path expression like graphite does.
|
||
|
pathExpression string
|
||
|
|
||
|
expr graphiteql.Expr
|
||
|
|
||
|
// consolidateFunc is applied to raw samples in order to generate data points algined to the given step.
|
||
|
// see series.consolidate() function for details.
|
||
|
consolidateFunc aggrFunc
|
||
|
|
||
|
// xFilesFactor is used for determining when consolidateFunc must be applied.
|
||
|
//
|
||
|
// 0 means that consolidateFunc should be applied if at least a single non-NaN data point exists on the given step.
|
||
|
// 1 means that consolidateFunc should be applied if all the data points are non-NaN on the given step.
|
||
|
xFilesFactor float64
|
||
|
|
||
|
step int64
|
||
|
}
|
||
|
|
||
|
func (s *series) consolidate(ec *evalConfig, step int64) {
|
||
|
aggrFunc := s.consolidateFunc
|
||
|
if aggrFunc == nil {
|
||
|
aggrFunc = aggrAvg
|
||
|
}
|
||
|
xFilesFactor := s.xFilesFactor
|
||
|
if s.xFilesFactor <= 0 {
|
||
|
xFilesFactor = ec.xFilesFactor
|
||
|
}
|
||
|
s.summarize(aggrFunc, ec.startTime, ec.endTime, step, xFilesFactor)
|
||
|
}
|
||
|
|
||
|
func (s *series) summarize(aggrFunc aggrFunc, startTime, endTime, step int64, xFilesFactor float64) {
|
||
|
pointsLen := int((endTime - startTime) / step)
|
||
|
timestamps := s.Timestamps
|
||
|
values := s.Values
|
||
|
dstTimestamps := make([]int64, 0, pointsLen)
|
||
|
dstValues := make([]float64, 0, pointsLen)
|
||
|
ts := startTime
|
||
|
i := 0
|
||
|
for len(dstTimestamps) < pointsLen {
|
||
|
tsEnd := ts + step
|
||
|
j := i
|
||
|
for j < len(timestamps) && timestamps[j] < tsEnd {
|
||
|
j++
|
||
|
}
|
||
|
if i == j && i > 0 && ts-timestamps[i-1] <= 2000 {
|
||
|
// The current [ts ... tsEnd) interval has no samples,
|
||
|
// but the last sample on the previous interval [ts - step ... ts)
|
||
|
// is closer than 2 seconds to the current interval.
|
||
|
// Let's consider that this sample belongs to the current interval,
|
||
|
// since such discrepancy could appear because of small jitter in samples' ingestion.
|
||
|
i--
|
||
|
}
|
||
|
v := aggrFunc.apply(xFilesFactor, values[i:j])
|
||
|
dstTimestamps = append(dstTimestamps, ts)
|
||
|
dstValues = append(dstValues, v)
|
||
|
ts = tsEnd
|
||
|
i = j
|
||
|
}
|
||
|
// Do not reuse s.Timestamps and s.Values, since they can be too big
|
||
|
s.Timestamps = dstTimestamps
|
||
|
s.Values = dstValues
|
||
|
s.step = step
|
||
|
}
|
||
|
|
||
|
func execExpr(ec *evalConfig, query string) (nextSeriesFunc, error) {
|
||
|
expr, err := graphiteql.Parse(query)
|
||
|
if err != nil {
|
||
|
return nil, fmt.Errorf("cannot parse %q: %w", query, err)
|
||
|
}
|
||
|
return evalExpr(ec, expr)
|
||
|
}
|
||
|
|
||
|
func evalExpr(ec *evalConfig, expr graphiteql.Expr) (nextSeriesFunc, error) {
|
||
|
switch t := expr.(type) {
|
||
|
case *graphiteql.MetricExpr:
|
||
|
return evalMetricExpr(ec, t)
|
||
|
case *graphiteql.FuncExpr:
|
||
|
return evalFuncExpr(ec, t)
|
||
|
default:
|
||
|
return nil, fmt.Errorf("unexpected expression type %T; want graphiteql.MetricExpr or graphiteql.FuncExpr; expr: %q", t, t.AppendString(nil))
|
||
|
}
|
||
|
}
|
||
|
|
||
|
func evalMetricExpr(ec *evalConfig, me *graphiteql.MetricExpr) (nextSeriesFunc, error) {
|
||
|
tfs := []storage.TagFilter{{
|
||
|
Key: []byte("__graphite__"),
|
||
|
Value: []byte(me.Query),
|
||
|
}}
|
||
|
tfss := joinTagFilterss(tfs, ec.etfs)
|
||
|
sq := storage.NewSearchQuery(ec.startTime, ec.endTime, tfss, *maxGraphiteSeries)
|
||
|
return newNextSeriesForSearchQuery(ec, sq, me)
|
||
|
}
|
||
|
|
||
|
func newNextSeriesForSearchQuery(ec *evalConfig, sq *storage.SearchQuery, expr graphiteql.Expr) (nextSeriesFunc, error) {
|
||
|
rss, err := netstorage.ProcessSearchQuery(nil, sq, ec.deadline)
|
||
|
if err != nil {
|
||
|
return nil, fmt.Errorf("cannot fetch data for %q: %w", sq, err)
|
||
|
}
|
||
|
seriesCh := make(chan *series, cgroup.AvailableCPUs())
|
||
|
errCh := make(chan error, 1)
|
||
|
go func() {
|
||
|
err := rss.RunParallel(nil, func(rs *netstorage.Result, workerID uint) error {
|
||
|
nameWithTags := getCanonicalPath(&rs.MetricName)
|
||
|
tags := unmarshalTags(nameWithTags)
|
||
|
s := &series{
|
||
|
Name: tags["name"],
|
||
|
Tags: tags,
|
||
|
Timestamps: append([]int64{}, rs.Timestamps...),
|
||
|
Values: append([]float64{}, rs.Values...),
|
||
|
expr: expr,
|
||
|
pathExpression: string(expr.AppendString(nil)),
|
||
|
}
|
||
|
s.summarize(aggrAvg, ec.startTime, ec.endTime, ec.storageStep, 0)
|
||
|
t := timerpool.Get(30 * time.Second)
|
||
|
select {
|
||
|
case seriesCh <- s:
|
||
|
case <-t.C:
|
||
|
logger.Errorf("resource leak when processing the %s (full query: %s); please report this error to VictoriaMetrics developers",
|
||
|
expr.AppendString(nil), ec.originalQuery)
|
||
|
}
|
||
|
timerpool.Put(t)
|
||
|
return nil
|
||
|
})
|
||
|
close(seriesCh)
|
||
|
errCh <- err
|
||
|
}()
|
||
|
f := func() (*series, error) {
|
||
|
s := <-seriesCh
|
||
|
if s != nil {
|
||
|
return s, nil
|
||
|
}
|
||
|
err := <-errCh
|
||
|
return nil, err
|
||
|
}
|
||
|
return f, nil
|
||
|
}
|
||
|
|
||
|
func evalFuncExpr(ec *evalConfig, fe *graphiteql.FuncExpr) (nextSeriesFunc, error) {
|
||
|
// Do not lowercase the fe.FuncName, since Graphite function names are case-sensitive.
|
||
|
tf := transformFuncs[fe.FuncName]
|
||
|
if tf == nil {
|
||
|
return nil, fmt.Errorf("unknown function %q", fe.FuncName)
|
||
|
}
|
||
|
nextSeries, err := tf(ec, fe)
|
||
|
if err != nil {
|
||
|
return nil, fmt.Errorf("cannot evaluate %s: %w", fe.AppendString(nil), err)
|
||
|
}
|
||
|
return nextSeries, nil
|
||
|
}
|