* Supports [Prometheus querying API](https://prometheus.io/docs/prometheus/latest/querying/api/), so it can be used as Prometheus drop-in replacement in Grafana.
Additionally, VictoriaMetrics extends PromQL with opt-in [useful features](https://github.com/VictoriaMetrics/VictoriaMetrics/wiki/ExtendedPromQL).
* High performance and good scalability for both [inserts](https://medium.com/@valyala/high-cardinality-tsdb-benchmarks-victoriametrics-vs-timescaledb-vs-influxdb-13e6ee64dd6b)
and [selects](https://medium.com/@valyala/when-size-matters-benchmarking-victoriametrics-vs-timescale-and-influxdb-6035811952d4).
[Outperforms InfluxDB and TimescaleDB by up to 20x](https://medium.com/@valyala/measuring-vertical-scalability-for-time-series-databases-in-google-cloud-92550d78d8ae).
* [Uses 10x less RAM than InfluxDB](https://medium.com/@valyala/insert-benchmarks-with-inch-influxdb-vs-victoriametrics-e31a41ae2893) when working with millions of unique time series (aka high cardinality).
* High data compression, so [up to 70x more data points](https://medium.com/@valyala/when-size-matters-benchmarking-victoriametrics-vs-timescale-and-influxdb-6035811952d4)
may be crammed into a limited storage comparing to TimescaleDB.
* Optimized for storage with high-latency IO and low iops (HDD and network storage in AWS, Google Cloud, Microsoft Azure, etc). See [graphs from these benchmarks](https://medium.com/@valyala/high-cardinality-tsdb-benchmarks-victoriametrics-vs-timescaledb-vs-influxdb-13e6ee64dd6b).
* A single-node VictoriaMetrics may substitute moderately sized clusters built with competing solutions such as Thanos, Uber M3, Cortex, InfluxDB or TimescaleDB.
See [vertical scalability benchmarks](https://medium.com/@valyala/measuring-vertical-scalability-for-time-series-databases-in-google-cloud-92550d78d8ae)
and [comparing Thanos to VictoriaMetrics cluster](https://medium.com/@valyala/comparing-thanos-to-victoriametrics-cluster-b193bea1683).
* VictoriaMetrics consists of a single executable without external dependencies.
* All the configuration is done via explicit command-line flags with reasonable defaults.
* All the data is stored in a single directory pointed by `-storageDataPath` flag.
* Easy backups from [instant snapshots](https://medium.com/@valyala/how-victoriametrics-makes-instant-snapshots-for-multi-terabyte-time-series-data-e1f3fb0e0282).
* Storage is protected from corruption on unclean shutdown (i.e. hardware reset or `kill -9`) thanks to [the storage architecture](https://medium.com/@valyala/how-victoriametrics-makes-instant-snapshots-for-multi-terabyte-time-series-data-e1f3fb0e0282).
* Supports metrics' ingestion and backfilling via the following protocols:
helps to spin up VictoriaMetrics, Prometheus and Grafana with one command.
More details may be found [here](https://github.com/VictoriaMetrics/VictoriaMetrics/tree/master/deployment/docker#folder-contains-basic-images-and-tools-for-building-and-running-victoria-metrics-in-docker).
VictoriaMetrics is able to create [instant snapshots](https://medium.com/@valyala/how-victoriametrics-makes-instant-snapshots-for-multi-terabyte-time-series-data-e1f3fb0e0282)
for all the data stored under `-storageDataPath` directory.
Send a request to `http://<victoriametrics-addr>:8428/api/v1/admin/tsdb/delete_series?match[]=<timeseries_selector_for_delete>`,
where `<timeseries_selector_for_delete>` may contain any [time series selector](https://prometheus.io/docs/prometheus/latest/querying/basics/#time-series-selectors)
for metrics to delete. After that all the time series matching the given selector are deleted. Storage space for
the deleted time series isn't freed instantly - it is freed during subsequent merges of data files.
### How to export time series?
Send a request to `http://<victoriametrics-addr>:8428/api/v1/export?match[]=<timeseries_selector_for_export>`,
where `<timeseries_selector_for_export>` may contain any [time series selector](https://prometheus.io/docs/prometheus/latest/querying/basics/#time-series-selectors)
for metrics to export. The response would contain all the data for the selected time series in [JSON streaming format](https://en.wikipedia.org/wiki/JSON_streaming#Line-delimited_JSON).
Each JSON line would contain data for a single time series. An example output:
at `http://<victoriametrics-addr>:8428/federate?match[]=<timeseries_selector_for_federation>`.
Optional `start` and `end` args may be added to the request in order to scrape the last point for each selected time series on the `[start ... end]` interval.
`start` and `end` may contain either unix timestamp in seconds or [RFC3339](https://www.ietf.org/rfc/rfc3339.txt) values. By default the last point
on the interval `[now - max_lookback ... now]` is scraped for each time series. Default value for `max_lookback` is `5m` (5 minutes), but can be overridden.
For instance, `/federate?match[]=up&max_lookback=1h` would return last points on the `[now - 1h ... now]` interval. This may be useful for time series federation
There is no downsampling support at the moment, but:
- VictoriaMetrics is optimized for querying big amounts of raw data. See benchmark results for heavy queries
in [this article](https://medium.com/@valyala/measuring-vertical-scalability-for-time-series-databases-in-google-cloud-92550d78d8ae).
- VictoriaMetrics has good compression for on-disk data. See [this article](https://medium.com/@valyala/victoriametrics-achieving-better-compression-for-time-series-data-than-gorilla-317bc1f95932)
for details.
These properties reduce the need in downsampling. We plan implementing downsampling in the future.
See [this issue](https://github.com/VictoriaMetrics/VictoriaMetrics/issues/36) for details.
Single-node VictoriaMetrics doesn't support multi-tenancy. Use [cluster version](https://github.com/VictoriaMetrics/VictoriaMetrics/tree/cluster) instead.
such as Thanos, Uber M3, InfluxDB or TimescaleDB. See [vertical scalability benchmarks](https://medium.com/@valyala/measuring-vertical-scalability-for-time-series-databases-in-google-cloud-92550d78d8ae).
So try single-node VictoriaMetrics at first and then [switch to cluster version](https://github.com/VictoriaMetrics/VictoriaMetrics/tree/cluster) if you still need
horizontally scalable long-term remote storage for really large Prometheus deployments.
[Contact us](mailto:info@victoriametrics.com) for paid support.
Do not forget protecting sensitive endpoints in VictoriaMetrics when exposing it to untrusted networks such as internet.
Consider setting the following command-line flags:
*`-tls`, `-tlsCertFile` and `-tlsKeyFile` for switching from HTTP to HTTPS.
*`-httpAuth.username` and `-httpAuth.password` for protecting all the HTTP endpoints
with [HTTP Basic Authentication](https://en.wikipedia.org/wiki/Basic_access_authentication).
*`-deleteAuthKey` for protecting `/api/v1/admin/tsdb/delete_series` endpoint. See [how to delete time series](#how-to-delete-time-series).
*`-snapshotAuthKey` for protecting `/snapshot*` endpoints. See [how to work with snapshots](#how-to-work-with-snapshots).
Explicitly set internal network interface for TCP and UDP ports for data ingestion with Graphite and OpenTSDB formats.
For example, substitute `-graphiteListenAddr=:2003` with `-graphiteListenAddr=<internal_iface_ip>:2003`.
### Tuning
* There is no need in VictoriaMetrics tuning, since it uses reasonable defaults for command-line flags,
which are automatically adjusted for the available CPU and RAM resources.
* There is no need in Operating System tuning, since VictoriaMetrics is optimized for default OS settings.
The only option is increasing the limit on [the number open files in the OS](https://medium.com/@muhammadtriwibowo/set-permanently-ulimit-n-open-files-in-ubuntu-4d61064429a),
so Prometheus instances could establish more connections to VictoriaMetrics.
### Monitoring
VictoriaMetrics exports internal metrics in Prometheus format on the `/metrics` page.
Add this page to Prometheus' scrape config in order to collect VictoriaMetrics metrics.
There is [an official Grafana dashboard for single-node VictoriaMetrics](https://grafana.com/dashboards/10229).
*`vm_cache_entries{type="storage/hour_metric_ids"}` - the number of time series with new data points during the last hour
aka active time series.
*`vm_rows{type="indexdb"}` - the number of rows in inverted index. Each label in each unique time series adds a single
row into the inverted index. An approximate number of time series in the database may be calculated as
`vm_rows{type="indexdb"} / (avg_labels_per_series + 1)`, where `avg_labels_per_series` is the average number of labels
per each time series.
* Sum of `vm_rows{type="storage/big"}` and `vm_rows{type="storage/small"}` - total number of `(timestamp, value)` data points
in the database.
* Sum of all the `vm_cache_size_bytes` metrics - the total size of all the caches in the database.
*`vm_allowed_memory_bytes` - the maximum allowed size for caches in the database. It is calculated as `system_memory * <-memory.allowedPercent> / 100`,
where `system_memory` is the amount of system memory and `-memory.allowedPercent` is the corresponding flag value.
*`vm_rows_inserted_total` - the total number of inserted rows since VictoriaMetrics start.