VictoriaMetrics/app/vmselect/promql/aggr_incremental.go

271 lines
6.0 KiB
Go
Raw Normal View History

package promql
import (
"math"
"strings"
"sync"
)
// callbacks for optimized incremental calculations for aggregate functions
// over rollups over metricExpr.
//
// These calculations save RAM for aggregates over big number of time series.
var incrementalAggrFuncCallbacksMap = map[string]*incrementalAggrFuncCallbacks{
"sum": {
updateAggrFunc: updateAggrSum,
finalizeAggrFunc: finalizeAggrCommon,
},
"min": {
updateAggrFunc: updateAggrMin,
finalizeAggrFunc: finalizeAggrCommon,
},
"max": {
updateAggrFunc: updateAggrMax,
finalizeAggrFunc: finalizeAggrCommon,
},
"avg": {
updateAggrFunc: updateAggrAvg,
finalizeAggrFunc: finalizeAggrAvg,
},
"count": {
updateAggrFunc: updateAggrCount,
finalizeAggrFunc: finalizeAggrCount,
},
"sum2": {
updateAggrFunc: updateAggrSum2,
finalizeAggrFunc: finalizeAggrCommon,
},
"geomean": {
updateAggrFunc: updateAggrGeomean,
finalizeAggrFunc: finalizeAggrGeomean,
},
}
type incrementalAggrFuncContext struct {
ae *aggrFuncExpr
mu sync.Mutex
m map[string]*incrementalAggrContext
callbacks *incrementalAggrFuncCallbacks
}
func newIncrementalAggrFuncContext(ae *aggrFuncExpr, callbacks *incrementalAggrFuncCallbacks) *incrementalAggrFuncContext {
return &incrementalAggrFuncContext{
ae: ae,
m: make(map[string]*incrementalAggrContext, 1),
callbacks: callbacks,
}
}
func (iafc *incrementalAggrFuncContext) updateTimeseries(ts *timeseries) {
removeGroupTags(&ts.MetricName, &iafc.ae.Modifier)
bb := bbPool.Get()
bb.B = marshalMetricNameSorted(bb.B[:0], &ts.MetricName)
iafc.mu.Lock()
iac := iafc.m[string(bb.B)]
if iac == nil {
tsAggr := &timeseries{
Values: make([]float64, len(ts.Values)),
Timestamps: ts.Timestamps,
denyReuse: true,
}
tsAggr.MetricName.CopyFrom(&ts.MetricName)
iac = &incrementalAggrContext{
ts: tsAggr,
values: make([]float64, len(ts.Values)),
}
iafc.m[string(bb.B)] = iac
}
iafc.callbacks.updateAggrFunc(iac, ts.Values)
iafc.mu.Unlock()
bbPool.Put(bb)
}
func (iafc *incrementalAggrFuncContext) finalizeTimeseries() []*timeseries {
// There is no need in iafc.mu.Lock here, since getTimeseries must be called
// without concurrent goroutines touching iafc.
tss := make([]*timeseries, 0, len(iafc.m))
finalizeAggrFunc := iafc.callbacks.finalizeAggrFunc
for _, iac := range iafc.m {
finalizeAggrFunc(iac)
tss = append(tss, iac.ts)
}
return tss
}
type incrementalAggrFuncCallbacks struct {
updateAggrFunc func(iac *incrementalAggrContext, values []float64)
finalizeAggrFunc func(iac *incrementalAggrContext)
}
func getIncrementalAggrFuncCallbacks(name string) *incrementalAggrFuncCallbacks {
name = strings.ToLower(name)
return incrementalAggrFuncCallbacksMap[name]
}
type incrementalAggrContext struct {
ts *timeseries
values []float64
}
func finalizeAggrCommon(iac *incrementalAggrContext) {
counts := iac.values
dstValues := iac.ts.Values
_ = dstValues[len(counts)-1]
for i, v := range counts {
if v == 0 {
dstValues[i] = nan
}
}
}
func updateAggrSum(iac *incrementalAggrContext, values []float64) {
dstValues := iac.ts.Values
dstCounts := iac.values
_ = dstValues[len(values)-1]
_ = dstCounts[len(values)-1]
for i, v := range values {
if math.IsNaN(v) {
continue
}
dstValues[i] += v
dstCounts[i] = 1
}
}
func updateAggrMin(iac *incrementalAggrContext, values []float64) {
dstValues := iac.ts.Values
dstCounts := iac.values
_ = dstValues[len(values)-1]
_ = dstCounts[len(values)-1]
for i, v := range values {
if math.IsNaN(v) {
continue
}
if dstCounts[i] == 0 {
dstValues[i] = v
dstCounts[i] = 1
continue
}
if v < dstValues[i] {
dstValues[i] = v
}
}
}
func updateAggrMax(iac *incrementalAggrContext, values []float64) {
dstValues := iac.ts.Values
dstCounts := iac.values
_ = dstValues[len(values)-1]
_ = dstCounts[len(values)-1]
for i, v := range values {
if math.IsNaN(v) {
continue
}
if dstCounts[i] == 0 {
dstValues[i] = v
dstCounts[i] = 1
continue
}
if v > dstValues[i] {
dstValues[i] = v
}
}
}
func updateAggrAvg(iac *incrementalAggrContext, values []float64) {
// Do not use `Rapid calculation methods` at https://en.wikipedia.org/wiki/Standard_deviation,
// since it is slower and has no obvious benefits in increased precision.
dstValues := iac.ts.Values
dstCounts := iac.values
_ = dstValues[len(values)-1]
_ = dstCounts[len(values)-1]
for i, v := range values {
if math.IsNaN(v) {
continue
}
if dstCounts[i] == 0 {
dstValues[i] = v
dstCounts[i] = 1
continue
}
dstValues[i] += v
dstCounts[i]++
}
}
func finalizeAggrAvg(iac *incrementalAggrContext) {
dstValues := iac.ts.Values
counts := iac.values
_ = dstValues[len(counts)-1]
for i, v := range counts {
if v == 0 {
dstValues[i] = nan
continue
}
dstValues[i] /= v
}
}
func updateAggrCount(iac *incrementalAggrContext, values []float64) {
dstValues := iac.ts.Values
_ = dstValues[len(values)-1]
for i, v := range values {
if math.IsNaN(v) {
continue
}
dstValues[i]++
}
}
func finalizeAggrCount(iac *incrementalAggrContext) {
// Nothing to do
}
func updateAggrSum2(iac *incrementalAggrContext, values []float64) {
dstValues := iac.ts.Values
dstCounts := iac.values
_ = dstValues[len(values)-1]
_ = dstCounts[len(values)-1]
for i, v := range values {
if math.IsNaN(v) {
continue
}
dstValues[i] += v * v
dstCounts[i] = 1
}
}
func updateAggrGeomean(iac *incrementalAggrContext, values []float64) {
dstValues := iac.ts.Values
dstCounts := iac.values
_ = dstValues[len(values)-1]
_ = dstCounts[len(values)-1]
for i, v := range values {
if math.IsNaN(v) {
continue
}
if dstCounts[i] == 0 {
dstValues[i] = v
dstCounts[i] = 1
continue
}
dstValues[i] *= v
dstCounts[i]++
}
}
func finalizeAggrGeomean(iac *incrementalAggrContext) {
dstValues := iac.ts.Values
counts := iac.values
_ = dstValues[len(counts)-1]
for i, v := range counts {
if v == 0 {
dstValues[i] = nan
continue
}
dstValues[i] = math.Pow(dstValues[i], 1/v)
}
}