VictoriaMetrics/app/vminsert/netstorage/netstorage.go

650 lines
20 KiB
Go
Raw Normal View History

2019-05-22 23:23:23 +02:00
package netstorage
import (
"flag"
2019-05-22 23:23:23 +02:00
"fmt"
"io"
2019-05-22 23:23:23 +02:00
"sync"
"sync/atomic"
2019-05-22 23:23:23 +02:00
"time"
"github.com/VictoriaMetrics/VictoriaMetrics/lib/bytesutil"
"github.com/VictoriaMetrics/VictoriaMetrics/lib/consts"
2019-05-22 23:23:23 +02:00
"github.com/VictoriaMetrics/VictoriaMetrics/lib/encoding"
"github.com/VictoriaMetrics/VictoriaMetrics/lib/fasttime"
2019-05-22 23:23:23 +02:00
"github.com/VictoriaMetrics/VictoriaMetrics/lib/handshake"
"github.com/VictoriaMetrics/VictoriaMetrics/lib/logger"
"github.com/VictoriaMetrics/VictoriaMetrics/lib/memory"
2019-05-22 23:23:23 +02:00
"github.com/VictoriaMetrics/VictoriaMetrics/lib/netutil"
"github.com/VictoriaMetrics/VictoriaMetrics/lib/storage"
2019-05-22 23:23:23 +02:00
"github.com/VictoriaMetrics/metrics"
xxhash "github.com/cespare/xxhash/v2"
2019-05-22 23:23:23 +02:00
)
var (
disableRPCCompression = flag.Bool(`rpc.disableCompression`, false, "Disable compression of RPC traffic. This reduces CPU usage at the cost of higher network bandwidth usage")
replicationFactor = flag.Int("replicationFactor", 1, "Replication factor for the ingested data, i.e. how many copies to make among distinct -storageNode instances. "+
"Note that vmselect must run with -dedup.minScrapeInterval=1ms for data de-duplication when replicationFactor is greater than 1. "+
"Higher values for -dedup.minScrapeInterval at vmselect is OK")
)
func (sn *storageNode) isBroken() bool {
return atomic.LoadUint32(&sn.broken) != 0
}
// push pushes buf to sn internal bufs.
2019-05-22 23:23:23 +02:00
//
// This function doesn't block on fast path.
// It may block only if all the storageNodes cannot handle the incoming ingestion rate.
// This blocking provides backpressure to the caller.
//
// The function falls back to sending data to other vmstorage nodes
// if sn is currently unavailable or overloaded.
//
// rows is the number of rows in the buf.
func (sn *storageNode) push(buf []byte, rows int) error {
if len(buf) > maxBufSizePerStorageNode {
logger.Panicf("BUG: len(buf)=%d cannot exceed %d", len(buf), maxBufSizePerStorageNode)
}
sn.rowsPushed.Add(rows)
if sn.isBroken() {
// The vmstorage node is temporarily broken. Re-route buf to healthy vmstorage nodes.
if err := addToReroutedBuf(buf, rows); err != nil {
return fmt.Errorf("%d rows dropped because the current vsmtorage is unavailable and %s", rows, err)
}
sn.rowsReroutedFromHere.Add(rows)
2019-05-22 23:23:23 +02:00
return nil
}
sn.brLock.Lock()
if len(sn.br.buf)+len(buf) <= maxBufSizePerStorageNode {
// Fast path: the buf contents fits sn.buf.
sn.br.buf = append(sn.br.buf, buf...)
sn.br.rows += rows
sn.brLock.Unlock()
return nil
2019-05-22 23:23:23 +02:00
}
sn.brLock.Unlock()
// Slow path: the buf contents doesn't fit sn.buf.
// This means that the current vmstorage is slow or will become broken soon.
// Re-route buf to healthy vmstorage nodes.
if err := addToReroutedBuf(buf, rows); err != nil {
return fmt.Errorf("%d rows dropped because the current vmstorage buf is full and %s", rows, err)
}
sn.rowsReroutedFromHere.Add(rows)
return nil
}
var closedCh = func() <-chan struct{} {
ch := make(chan struct{})
close(ch)
return ch
}()
func (sn *storageNode) run(stopCh <-chan struct{}, snIdx int) {
replicas := *replicationFactor
if replicas <= 0 {
replicas = 1
}
if replicas > len(storageNodes) {
replicas = len(storageNodes)
}
ticker := time.NewTicker(time.Second)
defer ticker.Stop()
var br bufRows
brLastResetTime := fasttime.UnixTimestamp()
var waitCh <-chan struct{}
mustStop := false
for !mustStop {
sn.brLock.Lock()
bufLen := len(sn.br.buf)
sn.brLock.Unlock()
waitCh = nil
if len(br.buf) == 0 && bufLen > maxBufSizePerStorageNode/4 {
// Do not sleep, since sn.br.buf contains enough data to process.
waitCh = closedCh
}
select {
case <-stopCh:
mustStop = true
// Make sure the sn.buf is flushed last time before returning
// in order to send the remaining bits of data.
case <-ticker.C:
case <-waitCh:
}
if len(br.buf) == 0 {
sn.brLock.Lock()
sn.br, br = br, sn.br
sn.brLock.Unlock()
}
currentTime := fasttime.UnixTimestamp()
if len(br.buf) < cap(br.buf)/4 && currentTime-brLastResetTime > 10 {
// Free up capacity space occupied by br.buf in order to reduce memory usage after spikes.
br.buf = append(br.buf[:0:0], br.buf...)
brLastResetTime = currentTime
}
if len(br.buf) == 0 {
// Nothing to send. Just check sn health, so it could be returned to non-broken state.
sn.checkHealth()
continue
}
// Send br to replicas storageNodes starting from snIdx.
if !sendBufToReplicas(&br, snIdx, replicas) {
// do not reset br in the hope it will be sent next time.
continue
}
br.reset()
}
}
func sendBufToReplicas(br *bufRows, snIdx, replicas int) bool {
usedStorageNodes := make(map[*storageNode]bool, replicas)
for i := 0; i < replicas; i++ {
idx := snIdx + i
attempts := 0
for {
attempts++
if attempts > len(storageNodes) {
if i == 0 {
// The data wasn't replicated at all.
logger.Warnf("cannot push %d bytes with %d rows to storage nodes, since all the nodes are temporarily unavailable; "+
"re-trying to send the data soon", len(br.buf), br.rows)
return false
}
// The data is partially replicated, so just emit a warning and return true.
// We could retry sending the data again, but this may result in uncontrolled duplicate data.
// So it is better returning true.
rowsIncompletelyReplicatedTotal.Add(br.rows)
logger.Warnf("cannot make a copy #%d out of %d copies according to -replicationFactor=%d for %d bytes with %d rows, "+
"since a part of storage nodes is temporarily unavailable", i+1, replicas, *replicationFactor, len(br.buf), br.rows)
return true
}
if idx >= len(storageNodes) {
idx = 0
}
sn := storageNodes[idx]
idx++
if usedStorageNodes[sn] {
// The br has been already replicated to sn. Skip it.
continue
}
if !sn.sendBufRows(br) {
// Cannot send data to sn. Go to the next sn.
continue
}
// Successfully sent data to sn.
usedStorageNodes[sn] = true
break
}
2019-05-22 23:23:23 +02:00
}
return true
}
func (sn *storageNode) checkHealth() {
if !sn.isBroken() {
return
}
sn.bcLock.Lock()
defer sn.bcLock.Unlock()
if sn.bc != nil {
logger.Panicf("BUG: sn.bc must be nil when sn is broken; got %p", sn.bc)
}
bc, err := sn.dial()
if err != nil {
logger.Warnf("cannot dial storageNode %q: %s", sn.dialer.Addr(), err)
return
}
sn.bc = bc
atomic.StoreUint32(&sn.broken, 0)
}
func (sn *storageNode) sendBufRows(br *bufRows) bool {
sn.bcLock.Lock()
defer sn.bcLock.Unlock()
if sn.bc == nil {
bc, err := sn.dial()
if err != nil {
// Mark sn as broken in order to prevent sending additional data to it until it is recovered.
atomic.StoreUint32(&sn.broken, 1)
logger.Warnf("cannot dial storageNode %q: %s", sn.dialer.Addr(), err)
return false
}
sn.bc = bc
}
err := sendToConn(sn.bc, br.buf)
if err == nil {
// Successfully sent buf to bc. Remove broken flag from sn.
atomic.StoreUint32(&sn.broken, 0)
sn.rowsSent.Add(br.rows)
return true
}
// Couldn't flush buf to sn. Mark sn as broken.
logger.Warnf("cannot send %d bytes with %d rows to %q: %s; re-routing this data to healthy storage nodes", len(br.buf), br.rows, sn.dialer.Addr(), err)
if err = sn.bc.Close(); err != nil {
logger.Warnf("cannot close connection to storageNode %q: %s", sn.dialer.Addr(), err)
}
sn.bc = nil
sn.connectionErrors.Inc()
atomic.StoreUint32(&sn.broken, 1)
return false
2019-05-22 23:23:23 +02:00
}
func sendToConn(bc *handshake.BufferedConn, buf []byte) error {
if len(buf) == 0 {
// Nothing to send
return nil
}
timeoutSeconds := len(buf) / 3e5
if timeoutSeconds < 60 {
timeoutSeconds = 60
}
timeout := time.Duration(timeoutSeconds) * time.Second
deadline := time.Now().Add(timeout)
if err := bc.SetWriteDeadline(deadline); err != nil {
2019-05-22 23:23:23 +02:00
return fmt.Errorf("cannot set write deadline to %s: %s", deadline, err)
}
// sizeBuf guarantees that the rows batch will be either fully
// read or fully discarded on the vmstorage side.
// sizeBuf is used for read optimization in vmstorage.
sizeBuf := sizeBufPool.Get()
defer sizeBufPool.Put(sizeBuf)
sizeBuf.B = encoding.MarshalUint64(sizeBuf.B[:0], uint64(len(buf)))
if _, err := bc.Write(sizeBuf.B); err != nil {
2019-05-22 23:23:23 +02:00
return fmt.Errorf("cannot write data size %d: %s", len(buf), err)
}
if _, err := bc.Write(buf); err != nil {
return fmt.Errorf("cannot write data with size %d: %s", len(buf), err)
2019-05-22 23:23:23 +02:00
}
if err := bc.Flush(); err != nil {
return fmt.Errorf("cannot flush data with size %d: %s", len(buf), err)
}
// Wait for `ack` from vmstorage.
// This guarantees that the message has been fully received by vmstorage.
deadline = time.Now().Add(timeout)
if err := bc.SetReadDeadline(deadline); err != nil {
return fmt.Errorf("cannot set read deadline for reading `ack` to vmstorage: %s", err)
}
if _, err := io.ReadFull(bc, sizeBuf.B[:1]); err != nil {
return fmt.Errorf("cannot read `ack` from vmstorage: %s", err)
}
if sizeBuf.B[0] != 1 {
return fmt.Errorf("unexpected `ack` received from vmstorage; got %d; want %d", sizeBuf.B[0], 1)
}
2019-05-22 23:23:23 +02:00
return nil
}
var sizeBufPool bytesutil.ByteBufferPool
func (sn *storageNode) dial() (*handshake.BufferedConn, error) {
2019-05-22 23:23:23 +02:00
c, err := sn.dialer.Dial()
if err != nil {
sn.dialErrors.Inc()
return nil, err
2019-05-22 23:23:23 +02:00
}
compressionLevel := 1
if *disableRPCCompression {
compressionLevel = 0
}
2019-05-22 23:23:23 +02:00
bc, err := handshake.VMInsertClient(c, compressionLevel)
if err != nil {
_ = c.Close()
sn.handshakeErrors.Inc()
return nil, fmt.Errorf("handshake error: %s", err)
2019-05-22 23:23:23 +02:00
}
return bc, nil
2019-05-22 23:23:23 +02:00
}
func rerouteWorker(stopCh <-chan struct{}) {
ticker := time.NewTicker(time.Second)
defer ticker.Stop()
var br bufRows
brLastResetTime := fasttime.UnixTimestamp()
var waitCh <-chan struct{}
mustStop := false
for !mustStop {
reroutedBRLock.Lock()
bufLen := len(reroutedBR.buf)
reroutedBRLock.Unlock()
waitCh = nil
if len(br.buf) == 0 && bufLen > reroutedBufMaxSize/4 {
// Do not sleep if reroutedBR contains enough data to process.
waitCh = closedCh
}
select {
case <-stopCh:
mustStop = true
// Make sure reroutedBR is re-routed last time before returning
// in order to reroute the remaining data to healthy vmstorage nodes.
case <-ticker.C:
case <-waitCh:
}
if len(br.buf) == 0 {
reroutedBRLock.Lock()
reroutedBR, br = br, reroutedBR
reroutedBRLock.Unlock()
}
reroutedBRCond.Broadcast()
currentTime := fasttime.UnixTimestamp()
if len(br.buf) < cap(br.buf)/4 && currentTime-brLastResetTime > 10 {
// Free up capacity space occupied by br.buf in order to reduce memory usage after spikes.
br.buf = append(br.buf[:0:0], br.buf...)
brLastResetTime = currentTime
}
if len(br.buf) == 0 {
// Nothing to re-route.
continue
}
sns := getHealthyStorageNodes()
if len(sns) == 0 {
// No more vmstorage nodes to write data to.
rerouteErrors.Inc()
logger.Errorf("cannot send rerouted rows because all the storage nodes are unhealthy")
// Do not reset br in the hope it could be sent next time.
continue
}
spreadReroutedBufToStorageNodes(sns, &br)
// There is no need in br.reset() here, since it is already done in spreadReroutedBufToStorageNodes.
2019-05-22 23:23:23 +02:00
}
// Notify all the blocked addToReroutedBuf callers, so they may finish the work.
reroutedBRCond.Broadcast()
2019-05-22 23:23:23 +02:00
}
// storageNode is a client sending data to vmstorage node.
2019-05-22 23:23:23 +02:00
type storageNode struct {
// broken is set to non-zero if the given vmstorage node is temporarily unhealthy.
// In this case the data is re-routed to the remaining healthy vmstorage nodes.
broken uint32
// brLock protects br.
brLock sync.Mutex
2019-05-22 23:23:23 +02:00
// Buffer with data that needs to be written to the storage node.
// It must be accessed under brLock.
br bufRows
2019-05-22 23:23:23 +02:00
// bcLock protects bc.
bcLock sync.Mutex
// bc is a single connection to vmstorage for data transfer.
// It must be accessed under bcLock.
bc *handshake.BufferedConn
dialer *netutil.TCPDialer
// The number of dial errors to vmstorage node.
2019-05-22 23:23:23 +02:00
dialErrors *metrics.Counter
// The number of handshake errors to vmstorage node.
2019-05-22 23:23:23 +02:00
handshakeErrors *metrics.Counter
// The number of connection errors to vmstorage node.
2019-05-22 23:23:23 +02:00
connectionErrors *metrics.Counter
// The number of rows pushed to storageNode with push method.
rowsPushed *metrics.Counter
// The number of rows sent to vmstorage node.
rowsSent *metrics.Counter
2019-05-22 23:23:23 +02:00
// The number of rows rerouted from the given vmstorage node
// to healthy nodes when the given node was unhealthy.
rowsReroutedFromHere *metrics.Counter
// The number of rows rerouted to the given vmstorage node
// from other nodes when they were unhealthy.
rowsReroutedToHere *metrics.Counter
2019-05-22 23:23:23 +02:00
}
// storageNodes contains a list of vmstorage node clients.
2019-05-22 23:23:23 +02:00
var storageNodes []*storageNode
var (
storageNodesWG sync.WaitGroup
rerouteWorkerWG sync.WaitGroup
)
2019-05-22 23:23:23 +02:00
var (
storageNodesStopCh = make(chan struct{})
rerouteWorkerStopCh = make(chan struct{})
)
2019-05-22 23:23:23 +02:00
// InitStorageNodes initializes vmstorage nodes' connections to the given addrs.
2019-05-22 23:23:23 +02:00
func InitStorageNodes(addrs []string) {
if len(addrs) == 0 {
logger.Panicf("BUG: addrs must be non-empty")
}
if len(addrs) > 255 {
logger.Panicf("BUG: too much addresses: %d; max supported %d addresses", len(addrs), 255)
}
storageNodes = storageNodes[:0]
2019-05-22 23:23:23 +02:00
for _, addr := range addrs {
sn := &storageNode{
dialer: netutil.NewTCPDialer("vminsert", addr),
dialErrors: metrics.NewCounter(fmt.Sprintf(`vm_rpc_dial_errors_total{name="vminsert", addr=%q}`, addr)),
handshakeErrors: metrics.NewCounter(fmt.Sprintf(`vm_rpc_handshake_errors_total{name="vminsert", addr=%q}`, addr)),
connectionErrors: metrics.NewCounter(fmt.Sprintf(`vm_rpc_connection_errors_total{name="vminsert", addr=%q}`, addr)),
rowsPushed: metrics.NewCounter(fmt.Sprintf(`vm_rpc_rows_pushed_total{name="vminsert", addr=%q}`, addr)),
rowsSent: metrics.NewCounter(fmt.Sprintf(`vm_rpc_rows_sent_total{name="vminsert", addr=%q}`, addr)),
rowsReroutedFromHere: metrics.NewCounter(fmt.Sprintf(`vm_rpc_rows_rerouted_from_here_total{name="vminsert", addr=%q}`, addr)),
rowsReroutedToHere: metrics.NewCounter(fmt.Sprintf(`vm_rpc_rows_rerouted_to_here_total{name="vminsert", addr=%q}`, addr)),
2019-05-22 23:23:23 +02:00
}
_ = metrics.NewGauge(fmt.Sprintf(`vm_rpc_rows_pending{name="vminsert", addr=%q}`, addr), func() float64 {
sn.brLock.Lock()
n := sn.br.rows
sn.brLock.Unlock()
return float64(n)
})
_ = metrics.NewGauge(fmt.Sprintf(`vm_rpc_buf_pending_bytes{name="vminsert", addr=%q}`, addr), func() float64 {
sn.brLock.Lock()
n := len(sn.br.buf)
sn.brLock.Unlock()
return float64(n)
})
2019-05-22 23:23:23 +02:00
storageNodes = append(storageNodes, sn)
}
maxBufSizePerStorageNode = memory.Allowed() / 8 / len(storageNodes)
if maxBufSizePerStorageNode > consts.MaxInsertPacketSize {
maxBufSizePerStorageNode = consts.MaxInsertPacketSize
}
reroutedBufMaxSize = memory.Allowed() / 16
if reroutedBufMaxSize < maxBufSizePerStorageNode {
reroutedBufMaxSize = maxBufSizePerStorageNode
}
if reroutedBufMaxSize > maxBufSizePerStorageNode*len(storageNodes) {
reroutedBufMaxSize = maxBufSizePerStorageNode * len(storageNodes)
}
for idx, sn := range storageNodes {
storageNodesWG.Add(1)
go func(sn *storageNode, idx int) {
sn.run(storageNodesStopCh, idx)
storageNodesWG.Done()
}(sn, idx)
}
rerouteWorkerWG.Add(1)
go func() {
rerouteWorker(rerouteWorkerStopCh)
rerouteWorkerWG.Done()
}()
2019-05-22 23:23:23 +02:00
}
// Stop gracefully stops netstorage.
func Stop() {
close(rerouteWorkerStopCh)
rerouteWorkerWG.Wait()
close(storageNodesStopCh)
2019-05-22 23:23:23 +02:00
storageNodesWG.Wait()
}
// addToReroutedBuf adds buf to reroutedBR.
//
// It waits until the reroutedBR has enough space for buf or if Stop is called.
// This guarantees backpressure if the ingestion rate exceeds vmstorage nodes'
// ingestion rate capacity.
//
// It returns non-nil error only in the following cases:
//
// - if all the storage nodes are unhealthy.
// - if Stop is called.
func addToReroutedBuf(buf []byte, rows int) error {
if len(buf) > reroutedBufMaxSize {
logger.Panicf("BUG: len(buf)=%d cannot exceed reroutedBufMaxSize=%d", len(buf), reroutedBufMaxSize)
}
reroutedBRLock.Lock()
defer reroutedBRLock.Unlock()
for len(reroutedBR.buf)+len(buf) > reroutedBufMaxSize {
if getHealthyStorageNodesCount() == 0 {
rowsLostTotal.Add(rows)
return fmt.Errorf("all the vmstorage nodes are unavailable and reroutedBR has no enough space for storing %d bytes; only %d bytes left in reroutedBR",
len(buf), reroutedBufMaxSize-len(reroutedBR.buf))
}
select {
case <-rerouteWorkerStopCh:
rowsLostTotal.Add(rows)
return fmt.Errorf("rerouteWorker cannot send the data since it is stopped")
default:
}
// The reroutedBR.buf has no enough space for len(buf). Wait while the reroutedBR.buf is be sent by rerouteWorker.
reroutedBufWaits.Inc()
reroutedBRCond.Wait()
}
reroutedBR.buf = append(reroutedBR.buf, buf...)
reroutedBR.rows += rows
reroutesTotal.Inc()
return nil
}
func getHealthyStorageNodesCount() int {
n := 0
for _, sn := range storageNodes {
if !sn.isBroken() {
n++
}
}
return n
}
func getHealthyStorageNodes() []*storageNode {
sns := make([]*storageNode, 0, len(storageNodes)-1)
for _, sn := range storageNodes {
if !sn.isBroken() {
sns = append(sns, sn)
}
}
return sns
}
func spreadReroutedBufToStorageNodes(sns []*storageNode, br *bufRows) {
var mr storage.MetricRow
rowsProcessed := 0
src := br.buf
for len(src) > 0 {
tail, err := mr.Unmarshal(src)
if err != nil {
logger.Panicf("BUG: cannot unmarshal MetricRow from reroutedBR.buf: %s", err)
}
rowBuf := src[:len(src)-len(tail)]
src = tail
idx := uint64(0)
if len(sns) > 1 {
h := xxhash.Sum64(mr.MetricNameRaw)
// Do not use jump.Hash(h, int32(len(sns))) here,
// since this leads to uneven distribution of rerouted rows among sns -
// they all go to the original or to the next sn.
idx = h % uint64(len(sns))
}
attempts := 0
for {
sn := sns[idx]
if sn.sendReroutedRow(rowBuf) {
// The row has been successfully re-routed to sn.
break
}
// Cannot re-route data to sn. Try sending to the next vmstorage node.
idx++
if idx >= uint64(len(sns)) {
idx = 0
}
attempts++
if attempts < len(sns) {
continue
}
// There is no enough buffer space in all the vmstorage nodes.
// Return the remaining data to br.buf, so it may be processed later.
br.buf = append(br.buf[:0], rowBuf...)
br.buf = append(br.buf, src...)
br.rows -= rowsProcessed
return
}
rowsProcessed++
}
if rowsProcessed != br.rows {
logger.Panicf("BUG: unexpected number of rows processed; got %d; want %d", rowsProcessed, br.rows)
}
reroutedRowsProcessed.Add(rowsProcessed)
br.reset()
}
func (sn *storageNode) sendReroutedRow(buf []byte) bool {
if sn.isBroken() {
return false
}
sn.brLock.Lock()
ok := len(sn.br.buf)+len(buf) <= maxBufSizePerStorageNode
if ok {
sn.br.buf = append(sn.br.buf, buf...)
sn.br.rows++
sn.rowsReroutedToHere.Inc()
}
sn.brLock.Unlock()
return ok
}
var (
maxBufSizePerStorageNode int
reroutedBR bufRows
reroutedBRLock sync.Mutex
reroutedBRCond = sync.NewCond(&reroutedBRLock)
reroutedBufMaxSize int
reroutedRowsProcessed = metrics.NewCounter(`vm_rpc_rerouted_rows_processed_total{name="vminsert"}`)
reroutedBufWaits = metrics.NewCounter(`vm_rpc_rerouted_buf_waits_total{name="vminsert"}`)
reroutesTotal = metrics.NewCounter(`vm_rpc_reroutes_total{name="vminsert"}`)
_ = metrics.NewGauge(`vm_rpc_rerouted_rows_pending{name="vminsert"}`, func() float64 {
reroutedBRLock.Lock()
n := reroutedBR.rows
reroutedBRLock.Unlock()
return float64(n)
})
_ = metrics.NewGauge(`vm_rpc_rerouted_buf_pending_bytes{name="vminsert"}`, func() float64 {
reroutedBRLock.Lock()
n := len(reroutedBR.buf)
reroutedBRLock.Unlock()
return float64(n)
})
rerouteErrors = metrics.NewCounter(`vm_rpc_reroute_errors_total{name="vminsert"}`)
rowsLostTotal = metrics.NewCounter(`vm_rpc_rows_lost_total{name="vminsert"}`)
rowsIncompletelyReplicatedTotal = metrics.NewCounter(`vm_rpc_rows_incompletely_replicated_total{name="vminsert"}`)
)