diff --git a/deployment/docker/vmanomaly/vmanomaly-integration/docker-compose.yml b/deployment/docker/vmanomaly/vmanomaly-integration/docker-compose.yml index e18303d870..d6ee3b59c9 100644 --- a/deployment/docker/vmanomaly/vmanomaly-integration/docker-compose.yml +++ b/deployment/docker/vmanomaly/vmanomaly-integration/docker-compose.yml @@ -72,7 +72,7 @@ services: restart: always vmanomaly: container_name: vmanomaly - image: victoriametrics/vmanomaly:v1.18.1 + image: victoriametrics/vmanomaly:v1.18.2 depends_on: - "victoriametrics" ports: diff --git a/docs/anomaly-detection/CHANGELOG.md b/docs/anomaly-detection/CHANGELOG.md index 99fb20ccb8..ec652c6740 100644 --- a/docs/anomaly-detection/CHANGELOG.md +++ b/docs/anomaly-detection/CHANGELOG.md @@ -11,6 +11,11 @@ aliases: --- Please find the changelog for VictoriaMetrics Anomaly Detection below. +## v1.18.2 +Released: 2024-11-13 + +- IMPROVEMENT: Enhanced the flexibility of the [`ProphetModel`](https://docs.victoriametrics.com/anomaly-detection/components/models/#prophet) for tz-aware data (`tz_aware = True`). The `tz_seasonalities` argument has been reformatted to align with the structure of the existing `seasonalities` argument. For more details, refer to the [model section here](https://docs.victoriametrics.com/anomaly-detection/components/models/#prophet). Additionally, tz-aware support for `ProphetModel` has been added to [`AutoTuned`](https://docs.victoriametrics.com/anomaly-detection/components/models/#autotuned) model wrapper. This feature is automatically enabled if the data is timezone-aware and its timezone is not set to the default ('UTC'), otherwise default timezone-free optimization flow will be used. + ## v1.18.1 Released: 2024-11-12 diff --git a/docs/anomaly-detection/FAQ.md b/docs/anomaly-detection/FAQ.md index 24d816d4c0..97f4926911 100644 --- a/docs/anomaly-detection/FAQ.md +++ b/docs/anomaly-detection/FAQ.md @@ -159,7 +159,7 @@ services: # ... vmanomaly: container_name: vmanomaly - image: victoriametrics/vmanomaly:v1.18.1 + image: victoriametrics/vmanomaly:v1.18.2 # ... ports: - "8490:8490" diff --git a/docs/anomaly-detection/Overview.md b/docs/anomaly-detection/Overview.md index abc07b91c0..b4feb21ec2 100644 --- a/docs/anomaly-detection/Overview.md +++ b/docs/anomaly-detection/Overview.md @@ -229,7 +229,7 @@ This will expose metrics at `http://0.0.0.0:8080/metrics` page. To use *vmanomaly* you need to pull docker image: ```sh -docker pull victoriametrics/vmanomaly:v1.18.1 +docker pull victoriametrics/vmanomaly:v1.18.2 ``` > Note: please check what is latest release in [CHANGELOG](https://docs.victoriametrics.com/anomaly-detection/changelog/) @@ -239,7 +239,7 @@ docker pull victoriametrics/vmanomaly:v1.18.1 You can put a tag on it for your convenience: ```sh -docker image tag victoriametrics/vmanomaly:v1.18.1 vmanomaly +docker image tag victoriametrics/vmanomaly:v1.18.2 vmanomaly ``` Here is an example of how to run *vmanomaly* docker container with [license file](#licensing): diff --git a/docs/anomaly-detection/QuickStart.md b/docs/anomaly-detection/QuickStart.md index befa54f6a5..9b048becab 100644 --- a/docs/anomaly-detection/QuickStart.md +++ b/docs/anomaly-detection/QuickStart.md @@ -58,13 +58,13 @@ Below are the steps to get `vmanomaly` up and running inside a Docker container: 1. Pull Docker image: ```sh -docker pull victoriametrics/vmanomaly:v1.18.1 +docker pull victoriametrics/vmanomaly:v1.18.2 ``` 2. (Optional step) tag the `vmanomaly` Docker image: ```sh -docker image tag victoriametrics/vmanomaly:v1.18.1 vmanomaly +docker image tag victoriametrics/vmanomaly:v1.18.2 vmanomaly ``` 3. Start the `vmanomaly` Docker container with a *license file*, use the command below. @@ -98,7 +98,7 @@ docker run -it --user 1000:1000 \ services: # ... vmanomaly: - image: victoriametrics/vmanomaly:v1.18.1 + image: victoriametrics/vmanomaly:v1.18.2 volumes: $YOUR_LICENSE_FILE_PATH:/license $YOUR_CONFIG_FILE_PATH:/config.yml diff --git a/docs/anomaly-detection/components/models.md b/docs/anomaly-detection/components/models.md index 3a034d0d29..0b372070fc 100644 --- a/docs/anomaly-detection/components/models.md +++ b/docs/anomaly-detection/components/models.md @@ -456,12 +456,15 @@ models: > **Note**: `ProphetModel` is a [univariate](#univariate-models), [non-rolling](#non-rolling-models), [offline](#offline-models) model. + +> **Note**: Starting with [v1.18.2](https://docs.victoriametrics.com/anomaly-detection/changelog/#v1182), the format for `tz_seasonalities` has been updated to enhance flexibility. Previously, it accepted a list of strings (e.g., `['hod', 'minute']`). Now, it follows the same structure as custom seasonalities defined in the `seasonalities` argument (e.g., `{"name": "hod", "fourier_order": 5, "mode": "additive"}`). This change is backward-compatible, so older configurations will be automatically converted to the new format using default values. + *Parameters specific for vmanomaly*: * `class` (string) - model class name `"model.prophet.ProphetModel"` (or `prophet` starting from [v1.13.0](https://docs.victoriametrics.com/anomaly-detection/changelog/#1130) with class alias support) * `seasonalities` (list[dict], optional): Additional seasonal components to include in Prophet. See Prophet’s [`add_seasonality()`](https://facebook.github.io/prophet/docs/seasonality,_holiday_effects,_and_regressors.html#modeling-holidays-and-special-events:~:text=modeling%20the%20cycle-,Specifying,-Custom%20Seasonalities) documentation for details. - `tz_aware` (bool): (Available since [v1.18.0](https://docs.victoriametrics.com/anomaly-detection/changelog/#v1180)) Enables handling of timezone-aware timestamps. Default is `False`. Should be used with `tz_seasonalities` and `tz_use_cyclical_encoding` parameters. -- `tz_seasonalities` (list[str]): (Available since [v1.18.0](https://docs.victoriametrics.com/anomaly-detection/changelog/#v1180)) Specifies timezone-aware seasonal components. Requires `tz_aware=True`. Supported options include `minute`, `hod` (hour of the day), `dow` (day of the week), and `month` (month of the year). +- `tz_seasonalities` (list[dict]): (Available since [v1.18.0](https://docs.victoriametrics.com/anomaly-detection/changelog/#v1180)) Specifies timezone-aware seasonal components. Requires `tz_aware=True`. Supported options include `minute`, `hod` (hour of day), `dow` (day of week), and `month` (month of year). Starting with [v1.18.2](https://docs.victoriametrics.com/anomaly-detection/changelog/#v1182), users can configure additional parameters for each seasonality, such as `fourier_order`, `prior_scale`, and `mode`. For more details, please refer to the **Timezone-unaware** configuration example below. - `tz_use_cyclical_encoding` (bool): (Available since [v1.18.0](https://docs.victoriametrics.com/anomaly-detection/changelog/#v1180)) If set to `True`, applies [cyclical encoding technique](https://www.kaggle.com/code/avanwyk/encoding-cyclical-features-for-deep-learning) to timezone-aware seasonalities. Should be used with `tz_aware=True` and `tz_seasonalities`. > **Note**: Apart from standard [`vmanomaly` output](#vmanomaly-output), Prophet model can provide additional metrics. @@ -489,6 +492,7 @@ models: - name: 'hourly' period: 0.04166666666 fourier_order: 30 + prior_scale: 20 # inner model args (key-value pairs) accepted by # https://facebook.github.io/prophet/docs/quick_start.html#python-api args: @@ -504,8 +508,13 @@ models: class: 'prophet' # or 'model.prophet.ProphetModel' until v1.13.0 provide_series: ['anomaly_score', 'yhat', 'yhat_lower', 'yhat_upper', 'trend'] tz_aware: True - tz_seasonalities: ['hod', 'dow'] # intra-day + intra-week seasonality, no intra-year / sub-hour seasonality - tz_use_cyclical_encoding: False + tz_use_cyclical_encoding: True + tz_seasonalities: # intra-day + intra-week seasonality, no intra-year / sub-hour seasonality + - name: 'hod' # intra-day seasonality, hour of the day + fourier_order: 5 # keep it 3-8 based on intraday pattern complexity + prior_scale: 10 + - name: 'dow' # intra-week seasonality, time of the week + fourier_order: 2 # keep it 2-4, as dependencies are learned separately for each weekday # inner model args (key-value pairs) accepted by # https://facebook.github.io/prophet/docs/quick_start.html#python-api args: @@ -984,7 +993,7 @@ monitoring: Let's pull the docker image for `vmanomaly`: ```sh -docker pull victoriametrics/vmanomaly:v1.18.1 +docker pull victoriametrics/vmanomaly:v1.18.2 ``` Now we can run the docker container putting as volumes both config and model file: @@ -998,7 +1007,7 @@ docker run -it \ -v $(PWD)/license:/license \ -v $(PWD)/custom_model.py:/vmanomaly/model/custom.py \ -v $(PWD)/custom.yaml:/config.yaml \ -victoriametrics/vmanomaly:v1.18.1 /config.yaml \ +victoriametrics/vmanomaly:v1.18.2 /config.yaml \ --licenseFile=/license ``` diff --git a/docs/anomaly-detection/guides/guide-vmanomaly-vmalert/README.md b/docs/anomaly-detection/guides/guide-vmanomaly-vmalert/README.md index efac3f0fed..133a165ec6 100644 --- a/docs/anomaly-detection/guides/guide-vmanomaly-vmalert/README.md +++ b/docs/anomaly-detection/guides/guide-vmanomaly-vmalert/README.md @@ -385,7 +385,7 @@ services: restart: always vmanomaly: container_name: vmanomaly - image: victoriametrics/vmanomaly:v1.18.1 + image: victoriametrics/vmanomaly:v1.18.2 depends_on: - "victoriametrics" ports: