mirror of
https://github.com/VictoriaMetrics/VictoriaMetrics.git
synced 2025-01-20 07:19:17 +01:00
app/vmselect/promql: move common code from aggrFuncOutliersK and newAggrFuncRangeTopK into getRangeTopKTimeseries
This commit is contained in:
parent
f52769f6ee
commit
538fdfe133
@ -484,11 +484,6 @@ func newAggrFuncTopK(isReverse bool) aggrFunc {
|
||||
}
|
||||
}
|
||||
|
||||
type tsWithValue struct {
|
||||
ts *timeseries
|
||||
value float64
|
||||
}
|
||||
|
||||
func newAggrFuncRangeTopK(f func(values []float64) float64, isReverse bool) aggrFunc {
|
||||
return func(afa *aggrFuncArg) ([]*timeseries, error) {
|
||||
args := afa.args
|
||||
@ -500,34 +495,42 @@ func newAggrFuncRangeTopK(f func(values []float64) float64, isReverse bool) aggr
|
||||
return nil, err
|
||||
}
|
||||
afe := func(tss []*timeseries) []*timeseries {
|
||||
maxs := make([]tsWithValue, len(tss))
|
||||
for i, ts := range tss {
|
||||
value := f(ts.Values)
|
||||
maxs[i] = tsWithValue{
|
||||
ts: ts,
|
||||
value: value,
|
||||
}
|
||||
}
|
||||
sort.Slice(maxs, func(i, j int) bool {
|
||||
a := maxs[i].value
|
||||
b := maxs[j].value
|
||||
if isReverse {
|
||||
a, b = b, a
|
||||
}
|
||||
return lessWithNaNs(a, b)
|
||||
})
|
||||
for i := range maxs {
|
||||
tss[i] = maxs[i].ts
|
||||
}
|
||||
for i, k := range ks {
|
||||
fillNaNsAtIdx(i, k, tss)
|
||||
}
|
||||
return removeNaNs(tss)
|
||||
return getRangeTopKTimeseries(tss, ks, f, isReverse)
|
||||
}
|
||||
return aggrFuncExt(afe, args[1], &afa.ae.Modifier, afa.ae.Limit, true)
|
||||
}
|
||||
}
|
||||
|
||||
func getRangeTopKTimeseries(tss []*timeseries, ks []float64, f func(values []float64) float64, isReverse bool) []*timeseries {
|
||||
type tsWithValue struct {
|
||||
ts *timeseries
|
||||
value float64
|
||||
}
|
||||
maxs := make([]tsWithValue, len(tss))
|
||||
for i, ts := range tss {
|
||||
value := f(ts.Values)
|
||||
maxs[i] = tsWithValue{
|
||||
ts: ts,
|
||||
value: value,
|
||||
}
|
||||
}
|
||||
sort.Slice(maxs, func(i, j int) bool {
|
||||
a := maxs[i].value
|
||||
b := maxs[j].value
|
||||
if isReverse {
|
||||
a, b = b, a
|
||||
}
|
||||
return lessWithNaNs(a, b)
|
||||
})
|
||||
for i := range maxs {
|
||||
tss[i] = maxs[i].ts
|
||||
}
|
||||
for i, k := range ks {
|
||||
fillNaNsAtIdx(i, k, tss)
|
||||
}
|
||||
return removeNaNs(tss)
|
||||
}
|
||||
|
||||
func fillNaNsAtIdx(idx int, k float64, tss []*timeseries) {
|
||||
if math.IsNaN(k) {
|
||||
k = 0
|
||||
@ -623,38 +626,16 @@ func aggrFuncOutliersK(afa *aggrFuncArg) ([]*timeseries, error) {
|
||||
}
|
||||
histogram.PutFast(h)
|
||||
|
||||
// Calculate variation-like value for each tss.
|
||||
type variation struct {
|
||||
sum2 float64
|
||||
ts *timeseries
|
||||
}
|
||||
variations := make([]variation, len(tss))
|
||||
for i, ts := range tss {
|
||||
// Return topK time series with the highest variance from median.
|
||||
f := func(values []float64) float64 {
|
||||
sum2 := float64(0)
|
||||
for n, v := range ts.Values {
|
||||
for n, v := range values {
|
||||
d := v - medians[n]
|
||||
sum2 += d * d
|
||||
}
|
||||
variations[i] = variation{
|
||||
sum2: sum2,
|
||||
ts: ts,
|
||||
}
|
||||
return sum2
|
||||
}
|
||||
|
||||
// Sort variations by sum2.
|
||||
sort.Slice(variations, func(i, j int) bool {
|
||||
a, b := variations[i], variations[j]
|
||||
return lessWithNaNs(a.sum2, b.sum2)
|
||||
})
|
||||
|
||||
// Return only up to k time series with the highest variation.
|
||||
for i := range variations {
|
||||
tss[i] = variations[i].ts
|
||||
}
|
||||
for i, k := range ks {
|
||||
fillNaNsAtIdx(i, k, tss)
|
||||
}
|
||||
return removeNaNs(tss)
|
||||
return getRangeTopKTimeseries(tss, ks, f, false)
|
||||
}
|
||||
return aggrFuncExt(afe, args[1], &afa.ae.Modifier, afa.ae.Limit, true)
|
||||
}
|
||||
|
Loading…
Reference in New Issue
Block a user