mirror of
https://github.com/VictoriaMetrics/VictoriaMetrics.git
synced 2025-01-04 13:52:05 +01:00
175 lines
5.1 KiB
Markdown
175 lines
5.1 KiB
Markdown
|
---
|
||
|
# sort: 2
|
||
|
weight: 2
|
||
|
title: Custom Model Guide
|
||
|
# disableToc: true
|
||
|
menu:
|
||
|
docs:
|
||
|
parent: "vmanomaly-models"
|
||
|
weight: 2
|
||
|
# sort: 2
|
||
|
aliases:
|
||
|
- /anomaly-detection/components/models/custom_model.html
|
||
|
---
|
||
|
|
||
|
# Custom Model Guide
|
||
|
**Note**: vmanomaly is a part of [enterprise package](https://docs.victoriametrics.com/enterprise.html). Please [contact us](https://victoriametrics.com/contact-us/) to find out more.
|
||
|
|
||
|
Apart from vmanomaly predefined models, users can create their own custom models for anomaly detection.
|
||
|
|
||
|
Here in this guide, we will
|
||
|
- Make a file containing our custom model definition
|
||
|
- Define VictoriaMetrics Anomaly Detection config file to use our custom model
|
||
|
- Run service
|
||
|
|
||
|
**Note**: The file containing the model should be written in [Python language](https://www.python.org/) (3.11+)
|
||
|
|
||
|
## 1. Custom model
|
||
|
We'll create `custom_model.py` file with `CustomModel` class that will inherit from vmanomaly `Model` base class.
|
||
|
In the `CustomModel` class there should be three required methods - `__init__`, `fit` and `infer`:
|
||
|
* `__init__` method should initiate parameters for the model.
|
||
|
|
||
|
**Note**: if your model relies on configs that have `arg` [key-value pair argument](./models.md#section-overview), do not forget to use Python's `**kwargs` in method's signature and to explicitly call
|
||
|
```python
|
||
|
super().__init__(**kwargs)
|
||
|
```
|
||
|
to initialize the base class each model derives from
|
||
|
* `fit` method should contain the model training process.
|
||
|
* `infer` should return Pandas.DataFrame object with model's inferences.
|
||
|
|
||
|
For the sake of simplicity, the model in this example will return one of two values of `anomaly_score` - 0 or 1 depending on input parameter `percentage`.
|
||
|
|
||
|
<div class="with-copy" markdown="1">
|
||
|
|
||
|
```python
|
||
|
import numpy as np
|
||
|
import pandas as pd
|
||
|
import scipy.stats as st
|
||
|
import logging
|
||
|
|
||
|
from model.model import Model
|
||
|
logger = logging.getLogger(__name__)
|
||
|
|
||
|
|
||
|
class CustomModel(Model):
|
||
|
"""
|
||
|
Custom model implementation.
|
||
|
"""
|
||
|
|
||
|
def __init__(self, percentage: float = 0.95, **kwargs):
|
||
|
super().__init__(**kwargs)
|
||
|
self.percentage = percentage
|
||
|
self._mean = np.nan
|
||
|
self._std = np.nan
|
||
|
|
||
|
def fit(self, df: pd.DataFrame):
|
||
|
# Model fit process:
|
||
|
y = df['y']
|
||
|
self._mean = np.mean(y)
|
||
|
self._std = np.std(y)
|
||
|
if self._std == 0.0:
|
||
|
self._std = 1 / 65536
|
||
|
|
||
|
|
||
|
def infer(self, df: pd.DataFrame) -> np.array:
|
||
|
# Inference process:
|
||
|
y = df['y']
|
||
|
zscores = (y - self._mean) / self._std
|
||
|
anomaly_score_cdf = st.norm.cdf(np.abs(zscores))
|
||
|
df_pred = df[['timestamp', 'y']].copy()
|
||
|
df_pred['anomaly_score'] = anomaly_score_cdf > self.percentage
|
||
|
df_pred['anomaly_score'] = df_pred['anomaly_score'].astype('int32', errors='ignore')
|
||
|
|
||
|
return df_pred
|
||
|
|
||
|
```
|
||
|
|
||
|
</div>
|
||
|
|
||
|
|
||
|
## 2. Configuration file
|
||
|
Next, we need to create `config.yaml` file with VM Anomaly Detection configuration and model input parameters.
|
||
|
In the config file `model` section we need to put our model class `model.custom.CustomModel` and all parameters used in `__init__` method.
|
||
|
You can find out more about configuration parameters in vmanomaly docs.
|
||
|
|
||
|
<div class="with-copy" markdown="1">
|
||
|
|
||
|
```yaml
|
||
|
scheduler:
|
||
|
infer_every: "1m"
|
||
|
fit_every: "1m"
|
||
|
fit_window: "1d"
|
||
|
|
||
|
model:
|
||
|
# note: every custom model should implement this exact path, specified in `class` field
|
||
|
class: "model.model.CustomModel"
|
||
|
# custom model params are defined here
|
||
|
percentage: 0.9
|
||
|
|
||
|
reader:
|
||
|
datasource_url: "http://localhost:8428/"
|
||
|
queries:
|
||
|
ingestion_rate: 'sum(rate(vm_rows_inserted_total)) by (type)'
|
||
|
churn_rate: 'sum(rate(vm_new_timeseries_created_total[5m]))'
|
||
|
|
||
|
writer:
|
||
|
datasource_url: "http://localhost:8428/"
|
||
|
metric_format:
|
||
|
__name__: "custom_$VAR"
|
||
|
for: "$QUERY_KEY"
|
||
|
model: "custom"
|
||
|
run: "test-format"
|
||
|
|
||
|
monitoring:
|
||
|
# /metrics server.
|
||
|
pull:
|
||
|
port: 8080
|
||
|
push:
|
||
|
url: "http://localhost:8428/"
|
||
|
extra_labels:
|
||
|
job: "vmanomaly-develop"
|
||
|
config: "custom.yaml"
|
||
|
```
|
||
|
|
||
|
</div>
|
||
|
|
||
|
## 3. Running model
|
||
|
Let's pull the docker image for vmanomaly:
|
||
|
|
||
|
<div class="with-copy" markdown="1">
|
||
|
|
||
|
```sh
|
||
|
docker pull us-docker.pkg.dev/victoriametrics-test/public/vmanomaly-trial:latest
|
||
|
```
|
||
|
|
||
|
</div>
|
||
|
|
||
|
Now we can run the docker container putting as volumes both config and model file:
|
||
|
|
||
|
**Note**: place the model file to `/model/custom.py` path when copying
|
||
|
<div class="with-copy" markdown="1">
|
||
|
|
||
|
```sh
|
||
|
docker run -it \
|
||
|
--net [YOUR_NETWORK] \
|
||
|
-v [YOUR_LICENSE_FILE_PATH]:/license.txt \
|
||
|
-v $(PWD)/custom_model.py:/vmanomaly/src/model/custom.py \
|
||
|
-v $(PWD)/custom.yaml:/config.yaml \
|
||
|
us-docker.pkg.dev/victoriametrics-test/public/vmanomaly-trial:latest /config.yaml \
|
||
|
--license-file=/license.txt
|
||
|
```
|
||
|
</div>
|
||
|
|
||
|
Please find more detailed instructions (license, etc.) [here](/vmanomaly.html#run-vmanomaly-docker-container)
|
||
|
|
||
|
|
||
|
## Output
|
||
|
As the result, this model will return metric with labels, configured previously in `config.yaml`.
|
||
|
In this particular example, 2 metrics will be produced. Also, there will be added other metrics from input query result.
|
||
|
|
||
|
```
|
||
|
{__name__="custom_anomaly_score", for="ingestion_rate", model="custom", run="test-format"}
|
||
|
|
||
|
{__name__="custom_anomaly_score", for="churn_rate", model="custom", run="test-format"}
|
||
|
```
|