mirror of
https://github.com/VictoriaMetrics/VictoriaMetrics.git
synced 2024-11-23 12:31:07 +01:00
docs/vmanomaly:custom model guide fix (#6594)
### Describe Your Changes Fixed Custom Model guide according to newer `vmanomaly` versions ### Checklist The following checks are **mandatory**: - [x] My change adheres [VictoriaMetrics contributing guidelines](https://docs.victoriametrics.com/contributing/).
This commit is contained in:
parent
108a5e10d8
commit
7478d2de4c
@ -617,7 +617,7 @@ Here in this guide, we will
|
||||
> **Note**: By default, each custom model is created as [**univariate**](#univariate-models) / [**non-rolling**](#non-rolling-models) model. If you want to override this behavior, define models inherited from `RollingModel` (to get a rolling model), or having `is_multivariate` class arg set to `True` (please refer to the code example below).
|
||||
|
||||
We'll create `custom_model.py` file with `CustomModel` class that will inherit from `vmanomaly`'s `Model` base class.
|
||||
In the `CustomModel` class there should be three required methods - `__init__`, `fit` and `infer`:
|
||||
In the `CustomModel` class, the following methods are required: - `__init__`, `fit`, `infer`, `serialize` and `deserialize`:
|
||||
* `__init__` method should initiate parameters for the model.
|
||||
|
||||
**Note**: if your model relies on configs that have `arg` [key-value pair argument](./models.md#section-overview), do not forget to use Python's `**kwargs` in method's signature and to explicitly call
|
||||
@ -628,6 +628,8 @@ In the `CustomModel` class there should be three required methods - `__init__`,
|
||||
to initialize the base class each model derives from
|
||||
* `fit` method should contain the model training process. Please be aware that for `RollingModel` defining `fit` method is not needed, as the whole fit/infer process should be defined completely in `infer` method.
|
||||
* `infer` should return Pandas.DataFrame object with model's inferences.
|
||||
* `serialize` method that saves the model on disk.
|
||||
* `deserialize` load the saved model from disk.
|
||||
|
||||
For the sake of simplicity, the model in this example will return one of two values of `anomaly_score` - 0 or 1 depending on input parameter `percentage`.
|
||||
|
||||
@ -637,45 +639,56 @@ import numpy as np
|
||||
import pandas as pd
|
||||
import scipy.stats as st
|
||||
import logging
|
||||
from pickle import dumps
|
||||
|
||||
from model.model import Model
|
||||
from model.model import (
|
||||
PICKLE_PROTOCOL,
|
||||
Model,
|
||||
deserialize_basic
|
||||
)
|
||||
# from model.model import RollingModel # inherit from it for your model to be of rolling type
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class CustomModel(Model):
|
||||
"""
|
||||
Custom model implementation.
|
||||
"""
|
||||
"""
|
||||
Custom model implementation.
|
||||
"""
|
||||
# by default, each `Model` will be created as a univariate one
|
||||
# uncomment line below for it to be of multivariate type
|
||||
#`is_multivariate = True`
|
||||
|
||||
def __init__(self, percentage: float = 0.95, **kwargs):
|
||||
super().__init__(**kwargs)
|
||||
self.percentage = percentage
|
||||
self._mean = np.nan
|
||||
self._std = np.nan
|
||||
|
||||
# by default, each `Model` will be created as a univariate one
|
||||
# uncomment line below for it to be of multivariate type
|
||||
# is_multivariate = True
|
||||
def fit(self, df: pd.DataFrame):
|
||||
# Model fit process:
|
||||
y = df['y']
|
||||
self._mean = np.mean(y)
|
||||
self._std = np.std(y)
|
||||
if self._std == 0.0:
|
||||
self._std = 1 / 65536
|
||||
|
||||
def __init__(self, percentage: float = 0.95, **kwargs):
|
||||
super().__init__(**kwargs)
|
||||
self.percentage = percentage
|
||||
self._mean = np.nan
|
||||
self._std = np.nan
|
||||
def infer(self, df: pd.DataFrame) -> np.array:
|
||||
# Inference process:
|
||||
y = df['y']
|
||||
zscores = (y - self._mean) / self._std
|
||||
anomaly_score_cdf = st.norm.cdf(np.abs(zscores))
|
||||
df_pred = df[['timestamp', 'y']].copy()
|
||||
df_pred['anomaly_score'] = anomaly_score_cdf > self.percentage
|
||||
df_pred['anomaly_score'] = df_pred['anomaly_score'].astype('int32', errors='ignore')
|
||||
|
||||
def fit(self, df: pd.DataFrame):
|
||||
# Model fit process:
|
||||
y = df['y']
|
||||
self._mean = np.mean(y)
|
||||
self._std = np.std(y)
|
||||
if self._std == 0.0:
|
||||
self._std = 1 / 65536
|
||||
return df_pred
|
||||
|
||||
def infer(self, df: pd.DataFrame) -> np.array:
|
||||
# Inference process:
|
||||
y = df['y']
|
||||
zscores = (y - self._mean) / self._std
|
||||
anomaly_score_cdf = st.norm.cdf(np.abs(zscores))
|
||||
df_pred = df[['timestamp', 'y']].copy()
|
||||
df_pred['anomaly_score'] = anomaly_score_cdf > self.percentage
|
||||
df_pred['anomaly_score'] = df_pred['anomaly_score'].astype('int32', errors='ignore')
|
||||
def serialize(self) -> None:
|
||||
return dumps(self, protocol=PICKLE_PROTOCOL)
|
||||
|
||||
return df_pred
|
||||
@staticmethod
|
||||
def deserialize(model: str | bytes) -> 'CustomModel':
|
||||
return deserialize_basic(model)
|
||||
```
|
||||
|
||||
|
||||
@ -694,19 +707,19 @@ schedulers:
|
||||
|
||||
models:
|
||||
custom_model:
|
||||
# note: every custom model should implement this exact path, specified in `class` field
|
||||
class: "custom" # or 'model.model.CustomModel' until v1.13.0
|
||||
# custom model params are defined here
|
||||
percentage: 0.9
|
||||
|
||||
|
||||
reader:
|
||||
datasource_url: "http://localhost:8428/"
|
||||
datasource_url: "http://victoriametrics:8428/"
|
||||
sampling_period: '1m'
|
||||
queries:
|
||||
ingestion_rate: 'sum(rate(vm_rows_inserted_total)) by (type)'
|
||||
churn_rate: 'sum(rate(vm_new_timeseries_created_total[5m]))'
|
||||
|
||||
writer:
|
||||
datasource_url: "http://localhost:8428/"
|
||||
datasource_url: "http://victoriametrics:8428/"
|
||||
metric_format:
|
||||
__name__: "custom_$VAR"
|
||||
for: "$QUERY_KEY"
|
||||
@ -717,7 +730,7 @@ monitoring:
|
||||
pull:
|
||||
port: 8080
|
||||
push:
|
||||
url: "http://localhost:8428/"
|
||||
url: "http://victoriametrics:8428/"
|
||||
extra_labels:
|
||||
job: "vmanomaly-develop"
|
||||
config: "custom.yaml"
|
||||
@ -735,14 +748,15 @@ Now we can run the docker container putting as volumes both config and model fil
|
||||
|
||||
> **Note**: place the model file to `/model/custom.py` path when copying
|
||||
|
||||
./custom_model.py:/vmanomaly/model/custom.py
|
||||
|
||||
```sh
|
||||
docker run -it \
|
||||
--net [YOUR_NETWORK] \
|
||||
-v [YOUR_LICENSE_FILE_PATH]:/license.txt \
|
||||
-v $(PWD)/custom_model.py:/vmanomaly/src/model/custom.py \
|
||||
-v $(PWD)/license:/license \
|
||||
-v $(PWD)/custom_model.py:/vmanomaly/model/custom.py \
|
||||
-v $(PWD)/custom.yaml:/config.yaml \
|
||||
victoriametrics/vmanomaly:latest /config.yaml \
|
||||
--license-file=/license.txt
|
||||
--license-file=/license
|
||||
```
|
||||
|
||||
Please find more detailed instructions (license, etc.) [here](/anomaly-detection/overview.html#run-vmanomaly-docker-container)
|
||||
|
Loading…
Reference in New Issue
Block a user