VictoriaMetrics/app/vmselect/netstorage/netstorage.go

1144 lines
33 KiB
Go
Raw Normal View History

2019-05-22 23:16:55 +02:00
package netstorage
import (
"container/heap"
"errors"
2019-05-22 23:16:55 +02:00
"flag"
"fmt"
"regexp"
2019-05-22 23:16:55 +02:00
"sort"
"sync"
"sync/atomic"
"time"
2019-05-22 23:16:55 +02:00
"github.com/VictoriaMetrics/VictoriaMetrics/app/vmselect/searchutils"
2019-05-22 23:16:55 +02:00
"github.com/VictoriaMetrics/VictoriaMetrics/app/vmstorage"
"github.com/VictoriaMetrics/VictoriaMetrics/lib/bytesutil"
"github.com/VictoriaMetrics/VictoriaMetrics/lib/cgroup"
"github.com/VictoriaMetrics/VictoriaMetrics/lib/fasttime"
"github.com/VictoriaMetrics/VictoriaMetrics/lib/logger"
"github.com/VictoriaMetrics/VictoriaMetrics/lib/querytracer"
2019-05-22 23:16:55 +02:00
"github.com/VictoriaMetrics/VictoriaMetrics/lib/storage"
"github.com/VictoriaMetrics/metrics"
"github.com/valyala/fastrand"
2019-05-22 23:16:55 +02:00
)
var (
maxTagKeysPerSearch = flag.Int("search.maxTagKeys", 100e3, "The maximum number of tag keys returned from /api/v1/labels")
maxTagValuesPerSearch = flag.Int("search.maxTagValues", 100e3, "The maximum number of tag values returned from /api/v1/label/<label_name>/values")
maxSamplesPerSeries = flag.Int("search.maxSamplesPerSeries", 30e6, "The maximum number of raw samples a single query can scan per each time series. This option allows limiting memory usage")
maxSamplesPerQuery = flag.Int("search.maxSamplesPerQuery", 1e9, "The maximum number of raw samples a single query can process across all time series. This protects from heavy queries, which select unexpectedly high number of raw samples. See also -search.maxSamplesPerSeries")
2019-05-22 23:16:55 +02:00
)
// Result is a single timeseries result.
//
// ProcessSearchQuery returns Result slice.
type Result struct {
// The name of the metric.
MetricName storage.MetricName
// Values are sorted by Timestamps.
Values []float64
Timestamps []int64
}
func (r *Result) reset() {
r.MetricName.Reset()
r.Values = r.Values[:0]
r.Timestamps = r.Timestamps[:0]
}
// Results holds results returned from ProcessSearchQuery.
type Results struct {
tr storage.TimeRange
deadline searchutils.Deadline
2019-05-22 23:16:55 +02:00
packedTimeseries []packedTimeseries
sr *storage.Search
tbf *tmpBlocksFile
2019-05-22 23:16:55 +02:00
}
// Len returns the number of results in rss.
func (rss *Results) Len() int {
return len(rss.packedTimeseries)
}
// Cancel cancels rss work.
func (rss *Results) Cancel() {
rss.mustClose()
}
func (rss *Results) mustClose() {
putStorageSearch(rss.sr)
rss.sr = nil
putTmpBlocksFile(rss.tbf)
rss.tbf = nil
2019-05-22 23:16:55 +02:00
}
type timeseriesWork struct {
mustStop *uint32
rss *Results
pts *packedTimeseries
f func(rs *Result, workerID uint) error
doneCh chan error
rowsProcessed int
}
func (tsw *timeseriesWork) reset() {
tsw.mustStop = nil
tsw.rss = nil
tsw.pts = nil
tsw.f = nil
if n := len(tsw.doneCh); n > 0 {
logger.Panicf("BUG: tsw.doneCh must be empty during reset; it contains %d items instead", n)
}
tsw.rowsProcessed = 0
}
func getTimeseriesWork() *timeseriesWork {
v := tswPool.Get()
if v == nil {
v = &timeseriesWork{
doneCh: make(chan error, 1),
}
}
return v.(*timeseriesWork)
}
func putTimeseriesWork(tsw *timeseriesWork) {
tsw.reset()
tswPool.Put(tsw)
}
var tswPool sync.Pool
func scheduleTimeseriesWork(workChs []chan *timeseriesWork, tsw *timeseriesWork) {
if len(workChs) == 1 {
// Fast path for a single worker
workChs[0] <- tsw
return
}
attempts := 0
for {
idx := fastrand.Uint32n(uint32(len(workChs)))
select {
case workChs[idx] <- tsw:
return
default:
attempts++
if attempts >= len(workChs) {
workChs[idx] <- tsw
return
}
}
}
}
func (tsw *timeseriesWork) do(r *Result, workerID uint) error {
if atomic.LoadUint32(tsw.mustStop) != 0 {
return nil
}
rss := tsw.rss
if rss.deadline.Exceeded() {
atomic.StoreUint32(tsw.mustStop, 1)
return fmt.Errorf("timeout exceeded during query execution: %s", rss.deadline.String())
}
if err := tsw.pts.Unpack(r, rss.tbf, rss.tr); err != nil {
atomic.StoreUint32(tsw.mustStop, 1)
return fmt.Errorf("error during time series unpacking: %w", err)
}
if len(r.Timestamps) > 0 {
if err := tsw.f(r, workerID); err != nil {
atomic.StoreUint32(tsw.mustStop, 1)
return err
}
}
tsw.rowsProcessed = len(r.Values)
return nil
}
func timeseriesWorker(ch <-chan *timeseriesWork, workerID uint) {
v := resultPool.Get()
if v == nil {
v = &result{}
}
r := v.(*result)
for tsw := range ch {
err := tsw.do(&r.rs, workerID)
tsw.doneCh <- err
}
currentTime := fasttime.UnixTimestamp()
if cap(r.rs.Values) > 1024*1024 && 4*len(r.rs.Values) < cap(r.rs.Values) && currentTime-r.lastResetTime > 10 {
// Reset r.rs in order to preseve memory usage after processing big time series with millions of rows.
r.rs = Result{}
r.lastResetTime = currentTime
}
resultPool.Put(r)
}
type result struct {
rs Result
lastResetTime uint64
}
var resultPool sync.Pool
// RunParallel runs f in parallel for all the results from rss.
2019-05-22 23:16:55 +02:00
//
// f shouldn't hold references to rs after returning.
// workerID is the id of the worker goroutine that calls f.
// Data processing is immediately stopped if f returns non-nil error.
2019-05-22 23:16:55 +02:00
//
// rss becomes unusable after the call to RunParallel.
func (rss *Results) RunParallel(qt *querytracer.Tracer, f func(rs *Result, workerID uint) error) error {
qt = qt.NewChild("parallel process of fetched data")
defer rss.mustClose()
2019-05-22 23:16:55 +02:00
// Spin up local workers.
//
// Do not use a global workChs with a global pool of workers, since it may lead to a deadlock in the following case:
// - RunParallel is called with f, which blocks without forward progress.
// - All the workers in the global pool became blocked in f.
// - workChs is filled up, so it cannot accept new work items from other RunParallel calls.
workers := len(rss.packedTimeseries)
if workers > gomaxprocs {
workers = gomaxprocs
}
if workers < 1 {
workers = 1
}
workChs := make([]chan *timeseriesWork, workers)
var workChsWG sync.WaitGroup
for i := 0; i < workers; i++ {
workChs[i] = make(chan *timeseriesWork, 16)
workChsWG.Add(1)
go func(workerID int) {
defer workChsWG.Done()
timeseriesWorker(workChs[workerID], uint(workerID))
}(i)
}
2019-05-22 23:16:55 +02:00
// Feed workers with work.
tsws := make([]*timeseriesWork, len(rss.packedTimeseries))
var mustStop uint32
2019-05-22 23:16:55 +02:00
for i := range rss.packedTimeseries {
tsw := getTimeseriesWork()
tsw.rss = rss
tsw.pts = &rss.packedTimeseries[i]
tsw.f = f
tsw.mustStop = &mustStop
scheduleTimeseriesWork(workChs, tsw)
tsws[i] = tsw
2019-05-22 23:16:55 +02:00
}
seriesProcessedTotal := len(rss.packedTimeseries)
2019-05-22 23:16:55 +02:00
rss.packedTimeseries = rss.packedTimeseries[:0]
// Wait until work is complete.
var firstErr error
rowsProcessedTotal := 0
for _, tsw := range tsws {
if err := <-tsw.doneCh; err != nil && firstErr == nil {
// Return just the first error, since other errors are likely duplicate the first error.
firstErr = err
2019-05-22 23:16:55 +02:00
}
rowsReadPerSeries.Update(float64(tsw.rowsProcessed))
rowsProcessedTotal += tsw.rowsProcessed
putTimeseriesWork(tsw)
2019-05-22 23:16:55 +02:00
}
rowsReadPerQuery.Update(float64(rowsProcessedTotal))
seriesReadPerQuery.Update(float64(seriesProcessedTotal))
// Shut down local workers
for _, workCh := range workChs {
close(workCh)
}
workChsWG.Wait()
qt.Donef("series=%d, samples=%d", seriesProcessedTotal, rowsProcessedTotal)
return firstErr
2019-05-22 23:16:55 +02:00
}
var (
rowsReadPerSeries = metrics.NewHistogram(`vm_rows_read_per_series`)
rowsReadPerQuery = metrics.NewHistogram(`vm_rows_read_per_query`)
seriesReadPerQuery = metrics.NewHistogram(`vm_series_read_per_query`)
)
var gomaxprocs = cgroup.AvailableCPUs()
2019-05-22 23:16:55 +02:00
type packedTimeseries struct {
metricName string
brs []blockRef
2019-05-22 23:16:55 +02:00
}
type unpackWorkItem struct {
br blockRef
tr storage.TimeRange
}
type unpackWork struct {
tbf *tmpBlocksFile
ws []unpackWorkItem
sbs []*sortBlock
doneCh chan error
}
2019-05-22 23:16:55 +02:00
func (upw *unpackWork) reset() {
upw.tbf = nil
ws := upw.ws
for i := range ws {
w := &ws[i]
w.br = blockRef{}
w.tr = storage.TimeRange{}
}
upw.ws = upw.ws[:0]
sbs := upw.sbs
for i := range sbs {
sbs[i] = nil
}
upw.sbs = upw.sbs[:0]
if n := len(upw.doneCh); n > 0 {
logger.Panicf("BUG: upw.doneCh must be empty; it contains %d items now", n)
}
}
func (upw *unpackWork) unpack(tmpBlock *storage.Block) {
for _, w := range upw.ws {
sb := getSortBlock()
if err := sb.unpackFrom(tmpBlock, upw.tbf, w.br, w.tr); err != nil {
putSortBlock(sb)
upw.doneCh <- fmt.Errorf("cannot unpack block: %w", err)
return
}
upw.sbs = append(upw.sbs, sb)
}
upw.doneCh <- nil
}
func getUnpackWork() *unpackWork {
v := unpackWorkPool.Get()
if v != nil {
return v.(*unpackWork)
}
return &unpackWork{
doneCh: make(chan error, 1),
}
}
func putUnpackWork(upw *unpackWork) {
upw.reset()
unpackWorkPool.Put(upw)
}
var unpackWorkPool sync.Pool
func scheduleUnpackWork(workChs []chan *unpackWork, uw *unpackWork) {
if len(workChs) == 1 {
// Fast path for a single worker
workChs[0] <- uw
return
}
attempts := 0
for {
idx := fastrand.Uint32n(uint32(len(workChs)))
select {
case workChs[idx] <- uw:
return
default:
attempts++
if attempts >= len(workChs) {
workChs[idx] <- uw
return
}
}
2019-05-22 23:16:55 +02:00
}
}
func unpackWorker(ch <-chan *unpackWork) {
v := tmpBlockPool.Get()
if v == nil {
v = &storage.Block{}
}
tmpBlock := v.(*storage.Block)
for upw := range ch {
upw.unpack(tmpBlock)
2019-05-22 23:16:55 +02:00
}
tmpBlockPool.Put(v)
}
2019-05-22 23:16:55 +02:00
var tmpBlockPool sync.Pool
// unpackBatchSize is the maximum number of blocks that may be unpacked at once by a single goroutine.
//
// It is better to load a single goroutine for up to one second on a system with many CPU cores
// in order to reduce inter-CPU memory ping-pong.
// A single goroutine can unpack up to 40 millions of rows per second, while a single block contains up to 8K rows.
// So the batch size should be 40M / 8K = 5K.
var unpackBatchSize = 5000
// Unpack unpacks pts to dst.
func (pts *packedTimeseries) Unpack(dst *Result, tbf *tmpBlocksFile, tr storage.TimeRange) error {
dst.reset()
if err := dst.MetricName.Unmarshal(bytesutil.ToUnsafeBytes(pts.metricName)); err != nil {
return fmt.Errorf("cannot unmarshal metricName %q: %w", pts.metricName, err)
2019-05-22 23:16:55 +02:00
}
// Spin up local workers.
// Do not use global workers pool, since it increases inter-CPU memory ping-poing,
// which reduces the scalability on systems with many CPU cores.
brsLen := len(pts.brs)
workers := brsLen / unpackBatchSize
if workers > gomaxprocs {
workers = gomaxprocs
}
if workers < 1 {
workers = 1
}
workChs := make([]chan *unpackWork, workers)
var workChsWG sync.WaitGroup
for i := 0; i < workers; i++ {
// Use unbuffered channel on purpose, since there are high chances
// that only a single unpackWork is needed to unpack.
// The unbuffered channel should reduce inter-CPU ping-pong in this case,
// which should improve the performance in a system with many CPU cores.
workChs[i] = make(chan *unpackWork)
workChsWG.Add(1)
go func(workerID int) {
defer workChsWG.Done()
unpackWorker(workChs[workerID])
}(i)
}
// Feed workers with work
upws := make([]*unpackWork, 0, 1+brsLen/unpackBatchSize)
upw := getUnpackWork()
upw.tbf = tbf
for _, br := range pts.brs {
if len(upw.ws) >= unpackBatchSize {
scheduleUnpackWork(workChs, upw)
upws = append(upws, upw)
upw = getUnpackWork()
upw.tbf = tbf
}
upw.ws = append(upw.ws, unpackWorkItem{
br: br,
tr: tr,
})
2019-05-22 23:16:55 +02:00
}
scheduleUnpackWork(workChs, upw)
upws = append(upws, upw)
pts.brs = pts.brs[:0]
2019-05-22 23:16:55 +02:00
// Wait until work is complete
samples := 0
sbs := make([]*sortBlock, 0, brsLen)
var firstErr error
for _, upw := range upws {
if err := <-upw.doneCh; err != nil && firstErr == nil {
// Return the first error only, since other errors are likely the same.
firstErr = err
}
if firstErr == nil {
for _, sb := range upw.sbs {
samples += len(sb.Timestamps)
}
if *maxSamplesPerSeries <= 0 || samples < *maxSamplesPerSeries {
sbs = append(sbs, upw.sbs...)
} else {
firstErr = fmt.Errorf("cannot process more than %d samples per series; either increase -search.maxSamplesPerSeries "+
"or reduce time range for the query", *maxSamplesPerSeries)
}
}
if firstErr != nil {
for _, sb := range upw.sbs {
putSortBlock(sb)
}
2019-05-22 23:16:55 +02:00
}
putUnpackWork(upw)
2019-05-22 23:16:55 +02:00
}
// Shut down local workers
for _, workCh := range workChs {
close(workCh)
}
workChsWG.Wait()
if firstErr != nil {
return firstErr
2019-05-22 23:16:55 +02:00
}
dedupInterval := storage.GetDedupInterval()
mergeSortBlocks(dst, sbs, dedupInterval)
2019-05-22 23:16:55 +02:00
return nil
}
func getSortBlock() *sortBlock {
v := sbPool.Get()
if v == nil {
return &sortBlock{}
}
return v.(*sortBlock)
}
func putSortBlock(sb *sortBlock) {
sb.reset()
sbPool.Put(sb)
}
var sbPool sync.Pool
var metricRowsSkipped = metrics.NewCounter(`vm_metric_rows_skipped_total{name="vmselect"}`)
func mergeSortBlocks(dst *Result, sbh sortBlocksHeap, dedupInterval int64) {
2019-05-22 23:16:55 +02:00
// Skip empty sort blocks, since they cannot be passed to heap.Init.
src := sbh
sbh = sbh[:0]
for _, sb := range src {
if len(sb.Timestamps) == 0 {
putSortBlock(sb)
continue
}
sbh = append(sbh, sb)
}
if len(sbh) == 0 {
return
}
heap.Init(&sbh)
for {
top := sbh[0]
if len(sbh) == 1 {
2019-05-22 23:16:55 +02:00
dst.Timestamps = append(dst.Timestamps, top.Timestamps[top.NextIdx:]...)
dst.Values = append(dst.Values, top.Values[top.NextIdx:]...)
putSortBlock(top)
break
2019-05-22 23:16:55 +02:00
}
sbNext := sbh.getNextBlock()
2019-05-22 23:16:55 +02:00
tsNext := sbNext.Timestamps[sbNext.NextIdx]
topTimestamps := top.Timestamps
topNextIdx := top.NextIdx
if n := equalTimestampsPrefix(topTimestamps[topNextIdx:], sbNext.Timestamps[sbNext.NextIdx:]); n > 0 && dedupInterval > 0 {
// Skip n replicated samples at top if deduplication is enabled.
top.NextIdx = topNextIdx + n
} else {
// Copy samples from top to dst with timestamps not exceeding tsNext.
top.NextIdx = topNextIdx + binarySearchTimestamps(topTimestamps[topNextIdx:], tsNext)
dst.Timestamps = append(dst.Timestamps, topTimestamps[topNextIdx:top.NextIdx]...)
dst.Values = append(dst.Values, top.Values[topNextIdx:top.NextIdx]...)
2019-05-22 23:16:55 +02:00
}
if top.NextIdx < len(topTimestamps) {
heap.Fix(&sbh, 0)
2019-05-22 23:16:55 +02:00
} else {
heap.Pop(&sbh)
2019-05-22 23:16:55 +02:00
putSortBlock(top)
}
}
timestamps, values := storage.DeduplicateSamples(dst.Timestamps, dst.Values, dedupInterval)
dedups := len(dst.Timestamps) - len(timestamps)
dedupsDuringSelect.Add(dedups)
dst.Timestamps = timestamps
dst.Values = values
2019-05-22 23:16:55 +02:00
}
var dedupsDuringSelect = metrics.NewCounter(`vm_deduplicated_samples_total{type="select"}`)
func equalTimestampsPrefix(a, b []int64) int {
for i, v := range a {
if i >= len(b) || v != b[i] {
return i
}
}
return len(a)
}
func binarySearchTimestamps(timestamps []int64, ts int64) int {
// The code has been adapted from sort.Search.
n := len(timestamps)
if n > 0 && timestamps[n-1] <= ts {
// Fast path for timestamps scanned in ascending order.
return n
}
i, j := 0, n
for i < j {
h := int(uint(i+j) >> 1)
if h >= 0 && h < len(timestamps) && timestamps[h] <= ts {
i = h + 1
} else {
j = h
}
}
return i
}
2019-05-22 23:16:55 +02:00
type sortBlock struct {
Timestamps []int64
Values []float64
NextIdx int
}
func (sb *sortBlock) reset() {
sb.Timestamps = sb.Timestamps[:0]
sb.Values = sb.Values[:0]
sb.NextIdx = 0
}
func (sb *sortBlock) unpackFrom(tmpBlock *storage.Block, tbf *tmpBlocksFile, br blockRef, tr storage.TimeRange) error {
tmpBlock.Reset()
brReal := tbf.MustReadBlockRefAt(br.partRef, br.addr)
brReal.MustReadBlock(tmpBlock)
if err := tmpBlock.UnmarshalData(); err != nil {
return fmt.Errorf("cannot unmarshal block: %w", err)
2019-05-22 23:16:55 +02:00
}
sb.Timestamps, sb.Values = tmpBlock.AppendRowsWithTimeRangeFilter(sb.Timestamps[:0], sb.Values[:0], tr)
skippedRows := tmpBlock.RowsCount() - len(sb.Timestamps)
2019-05-22 23:16:55 +02:00
metricRowsSkipped.Add(skippedRows)
return nil
}
type sortBlocksHeap []*sortBlock
func (sbh sortBlocksHeap) getNextBlock() *sortBlock {
if len(sbh) < 2 {
return nil
}
if len(sbh) < 3 {
return sbh[1]
}
a := sbh[1]
b := sbh[2]
if a.Timestamps[a.NextIdx] <= b.Timestamps[b.NextIdx] {
return a
}
return b
}
2019-05-22 23:16:55 +02:00
func (sbh sortBlocksHeap) Len() int {
return len(sbh)
}
func (sbh sortBlocksHeap) Less(i, j int) bool {
a := sbh[i]
b := sbh[j]
return a.Timestamps[a.NextIdx] < b.Timestamps[b.NextIdx]
}
func (sbh sortBlocksHeap) Swap(i, j int) {
sbh[i], sbh[j] = sbh[j], sbh[i]
}
func (sbh *sortBlocksHeap) Push(x interface{}) {
*sbh = append(*sbh, x.(*sortBlock))
}
func (sbh *sortBlocksHeap) Pop() interface{} {
a := *sbh
v := a[len(a)-1]
*sbh = a[:len(a)-1]
return v
}
// DeleteSeries deletes time series matching the given tagFilterss.
func DeleteSeries(qt *querytracer.Tracer, sq *storage.SearchQuery, deadline searchutils.Deadline) (int, error) {
qt = qt.NewChild("delete series: %s", sq)
defer qt.Done()
tr := sq.GetTimeRange()
tfss, err := setupTfss(qt, tr, sq.TagFilterss, sq.MaxMetrics, deadline)
2019-05-22 23:16:55 +02:00
if err != nil {
return 0, err
}
return vmstorage.DeleteSeries(qt, tfss)
2019-05-22 23:16:55 +02:00
}
// LabelNames returns label names matching the given sq until the given deadline.
func LabelNames(qt *querytracer.Tracer, sq *storage.SearchQuery, maxLabelNames int, deadline searchutils.Deadline) ([]string, error) {
qt = qt.NewChild("get labels: %s", sq)
defer qt.Done()
if deadline.Exceeded() {
return nil, fmt.Errorf("timeout exceeded before starting the query processing: %s", deadline.String())
}
if maxLabelNames > *maxTagKeysPerSearch || maxLabelNames <= 0 {
maxLabelNames = *maxTagKeysPerSearch
}
tr := sq.GetTimeRange()
tfss, err := setupTfss(qt, tr, sq.TagFilterss, sq.MaxMetrics, deadline)
if err != nil {
return nil, err
}
labels, err := vmstorage.SearchLabelNamesWithFiltersOnTimeRange(qt, tfss, tr, maxLabelNames, sq.MaxMetrics, deadline.Deadline())
if err != nil {
return nil, fmt.Errorf("error during labels search on time range: %w", err)
}
// Sort labels like Prometheus does
sort.Strings(labels)
qt.Printf("sort %d labels", len(labels))
return labels, nil
}
// GraphiteTags returns Graphite tags until the given deadline.
func GraphiteTags(qt *querytracer.Tracer, filter string, limit int, deadline searchutils.Deadline) ([]string, error) {
qt = qt.NewChild("get graphite tags: filter=%s, limit=%d", filter, limit)
defer qt.Done()
if deadline.Exceeded() {
return nil, fmt.Errorf("timeout exceeded before starting the query processing: %s", deadline.String())
}
sq := storage.NewSearchQuery(0, 0, nil, 0)
labels, err := LabelNames(qt, sq, 0, deadline)
if err != nil {
return nil, err
}
// Substitute "__name__" with "name" for Graphite compatibility
for i := range labels {
if labels[i] != "__name__" {
continue
}
// Prevent from duplicate `name` tag.
// See https://github.com/VictoriaMetrics/VictoriaMetrics/issues/942
if hasString(labels, "name") {
labels = append(labels[:i], labels[i+1:]...)
} else {
labels[i] = "name"
sort.Strings(labels)
}
break
}
if len(filter) > 0 {
labels, err = applyGraphiteRegexpFilter(filter, labels)
if err != nil {
return nil, err
}
}
if limit > 0 && limit < len(labels) {
labels = labels[:limit]
}
return labels, nil
}
func hasString(a []string, s string) bool {
for _, x := range a {
if x == s {
return true
}
}
return false
}
// LabelValues returns label values matching the given labelName and sq until the given deadline.
func LabelValues(qt *querytracer.Tracer, labelName string, sq *storage.SearchQuery, maxLabelValues int, deadline searchutils.Deadline) ([]string, error) {
qt = qt.NewChild("get values for label %s: %s", labelName, sq)
defer qt.Done()
if deadline.Exceeded() {
return nil, fmt.Errorf("timeout exceeded before starting the query processing: %s", deadline.String())
}
if maxLabelValues > *maxTagValuesPerSearch || maxLabelValues <= 0 {
maxLabelValues = *maxTagValuesPerSearch
}
tr := sq.GetTimeRange()
tfss, err := setupTfss(qt, tr, sq.TagFilterss, sq.MaxMetrics, deadline)
if err != nil {
return nil, err
}
labelValues, err := vmstorage.SearchLabelValuesWithFiltersOnTimeRange(qt, labelName, tfss, tr, maxLabelValues, sq.MaxMetrics, deadline.Deadline())
if err != nil {
return nil, fmt.Errorf("error during label values search on time range for labelName=%q: %w", labelName, err)
}
// Sort labelValues like Prometheus does
sort.Strings(labelValues)
qt.Printf("sort %d label values", len(labelValues))
return labelValues, nil
}
// GraphiteTagValues returns tag values for the given tagName until the given deadline.
func GraphiteTagValues(qt *querytracer.Tracer, tagName, filter string, limit int, deadline searchutils.Deadline) ([]string, error) {
qt = qt.NewChild("get graphite tag values for tagName=%s, filter=%s, limit=%d", tagName, filter, limit)
defer qt.Done()
if deadline.Exceeded() {
return nil, fmt.Errorf("timeout exceeded before starting the query processing: %s", deadline.String())
}
if tagName == "name" {
tagName = ""
}
sq := storage.NewSearchQuery(0, 0, nil, 0)
tagValues, err := LabelValues(qt, tagName, sq, 0, deadline)
if err != nil {
return nil, err
}
if len(filter) > 0 {
tagValues, err = applyGraphiteRegexpFilter(filter, tagValues)
if err != nil {
return nil, err
}
}
if limit > 0 && limit < len(tagValues) {
tagValues = tagValues[:limit]
}
return tagValues, nil
}
// TagValueSuffixes returns tag value suffixes for the given tagKey and the given tagValuePrefix.
//
// It can be used for implementing https://graphite-api.readthedocs.io/en/latest/api.html#metrics-find
func TagValueSuffixes(qt *querytracer.Tracer, tr storage.TimeRange, tagKey, tagValuePrefix string, delimiter byte, maxSuffixes int, deadline searchutils.Deadline) ([]string, error) {
qt = qt.NewChild("get tag value suffixes for tagKey=%s, tagValuePrefix=%s, maxSuffixes=%d, timeRange=%s", tagKey, tagValuePrefix, maxSuffixes, &tr)
defer qt.Done()
if deadline.Exceeded() {
return nil, fmt.Errorf("timeout exceeded before starting the query processing: %s", deadline.String())
}
suffixes, err := vmstorage.SearchTagValueSuffixes(qt, tr, tagKey, tagValuePrefix, delimiter, maxSuffixes, deadline.Deadline())
if err != nil {
return nil, fmt.Errorf("error during search for suffixes for tagKey=%q, tagValuePrefix=%q, delimiter=%c on time range %s: %w",
tagKey, tagValuePrefix, delimiter, tr.String(), err)
}
if len(suffixes) >= maxSuffixes {
return nil, fmt.Errorf("more than -search.maxTagValueSuffixesPerSearch=%d tag value suffixes found for tagKey=%q, tagValuePrefix=%q, delimiter=%c on time range %s; "+
"either narrow down the query or increase -search.maxTagValueSuffixesPerSearch command-line flag value",
maxSuffixes, tagKey, tagValuePrefix, delimiter, tr.String())
}
return suffixes, nil
}
// TSDBStatus returns tsdb status according to https://prometheus.io/docs/prometheus/latest/querying/api/#tsdb-stats
//
// It accepts aribtrary filters on time series in sq.
func TSDBStatus(qt *querytracer.Tracer, sq *storage.SearchQuery, focusLabel string, topN int, deadline searchutils.Deadline) (*storage.TSDBStatus, error) {
qt = qt.NewChild("get tsdb stats: %s, focusLabel=%q, topN=%d", sq, focusLabel, topN)
defer qt.Done()
if deadline.Exceeded() {
return nil, fmt.Errorf("timeout exceeded before starting the query processing: %s", deadline.String())
}
tr := sq.GetTimeRange()
tfss, err := setupTfss(qt, tr, sq.TagFilterss, sq.MaxMetrics, deadline)
if err != nil {
return nil, err
}
date := uint64(tr.MinTimestamp) / (3600 * 24 * 1000)
status, err := vmstorage.GetTSDBStatus(qt, tfss, date, focusLabel, topN, sq.MaxMetrics, deadline.Deadline())
if err != nil {
return nil, fmt.Errorf("error during tsdb status request: %w", err)
}
return status, nil
}
// SeriesCount returns the number of unique series.
func SeriesCount(qt *querytracer.Tracer, deadline searchutils.Deadline) (uint64, error) {
qt = qt.NewChild("get series count")
defer qt.Done()
if deadline.Exceeded() {
return 0, fmt.Errorf("timeout exceeded before starting the query processing: %s", deadline.String())
}
n, err := vmstorage.GetSeriesCount(deadline.Deadline())
2019-05-22 23:16:55 +02:00
if err != nil {
return 0, fmt.Errorf("error during series count request: %w", err)
2019-05-22 23:16:55 +02:00
}
return n, nil
}
func getStorageSearch() *storage.Search {
v := ssPool.Get()
if v == nil {
return &storage.Search{}
}
return v.(*storage.Search)
}
func putStorageSearch(sr *storage.Search) {
sr.MustClose()
ssPool.Put(sr)
}
var ssPool sync.Pool
// ExportBlocks searches for time series matching sq and calls f for each found block.
//
// f is called in parallel from multiple goroutines.
// Data processing is immediately stopped if f returns non-nil error.
// It is the responsibility of f to call b.UnmarshalData before reading timestamps and values from the block.
// It is the responsibility of f to filter blocks according to the given tr.
func ExportBlocks(qt *querytracer.Tracer, sq *storage.SearchQuery, deadline searchutils.Deadline, f func(mn *storage.MetricName, b *storage.Block, tr storage.TimeRange) error) error {
qt = qt.NewChild("export blocks: %s", sq)
defer qt.Done()
if deadline.Exceeded() {
return fmt.Errorf("timeout exceeded before starting data export: %s", deadline.String())
}
tr := sq.GetTimeRange()
if err := vmstorage.CheckTimeRange(tr); err != nil {
return err
}
tfss, err := setupTfss(qt, tr, sq.TagFilterss, sq.MaxMetrics, deadline)
if err != nil {
return err
}
vmstorage.WG.Add(1)
defer vmstorage.WG.Done()
sr := getStorageSearch()
defer putStorageSearch(sr)
startTime := time.Now()
sr.Init(qt, vmstorage.Storage, tfss, tr, sq.MaxMetrics, deadline.Deadline())
indexSearchDuration.UpdateDuration(startTime)
// Start workers that call f in parallel on available CPU cores.
gomaxprocs := cgroup.AvailableCPUs()
workCh := make(chan *exportWork, gomaxprocs*8)
var (
errGlobal error
errGlobalLock sync.Mutex
mustStop uint32
)
var wg sync.WaitGroup
wg.Add(gomaxprocs)
for i := 0; i < gomaxprocs; i++ {
go func() {
defer wg.Done()
for xw := range workCh {
if err := f(&xw.mn, &xw.b, tr); err != nil {
errGlobalLock.Lock()
if errGlobal != nil {
errGlobal = err
atomic.StoreUint32(&mustStop, 1)
}
errGlobalLock.Unlock()
}
xw.reset()
exportWorkPool.Put(xw)
}
}()
}
// Feed workers with work
blocksRead := 0
samples := 0
for sr.NextMetricBlock() {
blocksRead++
if deadline.Exceeded() {
return fmt.Errorf("timeout exceeded while fetching data block #%d from storage: %s", blocksRead, deadline.String())
}
if atomic.LoadUint32(&mustStop) != 0 {
break
}
xw := exportWorkPool.Get().(*exportWork)
if err := xw.mn.Unmarshal(sr.MetricBlockRef.MetricName); err != nil {
return fmt.Errorf("cannot unmarshal metricName for block #%d: %w", blocksRead, err)
}
br := sr.MetricBlockRef.BlockRef
br.MustReadBlock(&xw.b)
samples += br.RowsCount()
workCh <- xw
}
close(workCh)
// Wait for workers to finish.
wg.Wait()
qt.Printf("export blocks=%d, samples=%d", blocksRead, samples)
// Check errors.
err = sr.Error()
if err == nil {
err = errGlobal
}
if err != nil {
if errors.Is(err, storage.ErrDeadlineExceeded) {
return fmt.Errorf("timeout exceeded during the query: %s", deadline.String())
}
return fmt.Errorf("search error after reading %d data blocks: %w", blocksRead, err)
}
return nil
}
type exportWork struct {
mn storage.MetricName
b storage.Block
}
func (xw *exportWork) reset() {
xw.mn.Reset()
xw.b.Reset()
}
var exportWorkPool = &sync.Pool{
New: func() interface{} {
return &exportWork{}
},
}
// SearchMetricNames returns all the metric names matching sq until the given deadline.
//
// The returned metric names must be unmarshaled via storage.MetricName.UnmarshalString().
func SearchMetricNames(qt *querytracer.Tracer, sq *storage.SearchQuery, deadline searchutils.Deadline) ([]string, error) {
qt = qt.NewChild("fetch metric names: %s", sq)
defer qt.Done()
if deadline.Exceeded() {
return nil, fmt.Errorf("timeout exceeded before starting to search metric names: %s", deadline.String())
}
// Setup search.
tr := sq.GetTimeRange()
if err := vmstorage.CheckTimeRange(tr); err != nil {
return nil, err
}
tfss, err := setupTfss(qt, tr, sq.TagFilterss, sq.MaxMetrics, deadline)
if err != nil {
return nil, err
}
metricNames, err := vmstorage.SearchMetricNames(qt, tfss, tr, sq.MaxMetrics, deadline.Deadline())
if err != nil {
return nil, fmt.Errorf("cannot find metric names: %w", err)
}
sort.Strings(metricNames)
qt.Printf("sort %d metric names", len(metricNames))
return metricNames, nil
}
// ProcessSearchQuery performs sq until the given deadline.
//
// Results.RunParallel or Results.Cancel must be called on the returned Results.
func ProcessSearchQuery(qt *querytracer.Tracer, sq *storage.SearchQuery, deadline searchutils.Deadline) (*Results, error) {
qt = qt.NewChild("fetch matching series: %s", sq)
defer qt.Done()
if deadline.Exceeded() {
return nil, fmt.Errorf("timeout exceeded before starting the query processing: %s", deadline.String())
}
2019-05-22 23:16:55 +02:00
// Setup search.
tr := sq.GetTimeRange()
if err := vmstorage.CheckTimeRange(tr); err != nil {
return nil, err
}
tfss, err := setupTfss(qt, tr, sq.TagFilterss, sq.MaxMetrics, deadline)
if err != nil {
return nil, err
}
2019-05-22 23:16:55 +02:00
vmstorage.WG.Add(1)
defer vmstorage.WG.Done()
sr := getStorageSearch()
startTime := time.Now()
maxSeriesCount := sr.Init(qt, vmstorage.Storage, tfss, tr, sq.MaxMetrics, deadline.Deadline())
indexSearchDuration.UpdateDuration(startTime)
m := make(map[string][]blockRef, maxSeriesCount)
orderedMetricNames := make([]string, 0, maxSeriesCount)
blocksRead := 0
samples := 0
tbf := getTmpBlocksFile()
var buf []byte
2019-05-22 23:16:55 +02:00
for sr.NextMetricBlock() {
blocksRead++
if deadline.Exceeded() {
putTmpBlocksFile(tbf)
putStorageSearch(sr)
return nil, fmt.Errorf("timeout exceeded while fetching data block #%d from storage: %s", blocksRead, deadline.String())
2019-05-22 23:16:55 +02:00
}
br := sr.MetricBlockRef.BlockRef
samples += br.RowsCount()
if *maxSamplesPerQuery > 0 && samples > *maxSamplesPerQuery {
putTmpBlocksFile(tbf)
putStorageSearch(sr)
return nil, fmt.Errorf("cannot select more than -search.maxSamplesPerQuery=%d samples; possible solutions: to increase the -search.maxSamplesPerQuery; to reduce time range for the query; to use more specific label filters in order to select lower number of series", *maxSamplesPerQuery)
}
buf = br.Marshal(buf[:0])
addr, err := tbf.WriteBlockRefData(buf)
if err != nil {
putTmpBlocksFile(tbf)
putStorageSearch(sr)
return nil, fmt.Errorf("cannot write %d bytes to temporary file: %w", len(buf), err)
}
metricName := sr.MetricBlockRef.MetricName
brs := m[string(metricName)]
brs = append(brs, blockRef{
partRef: br.PartRef(),
addr: addr,
})
if len(brs) > 1 {
m[string(metricName)] = brs
} else {
// An optimization for big number of time series with long metricName values:
// use only a single copy of metricName for both orderedMetricNames and m.
orderedMetricNames = append(orderedMetricNames, string(metricName))
m[orderedMetricNames[len(orderedMetricNames)-1]] = brs
}
2019-05-22 23:16:55 +02:00
}
if err := sr.Error(); err != nil {
putTmpBlocksFile(tbf)
putStorageSearch(sr)
if errors.Is(err, storage.ErrDeadlineExceeded) {
return nil, fmt.Errorf("timeout exceeded during the query: %s", deadline.String())
}
return nil, fmt.Errorf("search error after reading %d data blocks: %w", blocksRead, err)
2019-05-22 23:16:55 +02:00
}
if err := tbf.Finalize(); err != nil {
putTmpBlocksFile(tbf)
putStorageSearch(sr)
return nil, fmt.Errorf("cannot finalize temporary file: %w", err)
}
qt.Printf("fetch unique series=%d, blocks=%d, samples=%d, bytes=%d", len(m), blocksRead, samples, tbf.Len())
2019-05-22 23:16:55 +02:00
var rss Results
rss.tr = tr
rss.deadline = deadline
pts := make([]packedTimeseries, len(orderedMetricNames))
for i, metricName := range orderedMetricNames {
pts[i] = packedTimeseries{
metricName: metricName,
brs: m[metricName],
}
2019-05-22 23:16:55 +02:00
}
rss.packedTimeseries = pts
rss.sr = sr
rss.tbf = tbf
2019-05-22 23:16:55 +02:00
return &rss, nil
}
var indexSearchDuration = metrics.NewHistogram(`vm_index_search_duration_seconds`)
type blockRef struct {
partRef storage.PartRef
addr tmpBlockAddr
}
func setupTfss(qt *querytracer.Tracer, tr storage.TimeRange, tagFilterss [][]storage.TagFilter, maxMetrics int, deadline searchutils.Deadline) ([]*storage.TagFilters, error) {
2019-05-22 23:16:55 +02:00
tfss := make([]*storage.TagFilters, 0, len(tagFilterss))
for _, tagFilters := range tagFilterss {
tfs := storage.NewTagFilters()
for i := range tagFilters {
tf := &tagFilters[i]
if string(tf.Key) == "__graphite__" {
query := tf.Value
paths, err := vmstorage.SearchGraphitePaths(qt, tr, query, maxMetrics, deadline.Deadline())
if err != nil {
return nil, fmt.Errorf("error when searching for Graphite paths for query %q: %w", query, err)
}
if len(paths) >= maxMetrics {
return nil, fmt.Errorf("more than %d time series match Graphite query %q; "+
"either narrow down the query or increase the corresponding -search.max* command-line flag value", maxMetrics, query)
}
tfs.AddGraphiteQuery(query, paths, tf.IsNegative)
continue
}
2019-05-22 23:16:55 +02:00
if err := tfs.Add(tf.Key, tf.Value, tf.IsNegative, tf.IsRegexp); err != nil {
return nil, fmt.Errorf("cannot parse tag filter %s: %w", tf, err)
2019-05-22 23:16:55 +02:00
}
}
tfss = append(tfss, tfs)
}
return tfss, nil
}
func applyGraphiteRegexpFilter(filter string, ss []string) ([]string, error) {
// Anchor filter regexp to the beginning of the string as Graphite does.
// See https://github.com/graphite-project/graphite-web/blob/3ad279df5cb90b211953e39161df416e54a84948/webapp/graphite/tags/localdatabase.py#L157
filter = "^(?:" + filter + ")"
re, err := regexp.Compile(filter)
if err != nil {
return nil, fmt.Errorf("cannot parse regexp filter=%q: %w", filter, err)
}
dst := ss[:0]
for _, s := range ss {
if re.MatchString(s) {
dst = append(dst, s)
}
}
return dst, nil
}