app/vmselect/promql: add histogram_over_time(m[d]) rollup function

This commit is contained in:
Aliaksandr Valialkin 2020-01-03 23:50:47 +02:00
parent 3e09d38f29
commit a8360d04c0
5 changed files with 225 additions and 5 deletions

View File

@ -491,6 +491,13 @@ func evalRollupFuncWithSubquery(ec *EvalConfig, name string, rf rollupFunc, re *
values, timestamps = removeNanValues(values[:0], timestamps[:0], tsSQ.Values, tsSQ.Timestamps)
preFunc(values, timestamps)
for _, rc := range rcs {
if tsm := newTimeseriesMap(name, sharedTimestamps, &tsSQ.MetricName); tsm != nil {
rc.DoTimeseriesMap(tsm, values, timestamps)
tssLock.Lock()
tss = tsm.AppendTimeseriesTo(tss)
tssLock.Unlock()
continue
}
var ts timeseries
doRollupForTimeseries(rc, &ts, &tsSQ.MetricName, values, timestamps, sharedTimestamps, removeMetricGroup)
tssLock.Lock()
@ -638,9 +645,9 @@ func evalRollupFuncWithMetricExpr(ec *EvalConfig, name string, rf rollupFunc,
removeMetricGroup := !rollupFuncsKeepMetricGroup[name]
var tss []*timeseries
if iafc != nil {
tss, err = evalRollupWithIncrementalAggregate(iafc, rss, rcs, preFunc, sharedTimestamps, removeMetricGroup)
tss, err = evalRollupWithIncrementalAggregate(name, iafc, rss, rcs, preFunc, sharedTimestamps, removeMetricGroup)
} else {
tss, err = evalRollupNoIncrementalAggregate(rss, rcs, preFunc, sharedTimestamps, removeMetricGroup)
tss, err = evalRollupNoIncrementalAggregate(name, rss, rcs, preFunc, sharedTimestamps, removeMetricGroup)
}
if err != nil {
return nil, err
@ -662,13 +669,20 @@ func getRollupMemoryLimiter() *memoryLimiter {
return &rollupMemoryLimiter
}
func evalRollupWithIncrementalAggregate(iafc *incrementalAggrFuncContext, rss *netstorage.Results, rcs []*rollupConfig,
func evalRollupWithIncrementalAggregate(name string, iafc *incrementalAggrFuncContext, rss *netstorage.Results, rcs []*rollupConfig,
preFunc func(values []float64, timestamps []int64), sharedTimestamps []int64, removeMetricGroup bool) ([]*timeseries, error) {
err := rss.RunParallel(func(rs *netstorage.Result, workerID uint) {
preFunc(rs.Values, rs.Timestamps)
ts := getTimeseries()
defer putTimeseries(ts)
for _, rc := range rcs {
if tsm := newTimeseriesMap(name, sharedTimestamps, &rs.MetricName); tsm != nil {
rc.DoTimeseriesMap(tsm, rs.Values, rs.Timestamps)
for _, ts := range tsm.m {
iafc.updateTimeseries(ts, workerID)
}
continue
}
ts.Reset()
doRollupForTimeseries(rc, ts, &rs.MetricName, rs.Values, rs.Timestamps, sharedTimestamps, removeMetricGroup)
iafc.updateTimeseries(ts, workerID)
@ -685,13 +699,20 @@ func evalRollupWithIncrementalAggregate(iafc *incrementalAggrFuncContext, rss *n
return tss, nil
}
func evalRollupNoIncrementalAggregate(rss *netstorage.Results, rcs []*rollupConfig,
func evalRollupNoIncrementalAggregate(name string, rss *netstorage.Results, rcs []*rollupConfig,
preFunc func(values []float64, timestamps []int64), sharedTimestamps []int64, removeMetricGroup bool) ([]*timeseries, error) {
tss := make([]*timeseries, 0, rss.Len()*len(rcs))
var tssLock sync.Mutex
err := rss.RunParallel(func(rs *netstorage.Result, workerID uint) {
preFunc(rs.Values, rs.Timestamps)
for _, rc := range rcs {
if tsm := newTimeseriesMap(name, sharedTimestamps, &rs.MetricName); tsm != nil {
rc.DoTimeseriesMap(tsm, rs.Values, rs.Timestamps)
tssLock.Lock()
tss = tsm.AppendTimeseriesTo(tss)
tssLock.Unlock()
continue
}
var ts timeseries
doRollupForTimeseries(rc, &ts, &rs.MetricName, rs.Values, rs.Timestamps, sharedTimestamps, removeMetricGroup)
tssLock.Lock()

View File

@ -3083,6 +3083,120 @@ func TestExecSuccess(t *testing.T) {
resultExpected := []netstorage.Result{r}
f(q, resultExpected)
})
t.Run(`histogram_over_time`, func(t *testing.T) {
t.Parallel()
q := `sort(histogram_over_time(alias(label_set(rand(0)*1.3+1.1, "foo", "bar"), "xxx")[200s:5s]))`
r1 := netstorage.Result{
Values: []float64{13, 14, 12, 8, 12, 13},
Timestamps: timestampsExpected,
}
r1.MetricName.Tags = []storage.Tag{
{
Key: []byte("foo"),
Value: []byte("bar"),
},
{
Key: []byte("vmrange"),
Value: []byte("1.0e0...1.5e0"),
},
}
r2 := netstorage.Result{
Values: []float64{14, 15, 12, 13, 15, 11},
Timestamps: timestampsExpected,
}
r2.MetricName.Tags = []storage.Tag{
{
Key: []byte("foo"),
Value: []byte("bar"),
},
{
Key: []byte("vmrange"),
Value: []byte("2.0e0...2.5e0"),
},
}
r3 := netstorage.Result{
Values: []float64{13, 11, 16, 19, 13, 16},
Timestamps: timestampsExpected,
}
r3.MetricName.Tags = []storage.Tag{
{
Key: []byte("foo"),
Value: []byte("bar"),
},
{
Key: []byte("vmrange"),
Value: []byte("1.5e0...2.0e0"),
},
}
resultExpected := []netstorage.Result{r1, r2, r3}
f(q, resultExpected)
})
t.Run(`sum(histogram_over_time) by (vmrange)`, func(t *testing.T) {
t.Parallel()
q := `sort(sum(histogram_over_time(alias(label_set(rand(0)*1.3+1.1, "foo", "bar"), "xxx")[200s:5s])) by (vmrange))`
r1 := netstorage.Result{
Values: []float64{13, 14, 12, 8, 12, 13},
Timestamps: timestampsExpected,
}
r1.MetricName.Tags = []storage.Tag{
{
Key: []byte("vmrange"),
Value: []byte("1.0e0...1.5e0"),
},
}
r2 := netstorage.Result{
Values: []float64{14, 15, 12, 13, 15, 11},
Timestamps: timestampsExpected,
}
r2.MetricName.Tags = []storage.Tag{
{
Key: []byte("vmrange"),
Value: []byte("2.0e0...2.5e0"),
},
}
r3 := netstorage.Result{
Values: []float64{13, 11, 16, 19, 13, 16},
Timestamps: timestampsExpected,
}
r3.MetricName.Tags = []storage.Tag{
{
Key: []byte("vmrange"),
Value: []byte("1.5e0...2.0e0"),
},
}
resultExpected := []netstorage.Result{r1, r2, r3}
f(q, resultExpected)
})
t.Run(`sum(histogram_over_time)`, func(t *testing.T) {
t.Parallel()
q := `sum(histogram_over_time(alias(label_set(rand(0)*1.3+1.1, "foo", "bar"), "xxx")[200s:5s]))`
r := netstorage.Result{
Values: []float64{40, 40, 40, 40, 40, 40},
Timestamps: timestampsExpected,
}
resultExpected := []netstorage.Result{r}
f(q, resultExpected)
})
t.Run(`topk_min(histogram_over_time)`, func(t *testing.T) {
t.Parallel()
q := `topk_min(1, histogram_over_time(alias(label_set(rand(0)*1.3+1.1, "foo", "bar"), "xxx")[200s:5s]))`
r := netstorage.Result{
Values: []float64{14, 15, 12, 13, 15, 11},
Timestamps: timestampsExpected,
}
r.MetricName.Tags = []storage.Tag{
{
Key: []byte("foo"),
Value: []byte("bar"),
},
{
Key: []byte("vmrange"),
Value: []byte("2.0e0...2.5e0"),
},
}
resultExpected := []netstorage.Result{r}
f(q, resultExpected)
})
t.Run(`share_gt_over_time`, func(t *testing.T) {
t.Parallel()
q := `share_gt_over_time(rand(0)[200s:10s], 0.7)`

View File

@ -8,6 +8,8 @@ import (
"github.com/VictoriaMetrics/VictoriaMetrics/lib/decimal"
"github.com/VictoriaMetrics/VictoriaMetrics/lib/logger"
"github.com/VictoriaMetrics/VictoriaMetrics/lib/storage"
"github.com/VictoriaMetrics/metrics"
"github.com/valyala/histogram"
)
@ -51,6 +53,7 @@ var rollupFuncs = map[string]newRollupFunc{
"scrape_interval": newRollupFuncOneArg(rollupScrapeInterval),
"share_le_over_time": newRollupShareLE,
"share_gt_over_time": newRollupShareGT,
"histogram_over_time": newRollupFuncOneArg(rollupHistogram),
"rollup": newRollupFuncOneArg(rollupFake),
"rollup_rate": newRollupFuncOneArg(rollupFake), // + rollupFuncsRemoveCounterResets
"rollup_deriv": newRollupFuncOneArg(rollupFake),
@ -119,6 +122,8 @@ type rollupFuncArg struct {
// Real previous value even if it is located too far from the current window.
// It matches prevValue if prevValue is not nan.
realPrevValue float64
tsm *timeseriesMap
}
func (rfa *rollupFuncArg) reset() {
@ -131,6 +136,7 @@ func (rfa *rollupFuncArg) reset() {
rfa.step = 0
rfa.scrapeInterval = 0
rfa.realPrevValue = nan
rfa.tsm = nil
}
// rollupFunc must return rollup value for the given rfa.
@ -169,6 +175,54 @@ var (
// The maximum interval without previous rows.
const maxSilenceInterval = 5 * 60 * 1000
type timeseriesMap struct {
origin *timeseries
labelName string
h metrics.Histogram
m map[string]*timeseries
}
func newTimeseriesMap(funcName string, sharedTimestamps []int64, mnSrc *storage.MetricName) *timeseriesMap {
if funcName != "histogram_over_time" {
return nil
}
values := make([]float64, len(sharedTimestamps))
for i := range values {
values[i] = nan
}
var origin timeseries
origin.MetricName.CopyFrom(mnSrc)
origin.MetricName.ResetMetricGroup()
origin.Timestamps = sharedTimestamps
origin.Values = values
return &timeseriesMap{
origin: &origin,
labelName: "vmrange",
m: make(map[string]*timeseries),
}
}
func (tsm *timeseriesMap) AppendTimeseriesTo(dst []*timeseries) []*timeseries {
for _, ts := range tsm.m {
dst = append(dst, ts)
}
return dst
}
func (tsm *timeseriesMap) GetOrCreateTimeseries(labelValue string) *timeseries {
ts := tsm.m[labelValue]
if ts != nil {
return ts
}
ts = &timeseries{}
ts.CopyFromShallowTimestamps(tsm.origin)
ts.MetricName.RemoveTag(tsm.labelName)
ts.MetricName.AddTag(tsm.labelName, labelValue)
tsm.m[labelValue] = ts
return ts
}
// Do calculates rollups for the given timestamps and values, appends
// them to dstValues and returns results.
//
@ -176,8 +230,19 @@ const maxSilenceInterval = 5 * 60 * 1000
//
// timestamps must cover time range [rc.Start - rc.Window - maxSilenceInterval ... rc.End + rc.Step].
//
// Cannot be called from concurrent goroutines.
// Do cannot be called from concurrent goroutines.
func (rc *rollupConfig) Do(dstValues []float64, values []float64, timestamps []int64) []float64 {
return rc.doInternal(dstValues, nil, values, timestamps)
}
// DoTimeseriesMap calculates rollups for the given timestamps and values and puts them to tsm.
func (rc *rollupConfig) DoTimeseriesMap(tsm *timeseriesMap, values []float64, timestamps []int64) {
ts := getTimeseries()
ts.Values = rc.doInternal(ts.Values[:0], tsm, values, timestamps)
putTimeseries(ts)
}
func (rc *rollupConfig) doInternal(dstValues []float64, tsm *timeseriesMap, values []float64, timestamps []int64) []float64 {
// Sanity checks.
if rc.Step <= 0 {
logger.Panicf("BUG: Step must be bigger than 0; got %d", rc.Step)
@ -212,6 +277,7 @@ func (rc *rollupConfig) Do(dstValues []float64, values []float64, timestamps []i
rfa.step = rc.Step
rfa.scrapeInterval = scrapeInterval
rfa.realPrevValue = nan
rfa.tsm = tsm
i := 0
j := 0
@ -612,6 +678,21 @@ func newRollupQuantile(args []interface{}) (rollupFunc, error) {
return rf, nil
}
func rollupHistogram(rfa *rollupFuncArg) float64 {
values := rfa.values
tsm := rfa.tsm
tsm.h.Reset()
for _, v := range values {
tsm.h.Update(v)
}
idx := rfa.idx
tsm.h.VisitNonZeroBuckets(func(vmrange string, count uint64) {
ts := tsm.GetOrCreateTimeseries(vmrange)
ts.Values[idx] = float64(count)
})
return nan
}
func rollupAvg(rfa *rollupFuncArg) float64 {
// Do not use `Rapid calculation methods` at https://en.wikipedia.org/wiki/Standard_deviation,
// since it is slower and has no significant benefits in precision.

View File

@ -79,6 +79,9 @@ This functionality can be tried at [an editable Grafana dashboard](http://play-g
- `increases_over_time(m[d])` and `decreases_over_time(m[d])` - returns the number of `m` increases or decreases over the given duration `d`.
- `prometheus_buckets(q)` - converts [VictoriaMetrics histogram](https://godoc.org/github.com/VictoriaMetrics/metrics#Histogram) buckets to Prometheus buckets with `le` labels.
- `histogram(q)` - calculates aggregate histogram over `q` time series for each point on the graph. See [this article](https://medium.com/@valyala/improving-histogram-usability-for-prometheus-and-grafana-bc7e5df0e350) for more details.
- `histogram_over_time(m[d])` - calculates [VictoriaMetrics histogram](https://godoc.org/github.com/VictoriaMetrics/metrics#Histogram) for `m` over `d`.
For example, the following query calculates median temperature by country over the last 24 hours:
`histogram_quantile(0.5, sum(histogram_over_time(temperature[24h])) by (vmbucket, country))`.
- `topk_*` and `bottomk_*` aggregate functions, which return up to K time series. Note that the standard `topk` function may return more than K time series -
see [this article](https://www.robustperception.io/graph-top-n-time-series-in-grafana) for details.
- `topk_min(k, q)` - returns top K time series with the max minimums on the given time range

View File

@ -43,6 +43,7 @@ var rollupFuncs = map[string]bool{
"scrape_interval": true,
"share_le_over_time": true,
"share_gt_over_time": true,
"histogram_over_time": true,
"rollup": true,
"rollup_rate": true,
"rollup_deriv": true,