app/vmselect: make predict_linear and deriv compatible with Prometheus (#1681)

Previously, `predict_linear` returned slightly different results comparing
to Prometheus. The change makes linear regression algorithm compatible
with Prometheus.

`deriv` was excluded from the list of functions which can adjust the time
window for the same reasons.
This commit is contained in:
Roman Khavronenko 2021-10-07 12:50:49 +03:00 committed by Aliaksandr Valialkin
parent 64b6f3f1c8
commit 0a8804d6aa
No known key found for this signature in database
GPG Key ID: A72BEC6CD3D0DED1
3 changed files with 37 additions and 58 deletions

View File

@ -6249,39 +6249,6 @@ func TestExecSuccess(t *testing.T) {
resultExpected := []netstorage.Result{r} resultExpected := []netstorage.Result{r}
f(q, resultExpected) f(q, resultExpected)
}) })
t.Run(`deriv(1)`, func(t *testing.T) {
t.Parallel()
q := `deriv(1)`
r := netstorage.Result{
MetricName: metricNameExpected,
Values: []float64{0, 0, 0, 0, 0, 0},
Timestamps: timestampsExpected,
}
resultExpected := []netstorage.Result{r}
f(q, resultExpected)
})
t.Run(`deriv(time())`, func(t *testing.T) {
t.Parallel()
q := `deriv(2*time())`
r := netstorage.Result{
MetricName: metricNameExpected,
Values: []float64{2, 2, 2, 2, 2, 2},
Timestamps: timestampsExpected,
}
resultExpected := []netstorage.Result{r}
f(q, resultExpected)
})
t.Run(`deriv(-time())`, func(t *testing.T) {
t.Parallel()
q := `deriv(-time())`
r := netstorage.Result{
MetricName: metricNameExpected,
Values: []float64{-1, -1, -1, -1, -1, -1},
Timestamps: timestampsExpected,
}
resultExpected := []netstorage.Result{r}
f(q, resultExpected)
})
t.Run(`delta(time())`, func(t *testing.T) { t.Run(`delta(time())`, func(t *testing.T) {
t.Parallel() t.Parallel()
q := `delta(time())` q := `delta(time())`

View File

@ -151,6 +151,7 @@ var rollupFuncsCannotAdjustWindow = map[string]bool{
"holt_winters": true, "holt_winters": true,
"idelta": true, "idelta": true,
"increase": true, "increase": true,
"deriv": true,
"predict_linear": true, "predict_linear": true,
"resets": true, "resets": true,
"avg_over_time": true, "avg_over_time": true,
@ -864,37 +865,26 @@ func linearRegression(rfa *rollupFuncArg) (float64, float64) {
// before calling rollup funcs. // before calling rollup funcs.
values := rfa.values values := rfa.values
timestamps := rfa.timestamps timestamps := rfa.timestamps
if len(values) == 0 { if len(values) < 2 {
return rfa.prevValue, 0 return nan, nan
} }
// See https://en.wikipedia.org/wiki/Simple_linear_regression#Numerical_example // See https://en.wikipedia.org/wiki/Simple_linear_regression#Numerical_example
tFirst := rfa.prevTimestamp interceptTime := rfa.currTimestamp
vSum := rfa.prevValue vSum := float64(0)
tSum := float64(0) tSum := float64(0)
tvSum := float64(0) tvSum := float64(0)
ttSum := float64(0) ttSum := float64(0)
n := 1.0
if math.IsNaN(rfa.prevValue) {
tFirst = timestamps[0]
vSum = 0
n = 0
}
for i, v := range values { for i, v := range values {
dt := float64(timestamps[i]-tFirst) / 1e3 dt := float64(timestamps[i]-interceptTime) / 1e3
vSum += v vSum += v
tSum += dt tSum += dt
tvSum += dt * v tvSum += dt * v
ttSum += dt * dt ttSum += dt * dt
} }
n += float64(len(values)) n := float64(len(values))
if n == 1 { k := (tvSum - tSum*vSum/n) / (ttSum - tSum*tSum/n)
return vSum, 0 v := vSum/n - k*tSum/n
}
k := (n*tvSum - tSum*vSum) / (n*ttSum - tSum*tSum)
v := (vSum - k*tSum) / n
// Adjust v to the last timestamp on the given time range.
v += k * (float64(timestamps[len(timestamps)-1]-tFirst) / 1e3)
return v, k return v, k
} }

View File

@ -357,10 +357,32 @@ func TestRollupPredictLinear(t *testing.T) {
testRollupFunc(t, "predict_linear", args, &me, vExpected) testRollupFunc(t, "predict_linear", args, &me, vExpected)
} }
f(0e-3, 30.382432471845043) f(0e-3, 65.07405077267295)
f(50e-3, 17.03950235614201) f(50e-3, 51.7311206569699)
f(100e-3, 3.696572240438975) f(100e-3, 38.38819054126685)
f(200e-3, -22.989287990967092) f(200e-3, 11.702330309860756)
}
func TestLinearRegression(t *testing.T) {
f := func(values []float64, timestamps []int64, expV, expK float64) {
t.Helper()
rfa := &rollupFuncArg{
values: values,
timestamps: timestamps,
currTimestamp: timestamps[0] + 100,
}
v, k := linearRegression(rfa)
if err := compareValues([]float64{v}, []float64{expV}); err != nil {
t.Fatalf("unexpected v err: %s", err)
}
if err := compareValues([]float64{k}, []float64{expK}); err != nil {
t.Fatalf("unexpected k err: %s", err)
}
}
f([]float64{1}, []int64{1}, math.NaN(), math.NaN())
f([]float64{1, 2}, []int64{100, 300}, 1.5, 5)
f([]float64{2, 4, 6, 8, 10}, []int64{100, 200, 300, 400, 500}, 4, 20)
} }
func TestRollupHoltWinters(t *testing.T) { func TestRollupHoltWinters(t *testing.T) {
@ -448,7 +470,7 @@ func TestRollupNewRollupFuncSuccess(t *testing.T) {
f("default_rollup", 34) f("default_rollup", 34)
f("changes", 11) f("changes", 11)
f("delta", 34) f("delta", 34)
f("deriv", -266.85860231406065) f("deriv", -266.85860231406093)
f("deriv_fast", -712) f("deriv_fast", -712)
f("idelta", 0) f("idelta", 0)
f("increase", 398) f("increase", 398)
@ -957,7 +979,7 @@ func TestRollupFuncsNoWindow(t *testing.T) {
} }
rc.Timestamps = getTimestamps(rc.Start, rc.End, rc.Step) rc.Timestamps = getTimestamps(rc.Start, rc.End, rc.Step)
values := rc.Do(nil, testValues, testTimestamps) values := rc.Do(nil, testValues, testTimestamps)
valuesExpected := []float64{0, -2879.310344827587, 558.0608793686595, 422.84569138276544, 0} valuesExpected := []float64{nan, -2879.310344827588, 127.87627310448904, -496.5831435079728, nan}
timestampsExpected := []int64{0, 40, 80, 120, 160} timestampsExpected := []int64{0, 40, 80, 120, 160}
testRowsEqual(t, values, rc.Timestamps, valuesExpected, timestampsExpected) testRowsEqual(t, values, rc.Timestamps, valuesExpected, timestampsExpected)
}) })