mirror of
https://github.com/VictoriaMetrics/VictoriaMetrics.git
synced 2025-01-05 22:32:20 +01:00
app/vmselect: prevent from possible deadlock when f callback blocks inside RunParallel
This commit is contained in:
parent
c857e05604
commit
3921d8afae
@ -122,32 +122,22 @@ func putTimeseriesWork(tsw *timeseriesWork) {
|
|||||||
|
|
||||||
var tswPool sync.Pool
|
var tswPool sync.Pool
|
||||||
|
|
||||||
var timeseriesWorkChs []chan *timeseriesWork
|
func scheduleTimeseriesWork(workChs []chan *timeseriesWork, tsw *timeseriesWork) {
|
||||||
|
if len(workChs) == 1 {
|
||||||
func init() {
|
|
||||||
timeseriesWorkChs = make([]chan *timeseriesWork, gomaxprocs)
|
|
||||||
for i := range timeseriesWorkChs {
|
|
||||||
timeseriesWorkChs[i] = make(chan *timeseriesWork, 16)
|
|
||||||
go timeseriesWorker(timeseriesWorkChs[i], uint(i))
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
func scheduleTimeseriesWork(tsw *timeseriesWork) {
|
|
||||||
if len(timeseriesWorkChs) == 1 {
|
|
||||||
// Fast path for a single CPU core
|
// Fast path for a single CPU core
|
||||||
timeseriesWorkChs[0] <- tsw
|
workChs[0] <- tsw
|
||||||
return
|
return
|
||||||
}
|
}
|
||||||
attempts := 0
|
attempts := 0
|
||||||
for {
|
for {
|
||||||
idx := fastrand.Uint32n(uint32(len(timeseriesWorkChs)))
|
idx := fastrand.Uint32n(uint32(len(workChs)))
|
||||||
select {
|
select {
|
||||||
case timeseriesWorkChs[idx] <- tsw:
|
case workChs[idx] <- tsw:
|
||||||
return
|
return
|
||||||
default:
|
default:
|
||||||
attempts++
|
attempts++
|
||||||
if attempts >= len(timeseriesWorkChs) {
|
if attempts >= len(workChs) {
|
||||||
timeseriesWorkChs[idx] <- tsw
|
workChs[idx] <- tsw
|
||||||
return
|
return
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
@ -155,8 +145,11 @@ func scheduleTimeseriesWork(tsw *timeseriesWork) {
|
|||||||
}
|
}
|
||||||
|
|
||||||
func timeseriesWorker(ch <-chan *timeseriesWork, workerID uint) {
|
func timeseriesWorker(ch <-chan *timeseriesWork, workerID uint) {
|
||||||
var rs Result
|
v := resultPool.Get()
|
||||||
var rsLastResetTime uint64
|
if v == nil {
|
||||||
|
v = &result{}
|
||||||
|
}
|
||||||
|
r := v.(*result)
|
||||||
for tsw := range ch {
|
for tsw := range ch {
|
||||||
if atomic.LoadUint32(tsw.mustStop) != 0 {
|
if atomic.LoadUint32(tsw.mustStop) != 0 {
|
||||||
tsw.doneCh <- nil
|
tsw.doneCh <- nil
|
||||||
@ -168,29 +161,38 @@ func timeseriesWorker(ch <-chan *timeseriesWork, workerID uint) {
|
|||||||
tsw.doneCh <- fmt.Errorf("timeout exceeded during query execution: %s", rss.deadline.String())
|
tsw.doneCh <- fmt.Errorf("timeout exceeded during query execution: %s", rss.deadline.String())
|
||||||
continue
|
continue
|
||||||
}
|
}
|
||||||
if err := tsw.pts.Unpack(rss.tbf, &rs, rss.tr, rss.fetchData, rss.at); err != nil {
|
if err := tsw.pts.Unpack(rss.tbf, &r.rs, rss.tr, rss.fetchData, rss.at); err != nil {
|
||||||
atomic.StoreUint32(tsw.mustStop, 1)
|
atomic.StoreUint32(tsw.mustStop, 1)
|
||||||
tsw.doneCh <- fmt.Errorf("error during time series unpacking: %w", err)
|
tsw.doneCh <- fmt.Errorf("error during time series unpacking: %w", err)
|
||||||
continue
|
continue
|
||||||
}
|
}
|
||||||
if len(rs.Timestamps) > 0 || !rss.fetchData {
|
if len(r.rs.Timestamps) > 0 || !rss.fetchData {
|
||||||
if err := tsw.f(&rs, workerID); err != nil {
|
if err := tsw.f(&r.rs, workerID); err != nil {
|
||||||
atomic.StoreUint32(tsw.mustStop, 1)
|
atomic.StoreUint32(tsw.mustStop, 1)
|
||||||
tsw.doneCh <- err
|
tsw.doneCh <- err
|
||||||
continue
|
continue
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
tsw.rowsProcessed = len(rs.Values)
|
tsw.rowsProcessed = len(r.rs.Values)
|
||||||
tsw.doneCh <- nil
|
tsw.doneCh <- nil
|
||||||
currentTime := fasttime.UnixTimestamp()
|
currentTime := fasttime.UnixTimestamp()
|
||||||
if cap(rs.Values) > 1024*1024 && 4*len(rs.Values) < cap(rs.Values) && currentTime-rsLastResetTime > 10 {
|
if cap(r.rs.Values) > 1024*1024 && 4*len(r.rs.Values) < cap(r.rs.Values) && currentTime-r.lastResetTime > 10 {
|
||||||
// Reset rs in order to preseve memory usage after processing big time series with millions of rows.
|
// Reset r.rs in order to preseve memory usage after processing big time series with millions of rows.
|
||||||
rs = Result{}
|
r.rs = Result{}
|
||||||
rsLastResetTime = currentTime
|
r.lastResetTime = currentTime
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
r.rs.reset()
|
||||||
|
resultPool.Put(r)
|
||||||
}
|
}
|
||||||
|
|
||||||
|
type result struct {
|
||||||
|
rs Result
|
||||||
|
lastResetTime uint64
|
||||||
|
}
|
||||||
|
|
||||||
|
var resultPool sync.Pool
|
||||||
|
|
||||||
// RunParallel runs f in parallel for all the results from rss.
|
// RunParallel runs f in parallel for all the results from rss.
|
||||||
//
|
//
|
||||||
// f shouldn't hold references to rs after returning.
|
// f shouldn't hold references to rs after returning.
|
||||||
@ -204,6 +206,30 @@ func (rss *Results) RunParallel(f func(rs *Result, workerID uint) error) error {
|
|||||||
rss.tbf = nil
|
rss.tbf = nil
|
||||||
}()
|
}()
|
||||||
|
|
||||||
|
// Spin up local workers.
|
||||||
|
//
|
||||||
|
// Do not use a global workChs with a global pool of workers, since it may lead to a deadlock in the following case:
|
||||||
|
// - RunParallel is called with f, which blocks without forward progress.
|
||||||
|
// - All the workers in the global pool became blocked in f.
|
||||||
|
// - workChs is filled up, so it cannot accept new work items from other RunParallel calls.
|
||||||
|
workers := len(rss.packedTimeseries)
|
||||||
|
if workers > gomaxprocs {
|
||||||
|
workers = gomaxprocs
|
||||||
|
}
|
||||||
|
if workers < 1 {
|
||||||
|
workers = 1
|
||||||
|
}
|
||||||
|
workChs := make([]chan *timeseriesWork, workers)
|
||||||
|
var workChsWG sync.WaitGroup
|
||||||
|
for i := 0; i < workers; i++ {
|
||||||
|
workChs[i] = make(chan *timeseriesWork, 16)
|
||||||
|
workChsWG.Add(1)
|
||||||
|
go func(workerID int) {
|
||||||
|
defer workChsWG.Done()
|
||||||
|
timeseriesWorker(workChs[workerID], uint(workerID))
|
||||||
|
}(i)
|
||||||
|
}
|
||||||
|
|
||||||
// Feed workers with work.
|
// Feed workers with work.
|
||||||
tsws := make([]*timeseriesWork, len(rss.packedTimeseries))
|
tsws := make([]*timeseriesWork, len(rss.packedTimeseries))
|
||||||
var mustStop uint32
|
var mustStop uint32
|
||||||
@ -213,7 +239,7 @@ func (rss *Results) RunParallel(f func(rs *Result, workerID uint) error) error {
|
|||||||
tsw.pts = &rss.packedTimeseries[i]
|
tsw.pts = &rss.packedTimeseries[i]
|
||||||
tsw.f = f
|
tsw.f = f
|
||||||
tsw.mustStop = &mustStop
|
tsw.mustStop = &mustStop
|
||||||
scheduleTimeseriesWork(tsw)
|
scheduleTimeseriesWork(workChs, tsw)
|
||||||
tsws[i] = tsw
|
tsws[i] = tsw
|
||||||
}
|
}
|
||||||
seriesProcessedTotal := len(rss.packedTimeseries)
|
seriesProcessedTotal := len(rss.packedTimeseries)
|
||||||
@ -233,6 +259,13 @@ func (rss *Results) RunParallel(f func(rs *Result, workerID uint) error) error {
|
|||||||
|
|
||||||
perQueryRowsProcessed.Update(float64(rowsProcessedTotal))
|
perQueryRowsProcessed.Update(float64(rowsProcessedTotal))
|
||||||
perQuerySeriesProcessed.Update(float64(seriesProcessedTotal))
|
perQuerySeriesProcessed.Update(float64(seriesProcessedTotal))
|
||||||
|
|
||||||
|
// Shut down local workers
|
||||||
|
for _, workCh := range workChs {
|
||||||
|
close(workCh)
|
||||||
|
}
|
||||||
|
workChsWG.Wait()
|
||||||
|
|
||||||
return firstErr
|
return firstErr
|
||||||
}
|
}
|
||||||
|
|
||||||
@ -310,7 +343,6 @@ func putUnpackWork(upw *unpackWork) {
|
|||||||
var unpackWorkPool sync.Pool
|
var unpackWorkPool sync.Pool
|
||||||
|
|
||||||
var unpackWorkChs []chan *unpackWork
|
var unpackWorkChs []chan *unpackWork
|
||||||
var unpackWorkIdx uint32
|
|
||||||
|
|
||||||
func init() {
|
func init() {
|
||||||
unpackWorkChs = make([]chan *unpackWork, gomaxprocs)
|
unpackWorkChs = make([]chan *unpackWork, gomaxprocs)
|
||||||
|
@ -8,6 +8,7 @@ sort: 15
|
|||||||
|
|
||||||
* FEATURE: add `-search.maxSamplesPerSeries` command-line flag for limiting the number of raw samples a single query could process per each time series. This option can prevent from out of memory errors when a query processes tens of millions of raw samples per series. See [this issue](https://github.com/VictoriaMetrics/VictoriaMetrics/issues/1067).
|
* FEATURE: add `-search.maxSamplesPerSeries` command-line flag for limiting the number of raw samples a single query could process per each time series. This option can prevent from out of memory errors when a query processes tens of millions of raw samples per series. See [this issue](https://github.com/VictoriaMetrics/VictoriaMetrics/issues/1067).
|
||||||
|
|
||||||
|
* BUGFIX: vmselect: prevent from possible deadlock when multiple `target` query args are passed to [Graphite Render API](https://docs.victoriametrics.com/#graphite-render-api-usage).
|
||||||
* BUGFIX: return series with `a op b` labels and `N` values for `(a op b) default N` if `(a op b)` returns series with all NaN values. Previously such series were removed.
|
* BUGFIX: return series with `a op b` labels and `N` values for `(a op b) default N` if `(a op b)` returns series with all NaN values. Previously such series were removed.
|
||||||
|
|
||||||
|
|
||||||
|
Loading…
Reference in New Issue
Block a user