mirror of
https://github.com/VictoriaMetrics/VictoriaMetrics.git
synced 2025-01-01 16:50:24 +01:00
260 lines
4.3 KiB
Go
260 lines
4.3 KiB
Go
|
package graphite
|
||
|
|
||
|
import (
|
||
|
"fmt"
|
||
|
"math"
|
||
|
"strings"
|
||
|
"sync"
|
||
|
|
||
|
"github.com/valyala/histogram"
|
||
|
)
|
||
|
|
||
|
var aggrFuncs = map[string]aggrFunc{
|
||
|
"average": aggrAvg,
|
||
|
"avg": aggrAvg,
|
||
|
"avg_zero": aggrAvgZero,
|
||
|
"median": aggrMedian,
|
||
|
"sum": aggrSum,
|
||
|
"total": aggrSum,
|
||
|
"min": aggrMin,
|
||
|
"max": aggrMax,
|
||
|
"diff": aggrDiff,
|
||
|
"pow": aggrPow,
|
||
|
"stddev": aggrStddev,
|
||
|
"count": aggrCount,
|
||
|
"range": aggrRange,
|
||
|
"rangeOf": aggrRange,
|
||
|
"multiply": aggrMultiply,
|
||
|
"first": aggrFirst,
|
||
|
"last": aggrLast,
|
||
|
"current": aggrLast,
|
||
|
}
|
||
|
|
||
|
func getAggrFunc(funcName string) (aggrFunc, error) {
|
||
|
s := strings.TrimSuffix(funcName, "Series")
|
||
|
aggrFunc := aggrFuncs[s]
|
||
|
if aggrFunc == nil {
|
||
|
return nil, fmt.Errorf("unsupported aggregate function %q", funcName)
|
||
|
}
|
||
|
return aggrFunc, nil
|
||
|
}
|
||
|
|
||
|
type aggrFunc func(values []float64) float64
|
||
|
|
||
|
func (af aggrFunc) apply(xFilesFactor float64, values []float64) float64 {
|
||
|
if aggrCount(values) >= float64(len(values))*xFilesFactor {
|
||
|
return af(values)
|
||
|
}
|
||
|
return nan
|
||
|
}
|
||
|
|
||
|
func aggrAvg(values []float64) float64 {
|
||
|
pos := getFirstNonNaNPos(values)
|
||
|
if pos < 0 {
|
||
|
return nan
|
||
|
}
|
||
|
sum := values[pos]
|
||
|
count := 1
|
||
|
for _, v := range values[pos+1:] {
|
||
|
if !math.IsNaN(v) {
|
||
|
sum += v
|
||
|
count++
|
||
|
}
|
||
|
}
|
||
|
return sum / float64(count)
|
||
|
}
|
||
|
|
||
|
func aggrAvgZero(values []float64) float64 {
|
||
|
if len(values) == 0 {
|
||
|
return nan
|
||
|
}
|
||
|
sum := float64(0)
|
||
|
for _, v := range values {
|
||
|
if !math.IsNaN(v) {
|
||
|
sum += v
|
||
|
}
|
||
|
}
|
||
|
return sum / float64(len(values))
|
||
|
}
|
||
|
|
||
|
var aggrMedian = newAggrFuncPercentile(50)
|
||
|
|
||
|
func aggrSum(values []float64) float64 {
|
||
|
pos := getFirstNonNaNPos(values)
|
||
|
if pos < 0 {
|
||
|
return nan
|
||
|
}
|
||
|
sum := values[pos]
|
||
|
for _, v := range values[pos+1:] {
|
||
|
if !math.IsNaN(v) {
|
||
|
sum += v
|
||
|
}
|
||
|
}
|
||
|
return sum
|
||
|
}
|
||
|
|
||
|
func aggrMin(values []float64) float64 {
|
||
|
pos := getFirstNonNaNPos(values)
|
||
|
if pos < 0 {
|
||
|
return nan
|
||
|
}
|
||
|
min := values[pos]
|
||
|
for _, v := range values[pos+1:] {
|
||
|
if !math.IsNaN(v) && v < min {
|
||
|
min = v
|
||
|
}
|
||
|
}
|
||
|
return min
|
||
|
}
|
||
|
|
||
|
func aggrMax(values []float64) float64 {
|
||
|
pos := getFirstNonNaNPos(values)
|
||
|
if pos < 0 {
|
||
|
return nan
|
||
|
}
|
||
|
max := values[pos]
|
||
|
for _, v := range values[pos+1:] {
|
||
|
if !math.IsNaN(v) && v > max {
|
||
|
max = v
|
||
|
}
|
||
|
}
|
||
|
return max
|
||
|
}
|
||
|
|
||
|
func aggrDiff(values []float64) float64 {
|
||
|
pos := getFirstNonNaNPos(values)
|
||
|
if pos < 0 {
|
||
|
return nan
|
||
|
}
|
||
|
sum := float64(0)
|
||
|
for _, v := range values[pos+1:] {
|
||
|
if !math.IsNaN(v) {
|
||
|
sum += v
|
||
|
}
|
||
|
}
|
||
|
return values[pos] - sum
|
||
|
}
|
||
|
|
||
|
func aggrPow(values []float64) float64 {
|
||
|
pos := getFirstNonNaNPos(values)
|
||
|
if pos < 0 {
|
||
|
return nan
|
||
|
}
|
||
|
pow := values[pos]
|
||
|
for _, v := range values[pos+1:] {
|
||
|
if !math.IsNaN(v) {
|
||
|
pow = math.Pow(pow, v)
|
||
|
}
|
||
|
}
|
||
|
return pow
|
||
|
}
|
||
|
|
||
|
func aggrStddev(values []float64) float64 {
|
||
|
avg := aggrAvg(values)
|
||
|
if math.IsNaN(avg) {
|
||
|
return nan
|
||
|
}
|
||
|
sum := float64(0)
|
||
|
count := 0
|
||
|
for _, v := range values {
|
||
|
if !math.IsNaN(v) {
|
||
|
d := avg - v
|
||
|
sum += d * d
|
||
|
count++
|
||
|
}
|
||
|
}
|
||
|
return math.Sqrt(sum / float64(count))
|
||
|
}
|
||
|
|
||
|
func aggrCount(values []float64) float64 {
|
||
|
count := 0
|
||
|
for _, v := range values {
|
||
|
if !math.IsNaN(v) {
|
||
|
count++
|
||
|
}
|
||
|
}
|
||
|
return float64(count)
|
||
|
}
|
||
|
|
||
|
func aggrRange(values []float64) float64 {
|
||
|
min := aggrMin(values)
|
||
|
if math.IsNaN(min) {
|
||
|
return nan
|
||
|
}
|
||
|
max := aggrMax(values)
|
||
|
return max - min
|
||
|
}
|
||
|
|
||
|
func aggrMultiply(values []float64) float64 {
|
||
|
pos := getFirstNonNaNPos(values)
|
||
|
if pos < 0 {
|
||
|
return nan
|
||
|
}
|
||
|
p := values[pos]
|
||
|
for _, v := range values[pos+1:] {
|
||
|
if !math.IsNaN(v) {
|
||
|
p *= v
|
||
|
}
|
||
|
}
|
||
|
return p
|
||
|
}
|
||
|
|
||
|
func aggrFirst(values []float64) float64 {
|
||
|
pos := getFirstNonNaNPos(values)
|
||
|
if pos < 0 {
|
||
|
return nan
|
||
|
}
|
||
|
return values[pos]
|
||
|
}
|
||
|
|
||
|
func aggrLast(values []float64) float64 {
|
||
|
for i := len(values) - 1; i >= 0; i-- {
|
||
|
v := values[i]
|
||
|
if !math.IsNaN(v) {
|
||
|
return v
|
||
|
}
|
||
|
}
|
||
|
return nan
|
||
|
}
|
||
|
|
||
|
func getFirstNonNaNPos(values []float64) int {
|
||
|
for i, v := range values {
|
||
|
if !math.IsNaN(v) {
|
||
|
return i
|
||
|
}
|
||
|
}
|
||
|
return -1
|
||
|
}
|
||
|
|
||
|
var nan = math.NaN()
|
||
|
|
||
|
func newAggrFuncPercentile(n float64) aggrFunc {
|
||
|
f := func(values []float64) float64 {
|
||
|
h := getHistogram()
|
||
|
for _, v := range values {
|
||
|
if !math.IsNaN(v) {
|
||
|
h.Update(v)
|
||
|
}
|
||
|
}
|
||
|
p := h.Quantile(n / 100)
|
||
|
putHistogram(h)
|
||
|
return p
|
||
|
}
|
||
|
return f
|
||
|
}
|
||
|
|
||
|
func getHistogram() *histogram.Fast {
|
||
|
return histogramPool.Get().(*histogram.Fast)
|
||
|
}
|
||
|
|
||
|
func putHistogram(h *histogram.Fast) {
|
||
|
h.Reset()
|
||
|
histogramPool.Put(h)
|
||
|
}
|
||
|
|
||
|
var histogramPool = &sync.Pool{
|
||
|
New: func() interface{} {
|
||
|
return histogram.NewFast()
|
||
|
},
|
||
|
}
|