docs/vmanomaly:custom model guide fix (#6594)

### Describe Your Changes

Fixed Custom Model guide according to newer `vmanomaly` versions

### Checklist

The following checks are **mandatory**:

- [x] My change adheres [VictoriaMetrics contributing
guidelines](https://docs.victoriametrics.com/contributing/).
This commit is contained in:
Daria Karavaieva 2024-07-07 18:17:04 +02:00 committed by GitHub
parent 108a5e10d8
commit 7478d2de4c
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194

View File

@ -617,7 +617,7 @@ Here in this guide, we will
> **Note**: By default, each custom model is created as [**univariate**](#univariate-models) / [**non-rolling**](#non-rolling-models) model. If you want to override this behavior, define models inherited from `RollingModel` (to get a rolling model), or having `is_multivariate` class arg set to `True` (please refer to the code example below).
We'll create `custom_model.py` file with `CustomModel` class that will inherit from `vmanomaly`'s `Model` base class.
In the `CustomModel` class there should be three required methods - `__init__`, `fit` and `infer`:
In the `CustomModel` class, the following methods are required: - `__init__`, `fit`, `infer`, `serialize` and `deserialize`:
* `__init__` method should initiate parameters for the model.
**Note**: if your model relies on configs that have `arg` [key-value pair argument](./models.md#section-overview), do not forget to use Python's `**kwargs` in method's signature and to explicitly call
@ -628,6 +628,8 @@ In the `CustomModel` class there should be three required methods - `__init__`,
to initialize the base class each model derives from
* `fit` method should contain the model training process. Please be aware that for `RollingModel` defining `fit` method is not needed, as the whole fit/infer process should be defined completely in `infer` method.
* `infer` should return Pandas.DataFrame object with model's inferences.
* `serialize` method that saves the model on disk.
* `deserialize` load the saved model from disk.
For the sake of simplicity, the model in this example will return one of two values of `anomaly_score` - 0 or 1 depending on input parameter `percentage`.
@ -637,45 +639,56 @@ import numpy as np
import pandas as pd
import scipy.stats as st
import logging
from pickle import dumps
from model.model import Model
from model.model import (
PICKLE_PROTOCOL,
Model,
deserialize_basic
)
# from model.model import RollingModel # inherit from it for your model to be of rolling type
logger = logging.getLogger(__name__)
class CustomModel(Model):
"""
Custom model implementation.
"""
"""
Custom model implementation.
"""
# by default, each `Model` will be created as a univariate one
# uncomment line below for it to be of multivariate type
#`is_multivariate = True`
def __init__(self, percentage: float = 0.95, **kwargs):
super().__init__(**kwargs)
self.percentage = percentage
self._mean = np.nan
self._std = np.nan
# by default, each `Model` will be created as a univariate one
# uncomment line below for it to be of multivariate type
# is_multivariate = True
def fit(self, df: pd.DataFrame):
# Model fit process:
y = df['y']
self._mean = np.mean(y)
self._std = np.std(y)
if self._std == 0.0:
self._std = 1 / 65536
def __init__(self, percentage: float = 0.95, **kwargs):
super().__init__(**kwargs)
self.percentage = percentage
self._mean = np.nan
self._std = np.nan
def infer(self, df: pd.DataFrame) -> np.array:
# Inference process:
y = df['y']
zscores = (y - self._mean) / self._std
anomaly_score_cdf = st.norm.cdf(np.abs(zscores))
df_pred = df[['timestamp', 'y']].copy()
df_pred['anomaly_score'] = anomaly_score_cdf > self.percentage
df_pred['anomaly_score'] = df_pred['anomaly_score'].astype('int32', errors='ignore')
def fit(self, df: pd.DataFrame):
# Model fit process:
y = df['y']
self._mean = np.mean(y)
self._std = np.std(y)
if self._std == 0.0:
self._std = 1 / 65536
return df_pred
def infer(self, df: pd.DataFrame) -> np.array:
# Inference process:
y = df['y']
zscores = (y - self._mean) / self._std
anomaly_score_cdf = st.norm.cdf(np.abs(zscores))
df_pred = df[['timestamp', 'y']].copy()
df_pred['anomaly_score'] = anomaly_score_cdf > self.percentage
df_pred['anomaly_score'] = df_pred['anomaly_score'].astype('int32', errors='ignore')
def serialize(self) -> None:
return dumps(self, protocol=PICKLE_PROTOCOL)
return df_pred
@staticmethod
def deserialize(model: str | bytes) -> 'CustomModel':
return deserialize_basic(model)
```
@ -694,19 +707,19 @@ schedulers:
models:
custom_model:
# note: every custom model should implement this exact path, specified in `class` field
class: "custom" # or 'model.model.CustomModel' until v1.13.0
# custom model params are defined here
percentage: 0.9
reader:
datasource_url: "http://localhost:8428/"
datasource_url: "http://victoriametrics:8428/"
sampling_period: '1m'
queries:
ingestion_rate: 'sum(rate(vm_rows_inserted_total)) by (type)'
churn_rate: 'sum(rate(vm_new_timeseries_created_total[5m]))'
writer:
datasource_url: "http://localhost:8428/"
datasource_url: "http://victoriametrics:8428/"
metric_format:
__name__: "custom_$VAR"
for: "$QUERY_KEY"
@ -717,7 +730,7 @@ monitoring:
pull:
port: 8080
push:
url: "http://localhost:8428/"
url: "http://victoriametrics:8428/"
extra_labels:
job: "vmanomaly-develop"
config: "custom.yaml"
@ -735,14 +748,15 @@ Now we can run the docker container putting as volumes both config and model fil
> **Note**: place the model file to `/model/custom.py` path when copying
./custom_model.py:/vmanomaly/model/custom.py
```sh
docker run -it \
--net [YOUR_NETWORK] \
-v [YOUR_LICENSE_FILE_PATH]:/license.txt \
-v $(PWD)/custom_model.py:/vmanomaly/src/model/custom.py \
-v $(PWD)/license:/license \
-v $(PWD)/custom_model.py:/vmanomaly/model/custom.py \
-v $(PWD)/custom.yaml:/config.yaml \
victoriametrics/vmanomaly:latest /config.yaml \
--license-file=/license.txt
--license-file=/license
```
Please find more detailed instructions (license, etc.) [here](/anomaly-detection/overview.html#run-vmanomaly-docker-container)