app/{vlselect,vmselect}: run make vmui-update vmui-logs-update

This commit is contained in:
Aliaksandr Valialkin 2024-04-18 17:33:03 +02:00
parent 453988e244
commit d3635aae7f
No known key found for this signature in database
GPG Key ID: 52C003EE2BCDB9EB
16 changed files with 328 additions and 328 deletions

View File

@ -1,13 +1,13 @@
{ {
"files": { "files": {
"main.css": "./static/css/main.bc07cc78.css", "main.css": "./static/css/main.bc07cc78.css",
"main.js": "./static/js/main.034044a7.js", "main.js": "./static/js/main.8e7757ef.js",
"static/js/685.bebe1265.chunk.js": "./static/js/685.bebe1265.chunk.js", "static/js/685.bebe1265.chunk.js": "./static/js/685.bebe1265.chunk.js",
"static/media/MetricsQL.md": "./static/media/MetricsQL.10add6e7bdf0f1d98cf7.md", "static/media/MetricsQL.md": "./static/media/MetricsQL.da86c2db4f0b05e286b0.md",
"index.html": "./index.html" "index.html": "./index.html"
}, },
"entrypoints": [ "entrypoints": [
"static/css/main.bc07cc78.css", "static/css/main.bc07cc78.css",
"static/js/main.034044a7.js" "static/js/main.8e7757ef.js"
] ]
} }

View File

@ -1 +1 @@
<!doctype html><html lang="en"><head><meta charset="utf-8"/><link rel="icon" href="./favicon.ico"/><meta name="viewport" content="width=device-width,initial-scale=1,maximum-scale=5"/><meta name="theme-color" content="#000000"/><meta name="description" content="UI for VictoriaMetrics"/><link rel="apple-touch-icon" href="./apple-touch-icon.png"/><link rel="icon" type="image/png" sizes="32x32" href="./favicon-32x32.png"><link rel="manifest" href="./manifest.json"/><title>VM UI</title><script src="./dashboards/index.js" type="module"></script><meta name="twitter:card" content="summary_large_image"><meta name="twitter:image" content="./preview.jpg"><meta name="twitter:title" content="UI for VictoriaMetrics"><meta name="twitter:description" content="Explore and troubleshoot your VictoriaMetrics data"><meta name="twitter:site" content="@VictoriaMetrics"><meta property="og:title" content="Metric explorer for VictoriaMetrics"><meta property="og:description" content="Explore and troubleshoot your VictoriaMetrics data"><meta property="og:image" content="./preview.jpg"><meta property="og:type" content="website"><script defer="defer" src="./static/js/main.034044a7.js"></script><link href="./static/css/main.bc07cc78.css" rel="stylesheet"></head><body><noscript>You need to enable JavaScript to run this app.</noscript><div id="root"></div></body></html> <!doctype html><html lang="en"><head><meta charset="utf-8"/><link rel="icon" href="./favicon.ico"/><meta name="viewport" content="width=device-width,initial-scale=1,maximum-scale=5"/><meta name="theme-color" content="#000000"/><meta name="description" content="UI for VictoriaMetrics"/><link rel="apple-touch-icon" href="./apple-touch-icon.png"/><link rel="icon" type="image/png" sizes="32x32" href="./favicon-32x32.png"><link rel="manifest" href="./manifest.json"/><title>VM UI</title><script src="./dashboards/index.js" type="module"></script><meta name="twitter:card" content="summary_large_image"><meta name="twitter:image" content="./preview.jpg"><meta name="twitter:title" content="UI for VictoriaMetrics"><meta name="twitter:description" content="Explore and troubleshoot your VictoriaMetrics data"><meta name="twitter:site" content="@VictoriaMetrics"><meta property="og:title" content="Metric explorer for VictoriaMetrics"><meta property="og:description" content="Explore and troubleshoot your VictoriaMetrics data"><meta property="og:image" content="./preview.jpg"><meta property="og:type" content="website"><script defer="defer" src="./static/js/main.8e7757ef.js"></script><link href="./static/css/main.bc07cc78.css" rel="stylesheet"></head><body><noscript>You need to enable JavaScript to run this app.</noscript><div id="root"></div></body></html>

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

View File

@ -22,7 +22,7 @@ However, there are some [intentional differences](https://medium.com/@romanhavro
[Standalone MetricsQL package](https://godoc.org/github.com/VictoriaMetrics/metricsql) can be used for parsing MetricsQL in external apps. [Standalone MetricsQL package](https://godoc.org/github.com/VictoriaMetrics/metricsql) can be used for parsing MetricsQL in external apps.
If you are unfamiliar with PromQL, then it is suggested reading [this tutorial for beginners](https://medium.com/@valyala/promql-tutorial-for-beginners-9ab455142085) If you are unfamiliar with PromQL, then it is suggested reading [this tutorial for beginners](https://medium.com/@valyala/promql-tutorial-for-beginners-9ab455142085)
and introduction into [basic querying via MetricsQL](https://docs.victoriametrics.com/keyConcepts.html#metricsql). and introduction into [basic querying via MetricsQL](https://docs.victoriametrics.com/keyconcepts/#metricsql).
The following functionality is implemented differently in MetricsQL compared to PromQL. This improves user experience: The following functionality is implemented differently in MetricsQL compared to PromQL. This improves user experience:
@ -70,15 +70,15 @@ The list of MetricsQL features on top of PromQL:
VictoriaMetrics can be used as Graphite datasource in Grafana. See [these docs](https://docs.victoriametrics.com/#graphite-api-usage) for details. VictoriaMetrics can be used as Graphite datasource in Grafana. See [these docs](https://docs.victoriametrics.com/#graphite-api-usage) for details.
See also [label_graphite_group](#label_graphite_group) function, which can be used for extracting the given groups from Graphite metric name. See also [label_graphite_group](#label_graphite_group) function, which can be used for extracting the given groups from Graphite metric name.
* Lookbehind window in square brackets for [rollup functions](#rollup-functions) may be omitted. VictoriaMetrics automatically selects the lookbehind window * Lookbehind window in square brackets for [rollup functions](#rollup-functions) may be omitted. VictoriaMetrics automatically selects the lookbehind window
depending on the `step` query arg passed to [/api/v1/query_range](https://docs.victoriametrics.com/keyConcepts.html#range-query) depending on the `step` query arg passed to [/api/v1/query_range](https://docs.victoriametrics.com/keyconcepts/#range-query)
and the real interval between [raw samples](https://docs.victoriametrics.com/keyconcepts/#raw-samples) (aka `scrape_interval`). and the real interval between [raw samples](https://docs.victoriametrics.com/keyconcepts/#raw-samples) (aka `scrape_interval`).
For instance, the following query is valid in VictoriaMetrics: `rate(node_network_receive_bytes_total)`. For instance, the following query is valid in VictoriaMetrics: `rate(node_network_receive_bytes_total)`.
It is roughly equivalent to `rate(node_network_receive_bytes_total[$__interval])` when used in Grafana. It is roughly equivalent to `rate(node_network_receive_bytes_total[$__interval])` when used in Grafana.
The difference is documented in [rate() docs](#rate). The difference is documented in [rate() docs](#rate).
* Numeric values can contain `_` delimiters for better readability. For example, `1_234_567_890` can be used in queries instead of `1234567890`. * Numeric values can contain `_` delimiters for better readability. For example, `1_234_567_890` can be used in queries instead of `1234567890`.
* [Series selectors](https://docs.victoriametrics.com/keyConcepts.html#filtering) accept multiple `or` filters. For example, `{env="prod",job="a" or env="dev",job="b"}` * [Series selectors](https://docs.victoriametrics.com/keyconcepts/#filtering) accept multiple `or` filters. For example, `{env="prod",job="a" or env="dev",job="b"}`
selects series with `{env="prod",job="a"}` or `{env="dev",job="b"}` labels. selects series with `{env="prod",job="a"}` or `{env="dev",job="b"}` labels.
See [these docs](https://docs.victoriametrics.com/keyConcepts.html#filtering-by-multiple-or-filters) for details. See [these docs](https://docs.victoriametrics.com/keyconcepts/#filtering-by-multiple-or-filters) for details.
* Support for `group_left(*)` and `group_right(*)` for copying all the labels from time series on the `one` side * Support for `group_left(*)` and `group_right(*)` for copying all the labels from time series on the `one` side
of [many-to-one operations](https://prometheus.io/docs/prometheus/latest/querying/operators/#many-to-one-and-one-to-many-vector-matches). of [many-to-one operations](https://prometheus.io/docs/prometheus/latest/querying/operators/#many-to-one-and-one-to-many-vector-matches).
The copied label names may clash with the existing label names, so MetricsQL provides an ability to add prefix to the copied metric names The copied label names may clash with the existing label names, so MetricsQL provides an ability to add prefix to the copied metric names
@ -153,26 +153,26 @@ MetricsQL provides the following functions:
### Rollup functions ### Rollup functions
**Rollup functions** (aka range functions or window functions) calculate rollups over **raw samples** **Rollup functions** (aka range functions or window functions) calculate rollups over **raw samples**
on the given lookbehind window for the [selected time series](https://docs.victoriametrics.com/keyConcepts.html#filtering). on the given lookbehind window for the [selected time series](https://docs.victoriametrics.com/keyconcepts/#filtering).
For example, `avg_over_time(temperature[24h])` calculates the average temperature over raw samples for the last 24 hours. For example, `avg_over_time(temperature[24h])` calculates the average temperature over raw samples for the last 24 hours.
Additional details: Additional details:
* If rollup functions are used for building graphs in Grafana, then the rollup is calculated independently per each point on the graph. * If rollup functions are used for building graphs in Grafana, then the rollup is calculated independently per each point on the graph.
For example, every point for `avg_over_time(temperature[24h])` graph shows the average temperature for the last 24 hours ending at this point. For example, every point for `avg_over_time(temperature[24h])` graph shows the average temperature for the last 24 hours ending at this point.
The interval between points is set as `step` query arg passed by Grafana to [/api/v1/query_range](https://docs.victoriametrics.com/keyConcepts.html#range-query). The interval between points is set as `step` query arg passed by Grafana to [/api/v1/query_range](https://docs.victoriametrics.com/keyconcepts/#range-query).
* If the given [series selector](https://docs.victoriametrics.com/keyConcepts.html#filtering) returns multiple time series, * If the given [series selector](https://docs.victoriametrics.com/keyconcepts/#filtering) returns multiple time series,
then rollups are calculated individually per each returned series. then rollups are calculated individually per each returned series.
* If lookbehind window in square brackets is missing, then it is automatically set to the following value: * If lookbehind window in square brackets is missing, then it is automatically set to the following value:
- To `step` value passed to [/api/v1/query_range](https://docs.victoriametrics.com/keyConcepts.html#range-query) or [/api/v1/query](https://docs.victoriametrics.com/keyconcepts/#instant-query) - To `step` value passed to [/api/v1/query_range](https://docs.victoriametrics.com/keyconcepts/#range-query) or [/api/v1/query](https://docs.victoriametrics.com/keyconcepts/#instant-query)
for all the [rollup functions](#rollup-functions) except of [default_rollup](#default_rollup) and [rate](#rate). This value is known as `$__interval` in Grafana or `1i` in MetricsQL. for all the [rollup functions](#rollup-functions) except of [default_rollup](#default_rollup) and [rate](#rate). This value is known as `$__interval` in Grafana or `1i` in MetricsQL.
For example, `avg_over_time(temperature)` is automatically transformed to `avg_over_time(temperature[1i])`. For example, `avg_over_time(temperature)` is automatically transformed to `avg_over_time(temperature[1i])`.
- To the `max(step, scrape_interval)`, where `scrape_interval` is the interval between [raw samples](https://docs.victoriametrics.com/keyconcepts/#raw-samples) - To the `max(step, scrape_interval)`, where `scrape_interval` is the interval between [raw samples](https://docs.victoriametrics.com/keyconcepts/#raw-samples)
for [default_rollup](#default_rollup) and [rate](#rate) functions. This allows avoiding unexpected gaps on the graph when `step` is smaller than `scrape_interval`. for [default_rollup](#default_rollup) and [rate](#rate) functions. This allows avoiding unexpected gaps on the graph when `step` is smaller than `scrape_interval`.
* Every [series selector](https://docs.victoriametrics.com/keyConcepts.html#filtering) in MetricsQL must be wrapped into a rollup function. * Every [series selector](https://docs.victoriametrics.com/keyconcepts/#filtering) in MetricsQL must be wrapped into a rollup function.
Otherwise, it is automatically wrapped into [default_rollup](#default_rollup). For example, `foo{bar="baz"}` Otherwise, it is automatically wrapped into [default_rollup](#default_rollup). For example, `foo{bar="baz"}`
is automatically converted to `default_rollup(foo{bar="baz"})` before performing the calculations. is automatically converted to `default_rollup(foo{bar="baz"})` before performing the calculations.
* If something other than [series selector](https://docs.victoriametrics.com/keyConcepts.html#filtering) is passed to rollup function, * If something other than [series selector](https://docs.victoriametrics.com/keyconcepts/#filtering) is passed to rollup function,
then the inner arg is automatically converted to a [subquery](#subqueries). then the inner arg is automatically converted to a [subquery](#subqueries).
* All the rollup functions accept optional `keep_metric_names` modifier. If it is set, then the function keeps metric names in results. * All the rollup functions accept optional `keep_metric_names` modifier. If it is set, then the function keeps metric names in results.
See [these docs](#keep_metric_names). See [these docs](#keep_metric_names).
@ -195,7 +195,7 @@ See also [present_over_time](#present_over_time).
`aggr_over_time(("rollup_func1", "rollup_func2", ...), series_selector[d])` is a [rollup function](#rollup-functions), `aggr_over_time(("rollup_func1", "rollup_func2", ...), series_selector[d])` is a [rollup function](#rollup-functions),
which calculates all the listed `rollup_func*` for raw samples on the given lookbehind window `d`. which calculates all the listed `rollup_func*` for raw samples on the given lookbehind window `d`.
The calculations are performed individually per each time series returned The calculations are performed individually per each time series returned
from the given [series_selector](https://docs.victoriametrics.com/keyConcepts.html#filtering). from the given [series_selector](https://docs.victoriametrics.com/keyconcepts/#filtering).
`rollup_func*` can contain any rollup function. For instance, `aggr_over_time(("min_over_time", "max_over_time", "rate"), m[d])` `rollup_func*` can contain any rollup function. For instance, `aggr_over_time(("min_over_time", "max_over_time", "rate"), m[d])`
would calculate [min_over_time](#min_over_time), [max_over_time](#max_over_time) and [rate](#rate) for `m[d]`. would calculate [min_over_time](#min_over_time), [max_over_time](#max_over_time) and [rate](#rate) for `m[d]`.
@ -204,7 +204,7 @@ would calculate [min_over_time](#min_over_time), [max_over_time](#max_over_time)
`ascent_over_time(series_selector[d])` is a [rollup function](#rollup-functions), which calculates `ascent_over_time(series_selector[d])` is a [rollup function](#rollup-functions), which calculates
ascent of raw sample values on the given lookbehind window `d`. The calculations are performed individually ascent of raw sample values on the given lookbehind window `d`. The calculations are performed individually
per each time series returned from the given [series_selector](https://docs.victoriametrics.com/keyConcepts.html#filtering). per each time series returned from the given [series_selector](https://docs.victoriametrics.com/keyconcepts/#filtering).
This function is useful for tracking height gains in GPS tracking. Metric names are stripped from the resulting rollups. This function is useful for tracking height gains in GPS tracking. Metric names are stripped from the resulting rollups.
@ -216,7 +216,7 @@ See also [descent_over_time](#descent_over_time).
`avg_over_time(series_selector[d])` is a [rollup function](#rollup-functions), which calculates the average value `avg_over_time(series_selector[d])` is a [rollup function](#rollup-functions), which calculates the average value
over raw samples on the given lookbehind window `d` per each time series returned over raw samples on the given lookbehind window `d` per each time series returned
from the given [series_selector](https://docs.victoriametrics.com/keyConcepts.html#filtering). from the given [series_selector](https://docs.victoriametrics.com/keyconcepts/#filtering).
This function is supported by PromQL. This function is supported by PromQL.
@ -226,7 +226,7 @@ See also [median_over_time](#median_over_time).
`changes(series_selector[d])` is a [rollup function](#rollup-functions), which calculates the number of times `changes(series_selector[d])` is a [rollup function](#rollup-functions), which calculates the number of times
the raw samples changed on the given lookbehind window `d` per each time series returned the raw samples changed on the given lookbehind window `d` per each time series returned
from the given [series_selector](https://docs.victoriametrics.com/keyConcepts.html#filtering). from the given [series_selector](https://docs.victoriametrics.com/keyconcepts/#filtering).
Unlike `changes()` in Prometheus it takes into account the change from the last sample before the given lookbehind window `d`. Unlike `changes()` in Prometheus it takes into account the change from the last sample before the given lookbehind window `d`.
See [this article](https://medium.com/@romanhavronenko/victoriametrics-promql-compliance-d4318203f51e) for details. See [this article](https://medium.com/@romanhavronenko/victoriametrics-promql-compliance-d4318203f51e) for details.
@ -241,7 +241,7 @@ See also [changes_prometheus](#changes_prometheus).
`changes_prometheus(series_selector[d])` is a [rollup function](#rollup-functions), which calculates the number of times `changes_prometheus(series_selector[d])` is a [rollup function](#rollup-functions), which calculates the number of times
the raw samples changed on the given lookbehind window `d` per each time series returned the raw samples changed on the given lookbehind window `d` per each time series returned
from the given [series_selector](https://docs.victoriametrics.com/keyConcepts.html#filtering). from the given [series_selector](https://docs.victoriametrics.com/keyconcepts/#filtering).
It doesn't take into account the change from the last sample before the given lookbehind window `d` in the same way as Prometheus does. It doesn't take into account the change from the last sample before the given lookbehind window `d` in the same way as Prometheus does.
See [this article](https://medium.com/@romanhavronenko/victoriametrics-promql-compliance-d4318203f51e) for details. See [this article](https://medium.com/@romanhavronenko/victoriametrics-promql-compliance-d4318203f51e) for details.
@ -256,7 +256,7 @@ See also [changes](#changes).
`count_eq_over_time(series_selector[d], eq)` is a [rollup function](#rollup-functions), which calculates the number of raw samples `count_eq_over_time(series_selector[d], eq)` is a [rollup function](#rollup-functions), which calculates the number of raw samples
on the given lookbehind window `d`, which are equal to `eq`. It is calculated independently per each time series returned on the given lookbehind window `d`, which are equal to `eq`. It is calculated independently per each time series returned
from the given [series_selector](https://docs.victoriametrics.com/keyConcepts.html#filtering). from the given [series_selector](https://docs.victoriametrics.com/keyconcepts/#filtering).
Metric names are stripped from the resulting rollups. Add [keep_metric_names](#keep_metric_names) modifier in order to keep metric names. Metric names are stripped from the resulting rollups. Add [keep_metric_names](#keep_metric_names) modifier in order to keep metric names.
@ -266,7 +266,7 @@ See also [count_over_time](#count_over_time), [share_eq_over_time](#share_eq_ove
`count_gt_over_time(series_selector[d], gt)` is a [rollup function](#rollup-functions), which calculates the number of raw samples `count_gt_over_time(series_selector[d], gt)` is a [rollup function](#rollup-functions), which calculates the number of raw samples
on the given lookbehind window `d`, which are bigger than `gt`. It is calculated independently per each time series returned on the given lookbehind window `d`, which are bigger than `gt`. It is calculated independently per each time series returned
from the given [series_selector](https://docs.victoriametrics.com/keyConcepts.html#filtering). from the given [series_selector](https://docs.victoriametrics.com/keyconcepts/#filtering).
Metric names are stripped from the resulting rollups. Add [keep_metric_names](#keep_metric_names) modifier in order to keep metric names. Metric names are stripped from the resulting rollups. Add [keep_metric_names](#keep_metric_names) modifier in order to keep metric names.
@ -276,7 +276,7 @@ See also [count_over_time](#count_over_time) and [share_gt_over_time](#share_gt_
`count_le_over_time(series_selector[d], le)` is a [rollup function](#rollup-functions), which calculates the number of raw samples `count_le_over_time(series_selector[d], le)` is a [rollup function](#rollup-functions), which calculates the number of raw samples
on the given lookbehind window `d`, which don't exceed `le`. It is calculated independently per each time series returned on the given lookbehind window `d`, which don't exceed `le`. It is calculated independently per each time series returned
from the given [series_selector](https://docs.victoriametrics.com/keyConcepts.html#filtering). from the given [series_selector](https://docs.victoriametrics.com/keyconcepts/#filtering).
Metric names are stripped from the resulting rollups. Add [keep_metric_names](#keep_metric_names) modifier in order to keep metric names. Metric names are stripped from the resulting rollups. Add [keep_metric_names](#keep_metric_names) modifier in order to keep metric names.
@ -286,7 +286,7 @@ See also [count_over_time](#count_over_time) and [share_le_over_time](#share_le_
`count_ne_over_time(series_selector[d], ne)` is a [rollup function](#rollup-functions), which calculates the number of raw samples `count_ne_over_time(series_selector[d], ne)` is a [rollup function](#rollup-functions), which calculates the number of raw samples
on the given lookbehind window `d`, which aren't equal to `ne`. It is calculated independently per each time series returned on the given lookbehind window `d`, which aren't equal to `ne`. It is calculated independently per each time series returned
from the given [series_selector](https://docs.victoriametrics.com/keyConcepts.html#filtering). from the given [series_selector](https://docs.victoriametrics.com/keyconcepts/#filtering).
Metric names are stripped from the resulting rollups. Add [keep_metric_names](#keep_metric_names) modifier in order to keep metric names. Metric names are stripped from the resulting rollups. Add [keep_metric_names](#keep_metric_names) modifier in order to keep metric names.
@ -295,7 +295,7 @@ See also [count_over_time](#count_over_time).
#### count_over_time #### count_over_time
`count_over_time(series_selector[d])` is a [rollup function](#rollup-functions), which calculates the number of raw samples `count_over_time(series_selector[d])` is a [rollup function](#rollup-functions), which calculates the number of raw samples
on the given lookbehind window `d` per each time series returned from the given [series_selector](https://docs.victoriametrics.com/keyConcepts.html#filtering). on the given lookbehind window `d` per each time series returned from the given [series_selector](https://docs.victoriametrics.com/keyconcepts/#filtering).
Metric names are stripped from the resulting rollups. Add [keep_metric_names](#keep_metric_names) modifier in order to keep metric names. Metric names are stripped from the resulting rollups. Add [keep_metric_names](#keep_metric_names) modifier in order to keep metric names.
@ -307,7 +307,7 @@ See also [count_le_over_time](#count_le_over_time), [count_gt_over_time](#count_
`count_values_over_time("label", series_selector[d])` is a [rollup function](#rollup-functions), which counts the number of raw samples `count_values_over_time("label", series_selector[d])` is a [rollup function](#rollup-functions), which counts the number of raw samples
with the same value over the given lookbehind window and stores the counts in a time series with an additional `label`, which contains each initial value. with the same value over the given lookbehind window and stores the counts in a time series with an additional `label`, which contains each initial value.
The results are calculated independently per each time series returned from the given [series_selector](https://docs.victoriametrics.com/keyConcepts.html#filtering). The results are calculated independently per each time series returned from the given [series_selector](https://docs.victoriametrics.com/keyconcepts/#filtering).
Metric names are stripped from the resulting rollups. Add [keep_metric_names](#keep_metric_names) modifier in order to keep metric names. Metric names are stripped from the resulting rollups. Add [keep_metric_names](#keep_metric_names) modifier in order to keep metric names.
@ -316,7 +316,7 @@ See also [count_eq_over_time](#count_eq_over_time), [count_values](#count_values
#### decreases_over_time #### decreases_over_time
`decreases_over_time(series_selector[d])` is a [rollup function](#rollup-functions), which calculates the number of raw sample value decreases `decreases_over_time(series_selector[d])` is a [rollup function](#rollup-functions), which calculates the number of raw sample value decreases
over the given lookbehind window `d` per each time series returned from the given [series_selector](https://docs.victoriametrics.com/keyConcepts.html#filtering). over the given lookbehind window `d` per each time series returned from the given [series_selector](https://docs.victoriametrics.com/keyconcepts/#filtering).
Metric names are stripped from the resulting rollups. Add [keep_metric_names](#keep_metric_names) modifier in order to keep metric names. Metric names are stripped from the resulting rollups. Add [keep_metric_names](#keep_metric_names) modifier in order to keep metric names.
@ -325,7 +325,7 @@ See also [increases_over_time](#increases_over_time).
#### default_rollup #### default_rollup
`default_rollup(series_selector[d])` is a [rollup function](#rollup-functions), which returns the last raw sample value on the given lookbehind window `d` `default_rollup(series_selector[d])` is a [rollup function](#rollup-functions), which returns the last raw sample value on the given lookbehind window `d`
per each time series returned from the given [series_selector](https://docs.victoriametrics.com/keyConcepts.html#filtering). per each time series returned from the given [series_selector](https://docs.victoriametrics.com/keyconcepts/#filtering).
If the lookbehind window is skipped in square brackets, then it is automatically calculated as `max(step, scrape_interval)`, where `step` is the query arg value If the lookbehind window is skipped in square brackets, then it is automatically calculated as `max(step, scrape_interval)`, where `step` is the query arg value
passed to [/api/v1/query_range](https://docs.victoriametrics.com/keyconcepts/#range-query) or [/api/v1/query](https://docs.victoriametrics.com/keyconcepts/#instant-query), passed to [/api/v1/query_range](https://docs.victoriametrics.com/keyconcepts/#range-query) or [/api/v1/query](https://docs.victoriametrics.com/keyconcepts/#instant-query),
@ -336,7 +336,7 @@ This allows avoiding unexpected gaps on the graph when `step` is smaller than th
`delta(series_selector[d])` is a [rollup function](#rollup-functions), which calculates the difference between `delta(series_selector[d])` is a [rollup function](#rollup-functions), which calculates the difference between
the last sample before the given lookbehind window `d` and the last sample at the given lookbehind window `d` the last sample before the given lookbehind window `d` and the last sample at the given lookbehind window `d`
per each time series returned from the given [series_selector](https://docs.victoriametrics.com/keyConcepts.html#filtering). per each time series returned from the given [series_selector](https://docs.victoriametrics.com/keyconcepts/#filtering).
The behaviour of `delta()` function in MetricsQL is slightly different to the behaviour of `delta()` function in Prometheus. The behaviour of `delta()` function in MetricsQL is slightly different to the behaviour of `delta()` function in Prometheus.
See [this article](https://medium.com/@romanhavronenko/victoriametrics-promql-compliance-d4318203f51e) for details. See [this article](https://medium.com/@romanhavronenko/victoriametrics-promql-compliance-d4318203f51e) for details.
@ -351,7 +351,7 @@ See also [increase](#increase) and [delta_prometheus](#delta_prometheus).
`delta_prometheus(series_selector[d])` is a [rollup function](#rollup-functions), which calculates the difference between `delta_prometheus(series_selector[d])` is a [rollup function](#rollup-functions), which calculates the difference between
the first and the last samples at the given lookbehind window `d` per each time series returned the first and the last samples at the given lookbehind window `d` per each time series returned
from the given [series_selector](https://docs.victoriametrics.com/keyConcepts.html#filtering). from the given [series_selector](https://docs.victoriametrics.com/keyconcepts/#filtering).
The behaviour of `delta_prometheus()` is close to the behaviour of `delta()` function in Prometheus. The behaviour of `delta_prometheus()` is close to the behaviour of `delta()` function in Prometheus.
See [this article](https://medium.com/@romanhavronenko/victoriametrics-promql-compliance-d4318203f51e) for details. See [this article](https://medium.com/@romanhavronenko/victoriametrics-promql-compliance-d4318203f51e) for details.
@ -363,7 +363,7 @@ See also [delta](#delta).
#### deriv #### deriv
`deriv(series_selector[d])` is a [rollup function](#rollup-functions), which calculates per-second derivative over the given lookbehind window `d` `deriv(series_selector[d])` is a [rollup function](#rollup-functions), which calculates per-second derivative over the given lookbehind window `d`
per each time series returned from the given [series_selector](https://docs.victoriametrics.com/keyConcepts.html#filtering). per each time series returned from the given [series_selector](https://docs.victoriametrics.com/keyconcepts/#filtering).
The derivative is calculated using linear regression. The derivative is calculated using linear regression.
Metric names are stripped from the resulting rollups. Add [keep_metric_names](#keep_metric_names) modifier in order to keep metric names. Metric names are stripped from the resulting rollups. Add [keep_metric_names](#keep_metric_names) modifier in order to keep metric names.
@ -376,7 +376,7 @@ See also [deriv_fast](#deriv_fast) and [ideriv](#ideriv).
`deriv_fast(series_selector[d])` is a [rollup function](#rollup-functions), which calculates per-second derivative `deriv_fast(series_selector[d])` is a [rollup function](#rollup-functions), which calculates per-second derivative
using the first and the last raw samples on the given lookbehind window `d` per each time series returned using the first and the last raw samples on the given lookbehind window `d` per each time series returned
from the given [series_selector](https://docs.victoriametrics.com/keyConcepts.html#filtering). from the given [series_selector](https://docs.victoriametrics.com/keyconcepts/#filtering).
Metric names are stripped from the resulting rollups. Add [keep_metric_names](#keep_metric_names) modifier in order to keep metric names. Metric names are stripped from the resulting rollups. Add [keep_metric_names](#keep_metric_names) modifier in order to keep metric names.
@ -386,7 +386,7 @@ See also [deriv](#deriv) and [ideriv](#ideriv).
`descent_over_time(series_selector[d])` is a [rollup function](#rollup-functions), which calculates descent of raw sample values `descent_over_time(series_selector[d])` is a [rollup function](#rollup-functions), which calculates descent of raw sample values
on the given lookbehind window `d`. The calculations are performed individually per each time series returned on the given lookbehind window `d`. The calculations are performed individually per each time series returned
from the given [series_selector](https://docs.victoriametrics.com/keyConcepts.html#filtering). from the given [series_selector](https://docs.victoriametrics.com/keyconcepts/#filtering).
This function is useful for tracking height loss in GPS tracking. This function is useful for tracking height loss in GPS tracking.
@ -397,7 +397,7 @@ See also [ascent_over_time](#ascent_over_time).
#### distinct_over_time #### distinct_over_time
`distinct_over_time(series_selector[d])` is a [rollup function](#rollup-functions), which returns the number of distinct raw sample values `distinct_over_time(series_selector[d])` is a [rollup function](#rollup-functions), which returns the number of distinct raw sample values
on the given lookbehind window `d` per each time series returned from the given [series_selector](https://docs.victoriametrics.com/keyConcepts.html#filtering). on the given lookbehind window `d` per each time series returned from the given [series_selector](https://docs.victoriametrics.com/keyconcepts/#filtering).
Metric names are stripped from the resulting rollups. Add [keep_metric_names](#keep_metric_names) modifier in order to keep metric names. Metric names are stripped from the resulting rollups. Add [keep_metric_names](#keep_metric_names) modifier in order to keep metric names.
@ -406,7 +406,7 @@ See also [count_values_over_time](#count_values_over_time).
#### duration_over_time #### duration_over_time
`duration_over_time(series_selector[d], max_interval)` is a [rollup function](#rollup-functions), which returns the duration in seconds `duration_over_time(series_selector[d], max_interval)` is a [rollup function](#rollup-functions), which returns the duration in seconds
when time series returned from the given [series_selector](https://docs.victoriametrics.com/keyConcepts.html#filtering) were present when time series returned from the given [series_selector](https://docs.victoriametrics.com/keyconcepts/#filtering) were present
over the given lookbehind window `d`. It is expected that intervals between adjacent samples per each series don't exceed the `max_interval`. over the given lookbehind window `d`. It is expected that intervals between adjacent samples per each series don't exceed the `max_interval`.
Otherwise, such intervals are considered as gaps and aren't counted. Otherwise, such intervals are considered as gaps and aren't counted.
@ -417,7 +417,7 @@ See also [lifetime](#lifetime) and [lag](#lag).
#### first_over_time #### first_over_time
`first_over_time(series_selector[d])` is a [rollup function](#rollup-functions), which returns the first raw sample value `first_over_time(series_selector[d])` is a [rollup function](#rollup-functions), which returns the first raw sample value
on the given lookbehind window `d` per each time series returned from the given [series_selector](https://docs.victoriametrics.com/keyConcepts.html#filtering). on the given lookbehind window `d` per each time series returned from the given [series_selector](https://docs.victoriametrics.com/keyconcepts/#filtering).
See also [last_over_time](#last_over_time) and [tfirst_over_time](#tfirst_over_time). See also [last_over_time](#last_over_time) and [tfirst_over_time](#tfirst_over_time).
@ -425,7 +425,7 @@ See also [last_over_time](#last_over_time) and [tfirst_over_time](#tfirst_over_t
`geomean_over_time(series_selector[d])` is a [rollup function](#rollup-functions), which calculates [geometric mean](https://en.wikipedia.org/wiki/Geometric_mean) `geomean_over_time(series_selector[d])` is a [rollup function](#rollup-functions), which calculates [geometric mean](https://en.wikipedia.org/wiki/Geometric_mean)
over raw samples on the given lookbehind window `d` per each time series returned over raw samples on the given lookbehind window `d` per each time series returned
from the given [series_selector](https://docs.victoriametrics.com/keyConcepts.html#filtering). from the given [series_selector](https://docs.victoriametrics.com/keyconcepts/#filtering).
Metric names are stripped from the resulting rollups. Add [keep_metric_names](#keep_metric_names) modifier in order to keep metric names. Metric names are stripped from the resulting rollups. Add [keep_metric_names](#keep_metric_names) modifier in order to keep metric names.
@ -433,9 +433,9 @@ Metric names are stripped from the resulting rollups. Add [keep_metric_names](#k
`histogram_over_time(series_selector[d])` is a [rollup function](#rollup-functions), which calculates `histogram_over_time(series_selector[d])` is a [rollup function](#rollup-functions), which calculates
[VictoriaMetrics histogram](https://godoc.org/github.com/VictoriaMetrics/metrics#Histogram) over raw samples on the given lookbehind window `d`. [VictoriaMetrics histogram](https://godoc.org/github.com/VictoriaMetrics/metrics#Histogram) over raw samples on the given lookbehind window `d`.
It is calculated individually per each time series returned from the given [series_selector](https://docs.victoriametrics.com/keyConcepts.html#filtering). It is calculated individually per each time series returned from the given [series_selector](https://docs.victoriametrics.com/keyconcepts/#filtering).
The resulting histograms are useful to pass to [histogram_quantile](#histogram_quantile) for calculating quantiles The resulting histograms are useful to pass to [histogram_quantile](#histogram_quantile) for calculating quantiles
over multiple [gauges](https://docs.victoriametrics.com/keyConcepts.html#gauge). over multiple [gauges](https://docs.victoriametrics.com/keyconcepts/#gauge).
For example, the following query calculates median temperature by country over the last 24 hours: For example, the following query calculates median temperature by country over the last 24 hours:
`histogram_quantile(0.5, sum(histogram_over_time(temperature[24h])) by (vmrange,country))`. `histogram_quantile(0.5, sum(histogram_over_time(temperature[24h])) by (vmrange,country))`.
@ -459,8 +459,8 @@ See also [hoeffding_bound_lower](#hoeffding_bound_lower).
`holt_winters(series_selector[d], sf, tf)` is a [rollup function](#rollup-functions), which calculates Holt-Winters value `holt_winters(series_selector[d], sf, tf)` is a [rollup function](#rollup-functions), which calculates Holt-Winters value
(aka [double exponential smoothing](https://en.wikipedia.org/wiki/Exponential_smoothing#Double_exponential_smoothing)) for raw samples (aka [double exponential smoothing](https://en.wikipedia.org/wiki/Exponential_smoothing#Double_exponential_smoothing)) for raw samples
over the given lookbehind window `d` using the given smoothing factor `sf` and the given trend factor `tf`. over the given lookbehind window `d` using the given smoothing factor `sf` and the given trend factor `tf`.
Both `sf` and `tf` must be in the range `[0...1]`. It is expected that the [series_selector](https://docs.victoriametrics.com/keyConcepts.html#filtering) Both `sf` and `tf` must be in the range `[0...1]`. It is expected that the [series_selector](https://docs.victoriametrics.com/keyconcepts/#filtering)
returns time series of [gauge type](https://docs.victoriametrics.com/keyConcepts.html#gauge). returns time series of [gauge type](https://docs.victoriametrics.com/keyconcepts/#gauge).
This function is supported by PromQL. This function is supported by PromQL.
@ -469,7 +469,7 @@ See also [range_linear_regression](#range_linear_regression).
#### idelta #### idelta
`idelta(series_selector[d])` is a [rollup function](#rollup-functions), which calculates the difference between the last two raw samples `idelta(series_selector[d])` is a [rollup function](#rollup-functions), which calculates the difference between the last two raw samples
on the given lookbehind window `d` per each time series returned from the given [series_selector](https://docs.victoriametrics.com/keyConcepts.html#filtering). on the given lookbehind window `d` per each time series returned from the given [series_selector](https://docs.victoriametrics.com/keyconcepts/#filtering).
Metric names are stripped from the resulting rollups. Add [keep_metric_names](#keep_metric_names) modifier in order to keep metric names. Metric names are stripped from the resulting rollups. Add [keep_metric_names](#keep_metric_names) modifier in order to keep metric names.
@ -481,7 +481,7 @@ See also [delta](#delta).
`ideriv(series_selector[d])` is a [rollup function](#rollup-functions), which calculates the per-second derivative based on the last two raw samples `ideriv(series_selector[d])` is a [rollup function](#rollup-functions), which calculates the per-second derivative based on the last two raw samples
over the given lookbehind window `d`. The derivative is calculated independently per each time series returned over the given lookbehind window `d`. The derivative is calculated independently per each time series returned
from the given [series_selector](https://docs.victoriametrics.com/keyConcepts.html#filtering). from the given [series_selector](https://docs.victoriametrics.com/keyconcepts/#filtering).
Metric names are stripped from the resulting rollups. Add [keep_metric_names](#keep_metric_names) modifier in order to keep metric names. Metric names are stripped from the resulting rollups. Add [keep_metric_names](#keep_metric_names) modifier in order to keep metric names.
@ -490,8 +490,8 @@ See also [deriv](#deriv).
#### increase #### increase
`increase(series_selector[d])` is a [rollup function](#rollup-functions), which calculates the increase over the given lookbehind window `d` `increase(series_selector[d])` is a [rollup function](#rollup-functions), which calculates the increase over the given lookbehind window `d`
per each time series returned from the given [series_selector](https://docs.victoriametrics.com/keyConcepts.html#filtering). per each time series returned from the given [series_selector](https://docs.victoriametrics.com/keyconcepts/#filtering).
It is expected that the `series_selector` returns time series of [counter type](https://docs.victoriametrics.com/keyConcepts.html#counter). It is expected that the `series_selector` returns time series of [counter type](https://docs.victoriametrics.com/keyconcepts/#counter).
Unlike Prometheus, it takes into account the last sample before the given lookbehind window `d` when calculating the result. Unlike Prometheus, it takes into account the last sample before the given lookbehind window `d` when calculating the result.
See [this article](https://medium.com/@romanhavronenko/victoriametrics-promql-compliance-d4318203f51e) for details. See [this article](https://medium.com/@romanhavronenko/victoriametrics-promql-compliance-d4318203f51e) for details.
@ -505,8 +505,8 @@ See also [increase_pure](#increase_pure), [increase_prometheus](#increase_promet
#### increase_prometheus #### increase_prometheus
`increase_prometheus(series_selector[d])` is a [rollup function](#rollup-functions), which calculates the increase `increase_prometheus(series_selector[d])` is a [rollup function](#rollup-functions), which calculates the increase
over the given lookbehind window `d` per each time series returned from the given [series_selector](https://docs.victoriametrics.com/keyConcepts.html#filtering). over the given lookbehind window `d` per each time series returned from the given [series_selector](https://docs.victoriametrics.com/keyconcepts/#filtering).
It is expected that the `series_selector` returns time series of [counter type](https://docs.victoriametrics.com/keyConcepts.html#counter). It is expected that the `series_selector` returns time series of [counter type](https://docs.victoriametrics.com/keyconcepts/#counter).
It doesn't take into account the last sample before the given lookbehind window `d` when calculating the result in the same way as Prometheus does. It doesn't take into account the last sample before the given lookbehind window `d` when calculating the result in the same way as Prometheus does.
See [this article](https://medium.com/@romanhavronenko/victoriametrics-promql-compliance-d4318203f51e) for details. See [this article](https://medium.com/@romanhavronenko/victoriametrics-promql-compliance-d4318203f51e) for details.
@ -517,13 +517,13 @@ See also [increase_pure](#increase_pure) and [increase](#increase).
#### increase_pure #### increase_pure
`increase_pure(series_selector[d])` is a [rollup function](#rollup-functions), which works the same as [increase](#increase) except `increase_pure(series_selector[d])` is a [rollup function](#rollup-functions), which works the same as [increase](#increase) except
of the following corner case - it assumes that [counters](https://docs.victoriametrics.com/keyConcepts.html#counter) always start from 0, of the following corner case - it assumes that [counters](https://docs.victoriametrics.com/keyconcepts/#counter) always start from 0,
while [increase](#increase) ignores the first value in a series if it is too big. while [increase](#increase) ignores the first value in a series if it is too big.
#### increases_over_time #### increases_over_time
`increases_over_time(series_selector[d])` is a [rollup function](#rollup-functions), which calculates the number of raw sample value increases `increases_over_time(series_selector[d])` is a [rollup function](#rollup-functions), which calculates the number of raw sample value increases
over the given lookbehind window `d` per each time series returned from the given [series_selector](https://docs.victoriametrics.com/keyConcepts.html#filtering). over the given lookbehind window `d` per each time series returned from the given [series_selector](https://docs.victoriametrics.com/keyconcepts/#filtering).
Metric names are stripped from the resulting rollups. Add [keep_metric_names](#keep_metric_names) modifier in order to keep metric names. Metric names are stripped from the resulting rollups. Add [keep_metric_names](#keep_metric_names) modifier in order to keep metric names.
@ -532,15 +532,15 @@ See also [decreases_over_time](#decreases_over_time).
#### integrate #### integrate
`integrate(series_selector[d])` is a [rollup function](#rollup-functions), which calculates the integral over raw samples on the given lookbehind window `d` `integrate(series_selector[d])` is a [rollup function](#rollup-functions), which calculates the integral over raw samples on the given lookbehind window `d`
per each time series returned from the given [series_selector](https://docs.victoriametrics.com/keyConcepts.html#filtering). per each time series returned from the given [series_selector](https://docs.victoriametrics.com/keyconcepts/#filtering).
Metric names are stripped from the resulting rollups. Add [keep_metric_names](#keep_metric_names) modifier in order to keep metric names. Metric names are stripped from the resulting rollups. Add [keep_metric_names](#keep_metric_names) modifier in order to keep metric names.
#### irate #### irate
`irate(series_selector[d])` is a [rollup function](#rollup-functions), which calculates the "instant" per-second increase rate over the last two raw samples `irate(series_selector[d])` is a [rollup function](#rollup-functions), which calculates the "instant" per-second increase rate over the last two raw samples
on the given lookbehind window `d` per each time series returned from the given [series_selector](https://docs.victoriametrics.com/keyConcepts.html#filtering). on the given lookbehind window `d` per each time series returned from the given [series_selector](https://docs.victoriametrics.com/keyconcepts/#filtering).
It is expected that the `series_selector` returns time series of [counter type](https://docs.victoriametrics.com/keyConcepts.html#counter). It is expected that the `series_selector` returns time series of [counter type](https://docs.victoriametrics.com/keyconcepts/#counter).
Metric names are stripped from the resulting rollups. Add [keep_metric_names](#keep_metric_names) modifier in order to keep metric names. Metric names are stripped from the resulting rollups. Add [keep_metric_names](#keep_metric_names) modifier in order to keep metric names.
@ -552,7 +552,7 @@ See also [rate](#rate) and [rollup_rate](#rollup_rate).
`lag(series_selector[d])` is a [rollup function](#rollup-functions), which returns the duration in seconds between the last sample `lag(series_selector[d])` is a [rollup function](#rollup-functions), which returns the duration in seconds between the last sample
on the given lookbehind window `d` and the timestamp of the current point. It is calculated independently per each time series returned on the given lookbehind window `d` and the timestamp of the current point. It is calculated independently per each time series returned
from the given [series_selector](https://docs.victoriametrics.com/keyConcepts.html#filtering). from the given [series_selector](https://docs.victoriametrics.com/keyconcepts/#filtering).
Metric names are stripped from the resulting rollups. Add [keep_metric_names](#keep_metric_names) modifier in order to keep metric names. Metric names are stripped from the resulting rollups. Add [keep_metric_names](#keep_metric_names) modifier in order to keep metric names.
@ -561,7 +561,7 @@ See also [lifetime](#lifetime) and [duration_over_time](#duration_over_time).
#### last_over_time #### last_over_time
`last_over_time(series_selector[d])` is a [rollup function](#rollup-functions), which returns the last raw sample value on the given lookbehind window `d` `last_over_time(series_selector[d])` is a [rollup function](#rollup-functions), which returns the last raw sample value on the given lookbehind window `d`
per each time series returned from the given [series_selector](https://docs.victoriametrics.com/keyConcepts.html#filtering). per each time series returned from the given [series_selector](https://docs.victoriametrics.com/keyconcepts/#filtering).
This function is supported by PromQL. This function is supported by PromQL.
@ -570,7 +570,7 @@ See also [first_over_time](#first_over_time) and [tlast_over_time](#tlast_over_t
#### lifetime #### lifetime
`lifetime(series_selector[d])` is a [rollup function](#rollup-functions), which returns the duration in seconds between the last and the first sample `lifetime(series_selector[d])` is a [rollup function](#rollup-functions), which returns the duration in seconds between the last and the first sample
on the given lookbehind window `d` per each time series returned from the given [series_selector](https://docs.victoriametrics.com/keyConcepts.html#filtering). on the given lookbehind window `d` per each time series returned from the given [series_selector](https://docs.victoriametrics.com/keyconcepts/#filtering).
Metric names are stripped from the resulting rollups. Add [keep_metric_names](#keep_metric_names) modifier in order to keep metric names. Metric names are stripped from the resulting rollups. Add [keep_metric_names](#keep_metric_names) modifier in order to keep metric names.
@ -579,14 +579,14 @@ See also [duration_over_time](#duration_over_time) and [lag](#lag).
#### mad_over_time #### mad_over_time
`mad_over_time(series_selector[d])` is a [rollup function](#rollup-functions), which calculates [median absolute deviation](https://en.wikipedia.org/wiki/Median_absolute_deviation) `mad_over_time(series_selector[d])` is a [rollup function](#rollup-functions), which calculates [median absolute deviation](https://en.wikipedia.org/wiki/Median_absolute_deviation)
over raw samples on the given lookbehind window `d` per each time series returned from the given [series_selector](https://docs.victoriametrics.com/keyConcepts.html#filtering). over raw samples on the given lookbehind window `d` per each time series returned from the given [series_selector](https://docs.victoriametrics.com/keyconcepts/#filtering).
See also [mad](#mad), [range_mad](#range_mad) and [outlier_iqr_over_time](#outlier_iqr_over_time). See also [mad](#mad), [range_mad](#range_mad) and [outlier_iqr_over_time](#outlier_iqr_over_time).
#### max_over_time #### max_over_time
`max_over_time(series_selector[d])` is a [rollup function](#rollup-functions), which calculates the maximum value over raw samples `max_over_time(series_selector[d])` is a [rollup function](#rollup-functions), which calculates the maximum value over raw samples
on the given lookbehind window `d` per each time series returned from the given [series_selector](https://docs.victoriametrics.com/keyConcepts.html#filtering). on the given lookbehind window `d` per each time series returned from the given [series_selector](https://docs.victoriametrics.com/keyconcepts/#filtering).
This function is supported by PromQL. This function is supported by PromQL.
@ -596,14 +596,14 @@ See also [tmax_over_time](#tmax_over_time).
`median_over_time(series_selector[d])` is a [rollup function](#rollup-functions), which calculates median value over raw samples `median_over_time(series_selector[d])` is a [rollup function](#rollup-functions), which calculates median value over raw samples
on the given lookbehind window `d` per each time series returned on the given lookbehind window `d` per each time series returned
from the given [series_selector](https://docs.victoriametrics.com/keyConcepts.html#filtering). from the given [series_selector](https://docs.victoriametrics.com/keyconcepts/#filtering).
See also [avg_over_time](#avg_over_time). See also [avg_over_time](#avg_over_time).
#### min_over_time #### min_over_time
`min_over_time(series_selector[d])` is a [rollup function](#rollup-functions), which calculates the minimum value over raw samples `min_over_time(series_selector[d])` is a [rollup function](#rollup-functions), which calculates the minimum value over raw samples
on the given lookbehind window `d` per each time series returned from the given [series_selector](https://docs.victoriametrics.com/keyConcepts.html#filtering). on the given lookbehind window `d` per each time series returned from the given [series_selector](https://docs.victoriametrics.com/keyconcepts/#filtering).
This function is supported by PromQL. This function is supported by PromQL.
@ -613,7 +613,7 @@ See also [tmin_over_time](#tmin_over_time).
`mode_over_time(series_selector[d])` is a [rollup function](#rollup-functions), which calculates [mode](https://en.wikipedia.org/wiki/Mode_(statistics)) `mode_over_time(series_selector[d])` is a [rollup function](#rollup-functions), which calculates [mode](https://en.wikipedia.org/wiki/Mode_(statistics))
for raw samples on the given lookbehind window `d`. It is calculated individually per each time series returned for raw samples on the given lookbehind window `d`. It is calculated individually per each time series returned
from the given [series_selector](https://docs.victoriametrics.com/keyConcepts.html#filtering). It is expected that raw sample values are discrete. from the given [series_selector](https://docs.victoriametrics.com/keyconcepts/#filtering). It is expected that raw sample values are discrete.
#### outlier_iqr_over_time #### outlier_iqr_over_time
@ -631,7 +631,7 @@ See also [outliers_iqr](#outliers_iqr).
`predict_linear(series_selector[d], t)` is a [rollup function](#rollup-functions), which calculates the value `t` seconds in the future using `predict_linear(series_selector[d], t)` is a [rollup function](#rollup-functions), which calculates the value `t` seconds in the future using
linear interpolation over raw samples on the given lookbehind window `d`. The predicted value is calculated individually per each time series linear interpolation over raw samples on the given lookbehind window `d`. The predicted value is calculated individually per each time series
returned from the given [series_selector](https://docs.victoriametrics.com/keyConcepts.html#filtering). returned from the given [series_selector](https://docs.victoriametrics.com/keyconcepts/#filtering).
This function is supported by PromQL. This function is supported by PromQL.
@ -649,7 +649,7 @@ This function is supported by PromQL.
#### quantile_over_time #### quantile_over_time
`quantile_over_time(phi, series_selector[d])` is a [rollup function](#rollup-functions), which calculates `phi`-quantile over raw samples `quantile_over_time(phi, series_selector[d])` is a [rollup function](#rollup-functions), which calculates `phi`-quantile over raw samples
on the given lookbehind window `d` per each time series returned from the given [series_selector](https://docs.victoriametrics.com/keyConcepts.html#filtering). on the given lookbehind window `d` per each time series returned from the given [series_selector](https://docs.victoriametrics.com/keyconcepts/#filtering).
The `phi` value must be in the range `[0...1]`. The `phi` value must be in the range `[0...1]`.
This function is supported by PromQL. This function is supported by PromQL.
@ -660,7 +660,7 @@ See also [quantiles_over_time](#quantiles_over_time).
`quantiles_over_time("phiLabel", phi1, ..., phiN, series_selector[d])` is a [rollup function](#rollup-functions), which calculates `phi*`-quantiles `quantiles_over_time("phiLabel", phi1, ..., phiN, series_selector[d])` is a [rollup function](#rollup-functions), which calculates `phi*`-quantiles
over raw samples on the given lookbehind window `d` per each time series returned over raw samples on the given lookbehind window `d` per each time series returned
from the given [series_selector](https://docs.victoriametrics.com/keyConcepts.html#filtering). from the given [series_selector](https://docs.victoriametrics.com/keyconcepts/#filtering).
The function returns individual series per each `phi*` with `{phiLabel="phi*"}` label. `phi*` values must be in the range `[0...1]`. The function returns individual series per each `phi*` with `{phiLabel="phi*"}` label. `phi*` values must be in the range `[0...1]`.
See also [quantile_over_time](#quantile_over_time). See also [quantile_over_time](#quantile_over_time).
@ -668,7 +668,7 @@ See also [quantile_over_time](#quantile_over_time).
#### range_over_time #### range_over_time
`range_over_time(series_selector[d])` is a [rollup function](#rollup-functions), which calculates value range over raw samples `range_over_time(series_selector[d])` is a [rollup function](#rollup-functions), which calculates value range over raw samples
on the given lookbehind window `d` per each time series returned from the given [series_selector](https://docs.victoriametrics.com/keyConcepts.html#filtering). on the given lookbehind window `d` per each time series returned from the given [series_selector](https://docs.victoriametrics.com/keyconcepts/#filtering).
E.g. it calculates `max_over_time(series_selector[d]) - min_over_time(series_selector[d])`. E.g. it calculates `max_over_time(series_selector[d]) - min_over_time(series_selector[d])`.
Metric names are stripped from the resulting rollups. Add [keep_metric_names](#keep_metric_names) modifier in order to keep metric names. Metric names are stripped from the resulting rollups. Add [keep_metric_names](#keep_metric_names) modifier in order to keep metric names.
@ -676,8 +676,8 @@ Metric names are stripped from the resulting rollups. Add [keep_metric_names](#k
#### rate #### rate
`rate(series_selector[d])` is a [rollup function](#rollup-functions), which calculates the average per-second increase rate `rate(series_selector[d])` is a [rollup function](#rollup-functions), which calculates the average per-second increase rate
over the given lookbehind window `d` per each time series returned from the given [series_selector](https://docs.victoriametrics.com/keyConcepts.html#filtering). over the given lookbehind window `d` per each time series returned from the given [series_selector](https://docs.victoriametrics.com/keyconcepts/#filtering).
It is expected that the `series_selector` returns time series of [counter type](https://docs.victoriametrics.com/keyConcepts.html#counter). It is expected that the `series_selector` returns time series of [counter type](https://docs.victoriametrics.com/keyconcepts/#counter).
If the lookbehind window is skipped in square brackets, then it is automatically calculated as `max(step, scrape_interval)`, where `step` is the query arg value If the lookbehind window is skipped in square brackets, then it is automatically calculated as `max(step, scrape_interval)`, where `step` is the query arg value
passed to [/api/v1/query_range](https://docs.victoriametrics.com/keyconcepts/#range-query) or [/api/v1/query](https://docs.victoriametrics.com/keyconcepts/#instant-query), passed to [/api/v1/query_range](https://docs.victoriametrics.com/keyconcepts/#range-query) or [/api/v1/query](https://docs.victoriametrics.com/keyconcepts/#instant-query),
@ -694,16 +694,16 @@ See also [irate](#irate) and [rollup_rate](#rollup_rate).
`rate_over_sum(series_selector[d])` is a [rollup function](#rollup-functions), which calculates per-second rate over the sum of raw samples `rate_over_sum(series_selector[d])` is a [rollup function](#rollup-functions), which calculates per-second rate over the sum of raw samples
on the given lookbehind window `d`. The calculations are performed individually per each time series returned on the given lookbehind window `d`. The calculations are performed individually per each time series returned
from the given [series_selector](https://docs.victoriametrics.com/keyConcepts.html#filtering). from the given [series_selector](https://docs.victoriametrics.com/keyconcepts/#filtering).
Metric names are stripped from the resulting rollups. Add [keep_metric_names](#keep_metric_names) modifier in order to keep metric names. Metric names are stripped from the resulting rollups. Add [keep_metric_names](#keep_metric_names) modifier in order to keep metric names.
#### resets #### resets
`resets(series_selector[d])` is a [rollup function](#rollup-functions), which returns the number `resets(series_selector[d])` is a [rollup function](#rollup-functions), which returns the number
of [counter](https://docs.victoriametrics.com/keyConcepts.html#counter) resets over the given lookbehind window `d` of [counter](https://docs.victoriametrics.com/keyconcepts/#counter) resets over the given lookbehind window `d`
per each time series returned from the given [series_selector](https://docs.victoriametrics.com/keyConcepts.html#filtering). per each time series returned from the given [series_selector](https://docs.victoriametrics.com/keyconcepts/#filtering).
It is expected that the `series_selector` returns time series of [counter type](https://docs.victoriametrics.com/keyConcepts.html#counter). It is expected that the `series_selector` returns time series of [counter type](https://docs.victoriametrics.com/keyconcepts/#counter).
Metric names are stripped from the resulting rollups. Add [keep_metric_names](#keep_metric_names) modifier in order to keep metric names. Metric names are stripped from the resulting rollups. Add [keep_metric_names](#keep_metric_names) modifier in order to keep metric names.
@ -713,7 +713,7 @@ This function is supported by PromQL.
`rollup(series_selector[d])` is a [rollup function](#rollup-functions), which calculates `min`, `max` and `avg` values for raw samples `rollup(series_selector[d])` is a [rollup function](#rollup-functions), which calculates `min`, `max` and `avg` values for raw samples
on the given lookbehind window `d` and returns them in time series with `rollup="min"`, `rollup="max"` and `rollup="avg"` additional labels. on the given lookbehind window `d` and returns them in time series with `rollup="min"`, `rollup="max"` and `rollup="avg"` additional labels.
These values are calculated individually per each time series returned from the given [series_selector](https://docs.victoriametrics.com/keyConcepts.html#filtering). These values are calculated individually per each time series returned from the given [series_selector](https://docs.victoriametrics.com/keyconcepts/#filtering).
Optional 2nd argument `"min"`, `"max"` or `"avg"` can be passed to keep only one calculation result and without adding a label. Optional 2nd argument `"min"`, `"max"` or `"avg"` can be passed to keep only one calculation result and without adding a label.
See also [label_match](#label_match). See also [label_match](#label_match).
@ -723,7 +723,7 @@ See also [label_match](#label_match).
`rollup_candlestick(series_selector[d])` is a [rollup function](#rollup-functions), which calculates `open`, `high`, `low` and `close` values (aka OHLC) `rollup_candlestick(series_selector[d])` is a [rollup function](#rollup-functions), which calculates `open`, `high`, `low` and `close` values (aka OHLC)
over raw samples on the given lookbehind window `d` and returns them in time series with `rollup="open"`, `rollup="high"`, `rollup="low"` and `rollup="close"` additional labels. over raw samples on the given lookbehind window `d` and returns them in time series with `rollup="open"`, `rollup="high"`, `rollup="low"` and `rollup="close"` additional labels.
The calculations are performed individually per each time series returned The calculations are performed individually per each time series returned
from the given [series_selector](https://docs.victoriametrics.com/keyConcepts.html#filtering). This function is useful for financial applications. from the given [series_selector](https://docs.victoriametrics.com/keyconcepts/#filtering). This function is useful for financial applications.
Optional 2nd argument `"open"`, `"high"` or `"low"` or `"close"` can be passed to keep only one calculation result and without adding a label. Optional 2nd argument `"open"`, `"high"` or `"low"` or `"close"` can be passed to keep only one calculation result and without adding a label.
See also [label_match](#label_match). See also [label_match](#label_match).
@ -733,7 +733,7 @@ See also [label_match](#label_match).
`rollup_delta(series_selector[d])` is a [rollup function](#rollup-functions), which calculates differences between adjacent raw samples `rollup_delta(series_selector[d])` is a [rollup function](#rollup-functions), which calculates differences between adjacent raw samples
on the given lookbehind window `d` and returns `min`, `max` and `avg` values for the calculated differences on the given lookbehind window `d` and returns `min`, `max` and `avg` values for the calculated differences
and returns them in time series with `rollup="min"`, `rollup="max"` and `rollup="avg"` additional labels. and returns them in time series with `rollup="min"`, `rollup="max"` and `rollup="avg"` additional labels.
The calculations are performed individually per each time series returned from the given [series_selector](https://docs.victoriametrics.com/keyConcepts.html#filtering). The calculations are performed individually per each time series returned from the given [series_selector](https://docs.victoriametrics.com/keyconcepts/#filtering).
Optional 2nd argument `"min"`, `"max"` or `"avg"` can be passed to keep only one calculation result and without adding a label. Optional 2nd argument `"min"`, `"max"` or `"avg"` can be passed to keep only one calculation result and without adding a label.
See also [label_match](#label_match). See also [label_match](#label_match).
@ -747,7 +747,7 @@ See also [rollup_increase](#rollup_increase).
`rollup_deriv(series_selector[d])` is a [rollup function](#rollup-functions), which calculates per-second derivatives `rollup_deriv(series_selector[d])` is a [rollup function](#rollup-functions), which calculates per-second derivatives
for adjacent raw samples on the given lookbehind window `d` and returns `min`, `max` and `avg` values for the calculated per-second derivatives for adjacent raw samples on the given lookbehind window `d` and returns `min`, `max` and `avg` values for the calculated per-second derivatives
and returns them in time series with `rollup="min"`, `rollup="max"` and `rollup="avg"` additional labels. and returns them in time series with `rollup="min"`, `rollup="max"` and `rollup="avg"` additional labels.
The calculations are performed individually per each time series returned from the given [series_selector](https://docs.victoriametrics.com/keyConcepts.html#filtering). The calculations are performed individually per each time series returned from the given [series_selector](https://docs.victoriametrics.com/keyconcepts/#filtering).
Optional 2nd argument `"min"`, `"max"` or `"avg"` can be passed to keep only one calculation result and without adding a label. Optional 2nd argument `"min"`, `"max"` or `"avg"` can be passed to keep only one calculation result and without adding a label.
See also [label_match](#label_match). See also [label_match](#label_match).
@ -759,7 +759,7 @@ Metric names are stripped from the resulting rollups. Add [keep_metric_names](#k
`rollup_increase(series_selector[d])` is a [rollup function](#rollup-functions), which calculates increases for adjacent raw samples `rollup_increase(series_selector[d])` is a [rollup function](#rollup-functions), which calculates increases for adjacent raw samples
on the given lookbehind window `d` and returns `min`, `max` and `avg` values for the calculated increases on the given lookbehind window `d` and returns `min`, `max` and `avg` values for the calculated increases
and returns them in time series with `rollup="min"`, `rollup="max"` and `rollup="avg"` additional labels. and returns them in time series with `rollup="min"`, `rollup="max"` and `rollup="avg"` additional labels.
The calculations are performed individually per each time series returned from the given [series_selector](https://docs.victoriametrics.com/keyConcepts.html#filtering). The calculations are performed individually per each time series returned from the given [series_selector](https://docs.victoriametrics.com/keyconcepts/#filtering).
Optional 2nd argument `"min"`, `"max"` or `"avg"` can be passed to keep only one calculation result and without adding a label. Optional 2nd argument `"min"`, `"max"` or `"avg"` can be passed to keep only one calculation result and without adding a label.
See also [label_match](#label_match). See also [label_match](#label_match).
@ -778,7 +778,7 @@ when to use `rollup_rate()`.
Optional 2nd argument `"min"`, `"max"` or `"avg"` can be passed to keep only one calculation result and without adding a label. Optional 2nd argument `"min"`, `"max"` or `"avg"` can be passed to keep only one calculation result and without adding a label.
See also [label_match](#label_match). See also [label_match](#label_match).
The calculations are performed individually per each time series returned from the given [series_selector](https://docs.victoriametrics.com/keyConcepts.html#filtering). The calculations are performed individually per each time series returned from the given [series_selector](https://docs.victoriametrics.com/keyconcepts/#filtering).
Metric names are stripped from the resulting rollups. Add [keep_metric_names](#keep_metric_names) modifier in order to keep metric names. Metric names are stripped from the resulting rollups. Add [keep_metric_names](#keep_metric_names) modifier in order to keep metric names.
@ -787,7 +787,7 @@ Metric names are stripped from the resulting rollups. Add [keep_metric_names](#k
`rollup_scrape_interval(series_selector[d])` is a [rollup function](#rollup-functions), which calculates the interval in seconds between `rollup_scrape_interval(series_selector[d])` is a [rollup function](#rollup-functions), which calculates the interval in seconds between
adjacent raw samples on the given lookbehind window `d` and returns `min`, `max` and `avg` values for the calculated interval adjacent raw samples on the given lookbehind window `d` and returns `min`, `max` and `avg` values for the calculated interval
and returns them in time series with `rollup="min"`, `rollup="max"` and `rollup="avg"` additional labels. and returns them in time series with `rollup="min"`, `rollup="max"` and `rollup="avg"` additional labels.
The calculations are performed individually per each time series returned from the given [series_selector](https://docs.victoriametrics.com/keyConcepts.html#filtering). The calculations are performed individually per each time series returned from the given [series_selector](https://docs.victoriametrics.com/keyconcepts/#filtering).
Optional 2nd argument `"min"`, `"max"` or `"avg"` can be passed to keep only one calculation result and without adding a label. Optional 2nd argument `"min"`, `"max"` or `"avg"` can be passed to keep only one calculation result and without adding a label.
See also [label_match](#label_match). See also [label_match](#label_match).
@ -797,7 +797,7 @@ Metric names are stripped from the resulting rollups. Add [keep_metric_names](#k
#### scrape_interval #### scrape_interval
`scrape_interval(series_selector[d])` is a [rollup function](#rollup-functions), which calculates the average interval in seconds between raw samples `scrape_interval(series_selector[d])` is a [rollup function](#rollup-functions), which calculates the average interval in seconds between raw samples
on the given lookbehind window `d` per each time series returned from the given [series_selector](https://docs.victoriametrics.com/keyConcepts.html#filtering). on the given lookbehind window `d` per each time series returned from the given [series_selector](https://docs.victoriametrics.com/keyconcepts/#filtering).
Metric names are stripped from the resulting rollups. Add [keep_metric_names](#keep_metric_names) modifier in order to keep metric names. Metric names are stripped from the resulting rollups. Add [keep_metric_names](#keep_metric_names) modifier in order to keep metric names.
@ -807,7 +807,7 @@ See also [rollup_scrape_interval](#rollup_scrape_interval).
`share_gt_over_time(series_selector[d], gt)` is a [rollup function](#rollup-functions), which returns share (in the range `[0...1]`) of raw samples `share_gt_over_time(series_selector[d], gt)` is a [rollup function](#rollup-functions), which returns share (in the range `[0...1]`) of raw samples
on the given lookbehind window `d`, which are bigger than `gt`. It is calculated independently per each time series returned on the given lookbehind window `d`, which are bigger than `gt`. It is calculated independently per each time series returned
from the given [series_selector](https://docs.victoriametrics.com/keyConcepts.html#filtering). from the given [series_selector](https://docs.victoriametrics.com/keyconcepts/#filtering).
This function is useful for calculating SLI and SLO. Example: `share_gt_over_time(up[24h], 0)` - returns service availability for the last 24 hours. This function is useful for calculating SLI and SLO. Example: `share_gt_over_time(up[24h], 0)` - returns service availability for the last 24 hours.
@ -819,7 +819,7 @@ See also [share_le_over_time](#share_le_over_time) and [count_gt_over_time](#cou
`share_le_over_time(series_selector[d], le)` is a [rollup function](#rollup-functions), which returns share (in the range `[0...1]`) of raw samples `share_le_over_time(series_selector[d], le)` is a [rollup function](#rollup-functions), which returns share (in the range `[0...1]`) of raw samples
on the given lookbehind window `d`, which are smaller or equal to `le`. It is calculated independently per each time series returned on the given lookbehind window `d`, which are smaller or equal to `le`. It is calculated independently per each time series returned
from the given [series_selector](https://docs.victoriametrics.com/keyConcepts.html#filtering). from the given [series_selector](https://docs.victoriametrics.com/keyconcepts/#filtering).
This function is useful for calculating SLI and SLO. Example: `share_le_over_time(memory_usage_bytes[24h], 100*1024*1024)` returns This function is useful for calculating SLI and SLO. Example: `share_le_over_time(memory_usage_bytes[24h], 100*1024*1024)` returns
the share of time series values for the last 24 hours when memory usage was below or equal to 100MB. the share of time series values for the last 24 hours when memory usage was below or equal to 100MB.
@ -832,7 +832,7 @@ See also [share_gt_over_time](#share_gt_over_time) and [count_le_over_time](#cou
`share_eq_over_time(series_selector[d], eq)` is a [rollup function](#rollup-functions), which returns share (in the range `[0...1]`) of raw samples `share_eq_over_time(series_selector[d], eq)` is a [rollup function](#rollup-functions), which returns share (in the range `[0...1]`) of raw samples
on the given lookbehind window `d`, which are equal to `eq`. It is calculated independently per each time series returned on the given lookbehind window `d`, which are equal to `eq`. It is calculated independently per each time series returned
from the given [series_selector](https://docs.victoriametrics.com/keyConcepts.html#filtering). from the given [series_selector](https://docs.victoriametrics.com/keyconcepts/#filtering).
Metric names are stripped from the resulting rollups. Add [keep_metric_names](#keep_metric_names) modifier in order to keep metric names. Metric names are stripped from the resulting rollups. Add [keep_metric_names](#keep_metric_names) modifier in order to keep metric names.
@ -841,15 +841,15 @@ See also [count_eq_over_time](#count_eq_over_time).
#### stale_samples_over_time #### stale_samples_over_time
`stale_samples_over_time(series_selector[d])` is a [rollup function](#rollup-functions), which calculates the number `stale_samples_over_time(series_selector[d])` is a [rollup function](#rollup-functions), which calculates the number
of [staleness markers](https://docs.victoriametrics.com/vmagent.html#prometheus-staleness-markers) on the given lookbehind window `d` of [staleness markers](https://docs.victoriametrics.com/vmagent/#prometheus-staleness-markers) on the given lookbehind window `d`
per each time series matching the given [series_selector](https://docs.victoriametrics.com/keyConcepts.html#filtering). per each time series matching the given [series_selector](https://docs.victoriametrics.com/keyconcepts/#filtering).
Metric names are stripped from the resulting rollups. Add [keep_metric_names](#keep_metric_names) modifier in order to keep metric names. Metric names are stripped from the resulting rollups. Add [keep_metric_names](#keep_metric_names) modifier in order to keep metric names.
#### stddev_over_time #### stddev_over_time
`stddev_over_time(series_selector[d])` is a [rollup function](#rollup-functions), which calculates standard deviation over raw samples `stddev_over_time(series_selector[d])` is a [rollup function](#rollup-functions), which calculates standard deviation over raw samples
on the given lookbehind window `d` per each time series returned from the given [series_selector](https://docs.victoriametrics.com/keyConcepts.html#filtering). on the given lookbehind window `d` per each time series returned from the given [series_selector](https://docs.victoriametrics.com/keyconcepts/#filtering).
Metric names are stripped from the resulting rollups. Add [keep_metric_names](#keep_metric_names) modifier in order to keep metric names. Metric names are stripped from the resulting rollups. Add [keep_metric_names](#keep_metric_names) modifier in order to keep metric names.
@ -860,7 +860,7 @@ See also [stdvar_over_time](#stdvar_over_time).
#### stdvar_over_time #### stdvar_over_time
`stdvar_over_time(series_selector[d])` is a [rollup function](#rollup-functions), which calculates standard variance over raw samples `stdvar_over_time(series_selector[d])` is a [rollup function](#rollup-functions), which calculates standard variance over raw samples
on the given lookbehind window `d` per each time series returned from the given [series_selector](https://docs.victoriametrics.com/keyConcepts.html#filtering). on the given lookbehind window `d` per each time series returned from the given [series_selector](https://docs.victoriametrics.com/keyconcepts/#filtering).
Metric names are stripped from the resulting rollups. Add [keep_metric_names](#keep_metric_names) modifier in order to keep metric names. Metric names are stripped from the resulting rollups. Add [keep_metric_names](#keep_metric_names) modifier in order to keep metric names.
@ -871,7 +871,7 @@ See also [stddev_over_time](#stddev_over_time).
#### sum_eq_over_time #### sum_eq_over_time
`sum_eq_over_time(series_selector[d], eq)` is a [rollup function](#rollup-function), which calculates the sum of raw sample values equal to `eq` `sum_eq_over_time(series_selector[d], eq)` is a [rollup function](#rollup-function), which calculates the sum of raw sample values equal to `eq`
on the given lookbehind window `d` per each time series returned from the given [series_selector](https://docs.victoriametrics.com/keyConcepts.html#filtering). on the given lookbehind window `d` per each time series returned from the given [series_selector](https://docs.victoriametrics.com/keyconcepts/#filtering).
Metric names are stripped from the resulting rollups. Add [keep_metric_names](#keep_metric_names) modifier in order to keep metric names. Metric names are stripped from the resulting rollups. Add [keep_metric_names](#keep_metric_names) modifier in order to keep metric names.
@ -880,7 +880,7 @@ See also [sum_over_time](#sum_over_time) and [count_eq_over_time](#count_eq_over
#### sum_gt_over_time #### sum_gt_over_time
`sum_gt_over_time(series_selector[d], gt)` is a [rollup function](#rollup-function), which calculates the sum of raw sample values bigger than `gt` `sum_gt_over_time(series_selector[d], gt)` is a [rollup function](#rollup-function), which calculates the sum of raw sample values bigger than `gt`
on the given lookbehind window `d` per each time series returned from the given [series_selector](https://docs.victoriametrics.com/keyConcepts.html#filtering). on the given lookbehind window `d` per each time series returned from the given [series_selector](https://docs.victoriametrics.com/keyconcepts/#filtering).
Metric names are stripped from the resulting rollups. Add [keep_metric_names](#keep_metric_names) modifier in order to keep metric names. Metric names are stripped from the resulting rollups. Add [keep_metric_names](#keep_metric_names) modifier in order to keep metric names.
@ -889,7 +889,7 @@ See also [sum_over_time](#sum_over_time) and [count_gt_over_time](#count_gt_over
#### sum_le_over_time #### sum_le_over_time
`sum_le_over_time(series_selector[d], le)` is a [rollup function](#rollup-function), which calculates the sum of raw sample values smaller or equal to `le` `sum_le_over_time(series_selector[d], le)` is a [rollup function](#rollup-function), which calculates the sum of raw sample values smaller or equal to `le`
on the given lookbehind window `d` per each time series returned from the given [series_selector](https://docs.victoriametrics.com/keyConcepts.html#filtering). on the given lookbehind window `d` per each time series returned from the given [series_selector](https://docs.victoriametrics.com/keyconcepts/#filtering).
Metric names are stripped from the resulting rollups. Add [keep_metric_names](#keep_metric_names) modifier in order to keep metric names. Metric names are stripped from the resulting rollups. Add [keep_metric_names](#keep_metric_names) modifier in order to keep metric names.
@ -898,7 +898,7 @@ See also [sum_over_time](#sum_over_time) and [count_le_over_time](#count_le_over
#### sum_over_time #### sum_over_time
`sum_over_time(series_selector[d])` is a [rollup function](#rollup-functions), which calculates the sum of raw sample values `sum_over_time(series_selector[d])` is a [rollup function](#rollup-functions), which calculates the sum of raw sample values
on the given lookbehind window `d` per each time series returned from the given [series_selector](https://docs.victoriametrics.com/keyConcepts.html#filtering). on the given lookbehind window `d` per each time series returned from the given [series_selector](https://docs.victoriametrics.com/keyconcepts/#filtering).
Metric names are stripped from the resulting rollups. Add [keep_metric_names](#keep_metric_names) modifier in order to keep metric names. Metric names are stripped from the resulting rollups. Add [keep_metric_names](#keep_metric_names) modifier in order to keep metric names.
@ -907,14 +907,14 @@ This function is supported by PromQL.
#### sum2_over_time #### sum2_over_time
`sum2_over_time(series_selector[d])` is a [rollup function](#rollup-functions), which calculates the sum of squares for raw sample values `sum2_over_time(series_selector[d])` is a [rollup function](#rollup-functions), which calculates the sum of squares for raw sample values
on the given lookbehind window `d` per each time series returned from the given [series_selector](https://docs.victoriametrics.com/keyConcepts.html#filtering). on the given lookbehind window `d` per each time series returned from the given [series_selector](https://docs.victoriametrics.com/keyconcepts/#filtering).
Metric names are stripped from the resulting rollups. Add [keep_metric_names](#keep_metric_names) modifier in order to keep metric names. Metric names are stripped from the resulting rollups. Add [keep_metric_names](#keep_metric_names) modifier in order to keep metric names.
#### timestamp #### timestamp
`timestamp(series_selector[d])` is a [rollup function](#rollup-functions), which returns the timestamp in seconds with millisecond precision for the last raw sample `timestamp(series_selector[d])` is a [rollup function](#rollup-functions), which returns the timestamp in seconds with millisecond precision for the last raw sample
on the given lookbehind window `d` per each time series returned from the given [series_selector](https://docs.victoriametrics.com/keyConcepts.html#filtering). on the given lookbehind window `d` per each time series returned from the given [series_selector](https://docs.victoriametrics.com/keyconcepts/#filtering).
Metric names are stripped from the resulting rollups. Add [keep_metric_names](#keep_metric_names) modifier in order to keep metric names. Metric names are stripped from the resulting rollups. Add [keep_metric_names](#keep_metric_names) modifier in order to keep metric names.
@ -925,7 +925,7 @@ See also [time](#time) and [now](#now).
#### timestamp_with_name #### timestamp_with_name
`timestamp_with_name(series_selector[d])` is a [rollup function](#rollup-functions), which returns the timestamp in seconds with millisecond precision for the last raw sample `timestamp_with_name(series_selector[d])` is a [rollup function](#rollup-functions), which returns the timestamp in seconds with millisecond precision for the last raw sample
on the given lookbehind window `d` per each time series returned from the given [series_selector](https://docs.victoriametrics.com/keyConcepts.html#filtering). on the given lookbehind window `d` per each time series returned from the given [series_selector](https://docs.victoriametrics.com/keyconcepts/#filtering).
Metric names are preserved in the resulting rollups. Metric names are preserved in the resulting rollups.
@ -934,7 +934,7 @@ See also [timestamp](#timestamp) and [keep_metric_names](#keep_metric_names) mod
#### tfirst_over_time #### tfirst_over_time
`tfirst_over_time(series_selector[d])` is a [rollup function](#rollup-functions), which returns the timestamp in seconds with millisecond precision for the first raw sample `tfirst_over_time(series_selector[d])` is a [rollup function](#rollup-functions), which returns the timestamp in seconds with millisecond precision for the first raw sample
on the given lookbehind window `d` per each time series returned from the given [series_selector](https://docs.victoriametrics.com/keyConcepts.html#filtering). on the given lookbehind window `d` per each time series returned from the given [series_selector](https://docs.victoriametrics.com/keyconcepts/#filtering).
Metric names are stripped from the resulting rollups. Add [keep_metric_names](#keep_metric_names) modifier in order to keep metric names. Metric names are stripped from the resulting rollups. Add [keep_metric_names](#keep_metric_names) modifier in order to keep metric names.
@ -943,7 +943,7 @@ See also [first_over_time](#first_over_time).
#### tlast_change_over_time #### tlast_change_over_time
`tlast_change_over_time(series_selector[d])` is a [rollup function](#rollup-functions), which returns the timestamp in seconds with millisecond precision for the last change `tlast_change_over_time(series_selector[d])` is a [rollup function](#rollup-functions), which returns the timestamp in seconds with millisecond precision for the last change
per each time series returned from the given [series_selector](https://docs.victoriametrics.com/keyConcepts.html#filtering) on the given lookbehind window `d`. per each time series returned from the given [series_selector](https://docs.victoriametrics.com/keyconcepts/#filtering) on the given lookbehind window `d`.
Metric names are stripped from the resulting rollups. Add [keep_metric_names](#keep_metric_names) modifier in order to keep metric names. Metric names are stripped from the resulting rollups. Add [keep_metric_names](#keep_metric_names) modifier in order to keep metric names.
@ -959,7 +959,7 @@ See also [tlast_change_over_time](#tlast_change_over_time).
`tmax_over_time(series_selector[d])` is a [rollup function](#rollup-functions), which returns the timestamp in seconds with millisecond precision for the raw sample `tmax_over_time(series_selector[d])` is a [rollup function](#rollup-functions), which returns the timestamp in seconds with millisecond precision for the raw sample
with the maximum value on the given lookbehind window `d`. It is calculated independently per each time series returned with the maximum value on the given lookbehind window `d`. It is calculated independently per each time series returned
from the given [series_selector](https://docs.victoriametrics.com/keyConcepts.html#filtering). from the given [series_selector](https://docs.victoriametrics.com/keyconcepts/#filtering).
Metric names are stripped from the resulting rollups. Add [keep_metric_names](#keep_metric_names) modifier in order to keep metric names. Metric names are stripped from the resulting rollups. Add [keep_metric_names](#keep_metric_names) modifier in order to keep metric names.
@ -969,7 +969,7 @@ See also [max_over_time](#max_over_time).
`tmin_over_time(series_selector[d])` is a [rollup function](#rollup-functions), which returns the timestamp in seconds with millisecond precision for the raw sample `tmin_over_time(series_selector[d])` is a [rollup function](#rollup-functions), which returns the timestamp in seconds with millisecond precision for the raw sample
with the minimum value on the given lookbehind window `d`. It is calculated independently per each time series returned with the minimum value on the given lookbehind window `d`. It is calculated independently per each time series returned
from the given [series_selector](https://docs.victoriametrics.com/keyConcepts.html#filtering). from the given [series_selector](https://docs.victoriametrics.com/keyconcepts/#filtering).
Metric names are stripped from the resulting rollups. Add [keep_metric_names](#keep_metric_names) modifier in order to keep metric names. Metric names are stripped from the resulting rollups. Add [keep_metric_names](#keep_metric_names) modifier in order to keep metric names.
@ -979,7 +979,7 @@ See also [min_over_time](#min_over_time).
`zscore_over_time(series_selector[d])` is a [rollup function](#rollup-functions), which returns [z-score](https://en.wikipedia.org/wiki/Standard_score) `zscore_over_time(series_selector[d])` is a [rollup function](#rollup-functions), which returns [z-score](https://en.wikipedia.org/wiki/Standard_score)
for raw samples on the given lookbehind window `d`. It is calculated independently per each time series returned for raw samples on the given lookbehind window `d`. It is calculated independently per each time series returned
from the given [series_selector](https://docs.victoriametrics.com/keyConcepts.html#filtering). from the given [series_selector](https://docs.victoriametrics.com/keyconcepts/#filtering).
Metric names are stripped from the resulting rollups. Add [keep_metric_names](#keep_metric_names) modifier in order to keep metric names. Metric names are stripped from the resulting rollups. Add [keep_metric_names](#keep_metric_names) modifier in order to keep metric names.
@ -994,7 +994,7 @@ returned from the rollup `delta(temperature[24h])`.
Additional details: Additional details:
* If transform function is applied directly to a [series selector](https://docs.victoriametrics.com/keyConcepts.html#filtering), * If transform function is applied directly to a [series selector](https://docs.victoriametrics.com/keyconcepts/#filtering),
then the [default_rollup()](#default_rollup) function is automatically applied before calculating the transformations. then the [default_rollup()](#default_rollup) function is automatically applied before calculating the transformations.
For example, `abs(temperature)` is implicitly transformed to `abs(default_rollup(temperature))`. For example, `abs(temperature)` is implicitly transformed to `abs(default_rollup(temperature))`.
* All the transform functions accept optional `keep_metric_names` modifier. If it is set, * All the transform functions accept optional `keep_metric_names` modifier. If it is set,
@ -1230,7 +1230,7 @@ by replacing all the values bigger or equal to 30 with 40.
#### end #### end
`end()` is a [transform function](#transform-functions), which returns the unix timestamp in seconds for the last point. `end()` is a [transform function](#transform-functions), which returns the unix timestamp in seconds for the last point.
It is known as `end` query arg passed to [/api/v1/query_range](https://docs.victoriametrics.com/keyConcepts.html#range-query). It is known as `end` query arg passed to [/api/v1/query_range](https://docs.victoriametrics.com/keyconcepts/#range-query).
See also [start](#start), [time](#time) and [now](#now). See also [start](#start), [time](#time) and [now](#now).
@ -1653,14 +1653,14 @@ This function is supported by PromQL.
`start()` is a [transform function](#transform-functions), which returns unix timestamp in seconds for the first point. `start()` is a [transform function](#transform-functions), which returns unix timestamp in seconds for the first point.
It is known as `start` query arg passed to [/api/v1/query_range](https://docs.victoriametrics.com/keyConcepts.html#range-query). It is known as `start` query arg passed to [/api/v1/query_range](https://docs.victoriametrics.com/keyconcepts/#range-query).
See also [end](#end), [time](#time) and [now](#now). See also [end](#end), [time](#time) and [now](#now).
#### step #### step
`step()` is a [transform function](#transform-functions), which returns the step in seconds (aka interval) between the returned points. `step()` is a [transform function](#transform-functions), which returns the step in seconds (aka interval) between the returned points.
It is known as `step` query arg passed to [/api/v1/query_range](https://docs.victoriametrics.com/keyConcepts.html#range-query). It is known as `step` query arg passed to [/api/v1/query_range](https://docs.victoriametrics.com/keyconcepts/#range-query).
See also [start](#start) and [end](#end). See also [start](#start) and [end](#end).
@ -1717,7 +1717,7 @@ This function is supported by PromQL.
Additional details: Additional details:
* If label manipulation function is applied directly to a [series_selector](https://docs.victoriametrics.com/keyConcepts.html#filtering), * If label manipulation function is applied directly to a [series_selector](https://docs.victoriametrics.com/keyconcepts/#filtering),
then the [default_rollup()](#default_rollup) function is automatically applied before performing the label transformation. then the [default_rollup()](#default_rollup) function is automatically applied before performing the label transformation.
For example, `alias(temperature, "foo")` is implicitly transformed to `alias(default_rollup(temperature), "foo")`. For example, `alias(temperature, "foo")` is implicitly transformed to `alias(default_rollup(temperature), "foo")`.
@ -1894,7 +1894,7 @@ Additional details:
and calculate the [count](#count) aggregate function independently per each group, while `count(up) without (instance)` and calculate the [count](#count) aggregate function independently per each group, while `count(up) without (instance)`
would group [rollup results](#rollup-functions) by all the labels except `instance` before calculating [count](#count) aggregate function independently per each group. would group [rollup results](#rollup-functions) by all the labels except `instance` before calculating [count](#count) aggregate function independently per each group.
Multiple labels can be put in `by` and `without` modifiers. Multiple labels can be put in `by` and `without` modifiers.
* If the aggregate function is applied directly to a [series_selector](https://docs.victoriametrics.com/keyConcepts.html#filtering), * If the aggregate function is applied directly to a [series_selector](https://docs.victoriametrics.com/keyconcepts/#filtering),
then the [default_rollup()](#default_rollup) function is automatically applied before calculating the aggregate. then the [default_rollup()](#default_rollup) function is automatically applied before calculating the aggregate.
For example, `count(up)` is implicitly transformed to `count(default_rollup(up))`. For example, `count(up)` is implicitly transformed to `count(default_rollup(up))`.
* Aggregate functions accept arbitrary number of args. For example, `avg(q1, q2, q3)` would return the average values for every point * Aggregate functions accept arbitrary number of args. For example, `avg(q1, q2, q3)` would return the average values for every point
@ -2104,7 +2104,7 @@ See also [quantile](#quantile).
`share(q) by (group_labels)` is [aggregate function](#aggregate-functions), which returns shares in the range `[0..1]` `share(q) by (group_labels)` is [aggregate function](#aggregate-functions), which returns shares in the range `[0..1]`
for every non-negative points returned by `q` per each timestamp, so the sum of shares per each `group_labels` equals 1. for every non-negative points returned by `q` per each timestamp, so the sum of shares per each `group_labels` equals 1.
This function is useful for normalizing [histogram bucket](https://docs.victoriametrics.com/keyConcepts.html#histogram) shares This function is useful for normalizing [histogram bucket](https://docs.victoriametrics.com/keyconcepts/#histogram) shares
into `[0..1]` range: into `[0..1]` range:
```metricsql ```metricsql
@ -2208,7 +2208,7 @@ See also [zscore_over_time](#zscore_over_time), [range_trim_zscore](#range_trim_
## Subqueries ## Subqueries
MetricsQL supports and extends PromQL subqueries. See [this article](https://valyala.medium.com/prometheus-subqueries-in-victoriametrics-9b1492b720b3) for details. MetricsQL supports and extends PromQL subqueries. See [this article](https://valyala.medium.com/prometheus-subqueries-in-victoriametrics-9b1492b720b3) for details.
Any [rollup function](#rollup-functions) for something other than [series selector](https://docs.victoriametrics.com/keyConcepts.html#filtering) form a subquery. Any [rollup function](#rollup-functions) for something other than [series selector](https://docs.victoriametrics.com/keyconcepts/#filtering) form a subquery.
Nested rollup functions can be implicit thanks to the [implicit query conversions](#implicit-query-conversions). Nested rollup functions can be implicit thanks to the [implicit query conversions](#implicit-query-conversions).
For example, `delta(sum(m))` is implicitly converted to `delta(sum(default_rollup(m))[1i:1i])`, so it becomes a subquery, For example, `delta(sum(m))` is implicitly converted to `delta(sum(default_rollup(m))[1i:1i])`, so it becomes a subquery,
since it contains [default_rollup](#default_rollup) nested into [delta](#delta). since it contains [default_rollup](#default_rollup) nested into [delta](#delta).
@ -2219,19 +2219,19 @@ VictoriaMetrics performs subqueries in the following way:
For example, for expression `max_over_time(rate(http_requests_total[5m])[1h:30s])` the inner function `rate(http_requests_total[5m])` For example, for expression `max_over_time(rate(http_requests_total[5m])[1h:30s])` the inner function `rate(http_requests_total[5m])`
is calculated with `step=30s`. The resulting data points are aligned by the `step`. is calculated with `step=30s`. The resulting data points are aligned by the `step`.
* It calculates the outer rollup function over the results of the inner rollup function using the `step` value * It calculates the outer rollup function over the results of the inner rollup function using the `step` value
passed by Grafana to [/api/v1/query_range](https://docs.victoriametrics.com/keyConcepts.html#range-query). passed by Grafana to [/api/v1/query_range](https://docs.victoriametrics.com/keyconcepts/#range-query).
## Implicit query conversions ## Implicit query conversions
VictoriaMetrics performs the following implicit conversions for incoming queries before starting the calculations: VictoriaMetrics performs the following implicit conversions for incoming queries before starting the calculations:
* If lookbehind window in square brackets is missing inside [rollup function](#rollup-functions), then it is automatically set to the following value: * If lookbehind window in square brackets is missing inside [rollup function](#rollup-functions), then it is automatically set to the following value:
- To `step` value passed to [/api/v1/query_range](https://docs.victoriametrics.com/keyConcepts.html#range-query) or [/api/v1/query](https://docs.victoriametrics.com/keyconcepts/#instant-query) - To `step` value passed to [/api/v1/query_range](https://docs.victoriametrics.com/keyconcepts/#range-query) or [/api/v1/query](https://docs.victoriametrics.com/keyconcepts/#instant-query)
for all the [rollup functions](#rollup-functions) except of [default_rollup](#default_rollup) and [rate](#rate). This value is known as `$__interval` in Grafana or `1i` in MetricsQL. for all the [rollup functions](#rollup-functions) except of [default_rollup](#default_rollup) and [rate](#rate). This value is known as `$__interval` in Grafana or `1i` in MetricsQL.
For example, `avg_over_time(temperature)` is automatically transformed to `avg_over_time(temperature[1i])`. For example, `avg_over_time(temperature)` is automatically transformed to `avg_over_time(temperature[1i])`.
- To the `max(step, scrape_interval)`, where `scrape_interval` is the interval between [raw samples](https://docs.victoriametrics.com/keyconcepts/#raw-samples) - To the `max(step, scrape_interval)`, where `scrape_interval` is the interval between [raw samples](https://docs.victoriametrics.com/keyconcepts/#raw-samples)
for [default_rollup](#default_rollup) and [rate](#rate) functions. This allows avoiding unexpected gaps on the graph when `step` is smaller than `scrape_interval`. for [default_rollup](#default_rollup) and [rate](#rate) functions. This allows avoiding unexpected gaps on the graph when `step` is smaller than `scrape_interval`.
* All the [series selectors](https://docs.victoriametrics.com/keyConcepts.html#filtering), * All the [series selectors](https://docs.victoriametrics.com/keyconcepts/#filtering),
which aren't wrapped into [rollup functions](#rollup-functions), are automatically wrapped into [default_rollup](#default_rollup) function. which aren't wrapped into [rollup functions](#rollup-functions), are automatically wrapped into [default_rollup](#default_rollup) function.
Examples: Examples:
* `foo` is transformed to `default_rollup(foo)` * `foo` is transformed to `default_rollup(foo)`
@ -2242,6 +2242,6 @@ VictoriaMetrics performs the following implicit conversions for incoming queries
it is [transform function](#transform-functions) it is [transform function](#transform-functions)
* If `step` in square brackets is missing inside [subquery](#subqueries), then `1i` step is automatically added there. * If `step` in square brackets is missing inside [subquery](#subqueries), then `1i` step is automatically added there.
For example, `avg_over_time(rate(http_requests_total[5m])[1h])` is automatically converted to `avg_over_time(rate(http_requests_total[5m])[1h:1i])`. For example, `avg_over_time(rate(http_requests_total[5m])[1h])` is automatically converted to `avg_over_time(rate(http_requests_total[5m])[1h:1i])`.
* If something other than [series selector](https://docs.victoriametrics.com/keyConcepts.html#filtering) * If something other than [series selector](https://docs.victoriametrics.com/keyconcepts/#filtering)
is passed to [rollup function](#rollup-functions), then a [subquery](#subqueries) with `1i` lookbehind window and `1i` step is automatically formed. is passed to [rollup function](#rollup-functions), then a [subquery](#subqueries) with `1i` lookbehind window and `1i` step is automatically formed.
For example, `rate(sum(up))` is automatically converted to `rate((sum(default_rollup(up)))[1i:1i])`. For example, `rate(sum(up))` is automatically converted to `rate((sum(default_rollup(up)))[1i:1i])`.

View File

@ -1,13 +1,13 @@
{ {
"files": { "files": {
"main.css": "./static/css/main.a2ad4674.css", "main.css": "./static/css/main.4ebf2874.css",
"main.js": "./static/js/main.f9cc1e6c.js", "main.js": "./static/js/main.202937c2.js",
"static/js/685.bebe1265.chunk.js": "./static/js/685.bebe1265.chunk.js", "static/js/685.bebe1265.chunk.js": "./static/js/685.bebe1265.chunk.js",
"static/media/MetricsQL.md": "./static/media/MetricsQL.10add6e7bdf0f1d98cf7.md", "static/media/MetricsQL.md": "./static/media/MetricsQL.da86c2db4f0b05e286b0.md",
"index.html": "./index.html" "index.html": "./index.html"
}, },
"entrypoints": [ "entrypoints": [
"static/css/main.a2ad4674.css", "static/css/main.4ebf2874.css",
"static/js/main.f9cc1e6c.js" "static/js/main.202937c2.js"
] ]
} }

View File

@ -1,3 +1,3 @@
## Predefined dashboards ## Predefined dashboards
See [this docs](https://github.com/VictoriaMetrics/VictoriaMetrics/tree/master/app/vmui#predefined-dashboards) See [this doc](https://github.com/VictoriaMetrics/VictoriaMetrics/tree/master/app/vmui#predefined-dashboards)

View File

@ -1 +1 @@
<!doctype html><html lang="en"><head><meta charset="utf-8"/><link rel="icon" href="./favicon.ico"/><meta name="viewport" content="width=device-width,initial-scale=1,maximum-scale=5"/><meta name="theme-color" content="#000000"/><meta name="description" content="UI for VictoriaMetrics"/><link rel="apple-touch-icon" href="./apple-touch-icon.png"/><link rel="icon" type="image/png" sizes="32x32" href="./favicon-32x32.png"><link rel="manifest" href="./manifest.json"/><title>VM UI</title><script src="./dashboards/index.js" type="module"></script><meta name="twitter:card" content="summary_large_image"><meta name="twitter:image" content="./preview.jpg"><meta name="twitter:title" content="UI for VictoriaMetrics"><meta name="twitter:description" content="Explore and troubleshoot your VictoriaMetrics data"><meta name="twitter:site" content="@VictoriaMetrics"><meta property="og:title" content="Metric explorer for VictoriaMetrics"><meta property="og:description" content="Explore and troubleshoot your VictoriaMetrics data"><meta property="og:image" content="./preview.jpg"><meta property="og:type" content="website"><script defer="defer" src="./static/js/main.f9cc1e6c.js"></script><link href="./static/css/main.a2ad4674.css" rel="stylesheet"></head><body><noscript>You need to enable JavaScript to run this app.</noscript><div id="root"></div></body></html> <!doctype html><html lang="en"><head><meta charset="utf-8"/><link rel="icon" href="./favicon.ico"/><meta name="viewport" content="width=device-width,initial-scale=1,maximum-scale=5"/><meta name="theme-color" content="#000000"/><meta name="description" content="UI for VictoriaMetrics"/><link rel="apple-touch-icon" href="./apple-touch-icon.png"/><link rel="icon" type="image/png" sizes="32x32" href="./favicon-32x32.png"><link rel="manifest" href="./manifest.json"/><title>VM UI</title><script src="./dashboards/index.js" type="module"></script><meta name="twitter:card" content="summary_large_image"><meta name="twitter:image" content="./preview.jpg"><meta name="twitter:title" content="UI for VictoriaMetrics"><meta name="twitter:description" content="Explore and troubleshoot your VictoriaMetrics data"><meta name="twitter:site" content="@VictoriaMetrics"><meta property="og:title" content="Metric explorer for VictoriaMetrics"><meta property="og:description" content="Explore and troubleshoot your VictoriaMetrics data"><meta property="og:image" content="./preview.jpg"><meta property="og:type" content="website"><script defer="defer" src="./static/js/main.202937c2.js"></script><link href="./static/css/main.4ebf2874.css" rel="stylesheet"></head><body><noscript>You need to enable JavaScript to run this app.</noscript><div id="root"></div></body></html>

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

View File

@ -22,7 +22,7 @@ However, there are some [intentional differences](https://medium.com/@romanhavro
[Standalone MetricsQL package](https://godoc.org/github.com/VictoriaMetrics/metricsql) can be used for parsing MetricsQL in external apps. [Standalone MetricsQL package](https://godoc.org/github.com/VictoriaMetrics/metricsql) can be used for parsing MetricsQL in external apps.
If you are unfamiliar with PromQL, then it is suggested reading [this tutorial for beginners](https://medium.com/@valyala/promql-tutorial-for-beginners-9ab455142085) If you are unfamiliar with PromQL, then it is suggested reading [this tutorial for beginners](https://medium.com/@valyala/promql-tutorial-for-beginners-9ab455142085)
and introduction into [basic querying via MetricsQL](https://docs.victoriametrics.com/keyConcepts.html#metricsql). and introduction into [basic querying via MetricsQL](https://docs.victoriametrics.com/keyconcepts/#metricsql).
The following functionality is implemented differently in MetricsQL compared to PromQL. This improves user experience: The following functionality is implemented differently in MetricsQL compared to PromQL. This improves user experience:
@ -70,15 +70,15 @@ The list of MetricsQL features on top of PromQL:
VictoriaMetrics can be used as Graphite datasource in Grafana. See [these docs](https://docs.victoriametrics.com/#graphite-api-usage) for details. VictoriaMetrics can be used as Graphite datasource in Grafana. See [these docs](https://docs.victoriametrics.com/#graphite-api-usage) for details.
See also [label_graphite_group](#label_graphite_group) function, which can be used for extracting the given groups from Graphite metric name. See also [label_graphite_group](#label_graphite_group) function, which can be used for extracting the given groups from Graphite metric name.
* Lookbehind window in square brackets for [rollup functions](#rollup-functions) may be omitted. VictoriaMetrics automatically selects the lookbehind window * Lookbehind window in square brackets for [rollup functions](#rollup-functions) may be omitted. VictoriaMetrics automatically selects the lookbehind window
depending on the `step` query arg passed to [/api/v1/query_range](https://docs.victoriametrics.com/keyConcepts.html#range-query) depending on the `step` query arg passed to [/api/v1/query_range](https://docs.victoriametrics.com/keyconcepts/#range-query)
and the real interval between [raw samples](https://docs.victoriametrics.com/keyconcepts/#raw-samples) (aka `scrape_interval`). and the real interval between [raw samples](https://docs.victoriametrics.com/keyconcepts/#raw-samples) (aka `scrape_interval`).
For instance, the following query is valid in VictoriaMetrics: `rate(node_network_receive_bytes_total)`. For instance, the following query is valid in VictoriaMetrics: `rate(node_network_receive_bytes_total)`.
It is roughly equivalent to `rate(node_network_receive_bytes_total[$__interval])` when used in Grafana. It is roughly equivalent to `rate(node_network_receive_bytes_total[$__interval])` when used in Grafana.
The difference is documented in [rate() docs](#rate). The difference is documented in [rate() docs](#rate).
* Numeric values can contain `_` delimiters for better readability. For example, `1_234_567_890` can be used in queries instead of `1234567890`. * Numeric values can contain `_` delimiters for better readability. For example, `1_234_567_890` can be used in queries instead of `1234567890`.
* [Series selectors](https://docs.victoriametrics.com/keyConcepts.html#filtering) accept multiple `or` filters. For example, `{env="prod",job="a" or env="dev",job="b"}` * [Series selectors](https://docs.victoriametrics.com/keyconcepts/#filtering) accept multiple `or` filters. For example, `{env="prod",job="a" or env="dev",job="b"}`
selects series with `{env="prod",job="a"}` or `{env="dev",job="b"}` labels. selects series with `{env="prod",job="a"}` or `{env="dev",job="b"}` labels.
See [these docs](https://docs.victoriametrics.com/keyConcepts.html#filtering-by-multiple-or-filters) for details. See [these docs](https://docs.victoriametrics.com/keyconcepts/#filtering-by-multiple-or-filters) for details.
* Support for `group_left(*)` and `group_right(*)` for copying all the labels from time series on the `one` side * Support for `group_left(*)` and `group_right(*)` for copying all the labels from time series on the `one` side
of [many-to-one operations](https://prometheus.io/docs/prometheus/latest/querying/operators/#many-to-one-and-one-to-many-vector-matches). of [many-to-one operations](https://prometheus.io/docs/prometheus/latest/querying/operators/#many-to-one-and-one-to-many-vector-matches).
The copied label names may clash with the existing label names, so MetricsQL provides an ability to add prefix to the copied metric names The copied label names may clash with the existing label names, so MetricsQL provides an ability to add prefix to the copied metric names
@ -153,26 +153,26 @@ MetricsQL provides the following functions:
### Rollup functions ### Rollup functions
**Rollup functions** (aka range functions or window functions) calculate rollups over **raw samples** **Rollup functions** (aka range functions or window functions) calculate rollups over **raw samples**
on the given lookbehind window for the [selected time series](https://docs.victoriametrics.com/keyConcepts.html#filtering). on the given lookbehind window for the [selected time series](https://docs.victoriametrics.com/keyconcepts/#filtering).
For example, `avg_over_time(temperature[24h])` calculates the average temperature over raw samples for the last 24 hours. For example, `avg_over_time(temperature[24h])` calculates the average temperature over raw samples for the last 24 hours.
Additional details: Additional details:
* If rollup functions are used for building graphs in Grafana, then the rollup is calculated independently per each point on the graph. * If rollup functions are used for building graphs in Grafana, then the rollup is calculated independently per each point on the graph.
For example, every point for `avg_over_time(temperature[24h])` graph shows the average temperature for the last 24 hours ending at this point. For example, every point for `avg_over_time(temperature[24h])` graph shows the average temperature for the last 24 hours ending at this point.
The interval between points is set as `step` query arg passed by Grafana to [/api/v1/query_range](https://docs.victoriametrics.com/keyConcepts.html#range-query). The interval between points is set as `step` query arg passed by Grafana to [/api/v1/query_range](https://docs.victoriametrics.com/keyconcepts/#range-query).
* If the given [series selector](https://docs.victoriametrics.com/keyConcepts.html#filtering) returns multiple time series, * If the given [series selector](https://docs.victoriametrics.com/keyconcepts/#filtering) returns multiple time series,
then rollups are calculated individually per each returned series. then rollups are calculated individually per each returned series.
* If lookbehind window in square brackets is missing, then it is automatically set to the following value: * If lookbehind window in square brackets is missing, then it is automatically set to the following value:
- To `step` value passed to [/api/v1/query_range](https://docs.victoriametrics.com/keyConcepts.html#range-query) or [/api/v1/query](https://docs.victoriametrics.com/keyconcepts/#instant-query) - To `step` value passed to [/api/v1/query_range](https://docs.victoriametrics.com/keyconcepts/#range-query) or [/api/v1/query](https://docs.victoriametrics.com/keyconcepts/#instant-query)
for all the [rollup functions](#rollup-functions) except of [default_rollup](#default_rollup) and [rate](#rate). This value is known as `$__interval` in Grafana or `1i` in MetricsQL. for all the [rollup functions](#rollup-functions) except of [default_rollup](#default_rollup) and [rate](#rate). This value is known as `$__interval` in Grafana or `1i` in MetricsQL.
For example, `avg_over_time(temperature)` is automatically transformed to `avg_over_time(temperature[1i])`. For example, `avg_over_time(temperature)` is automatically transformed to `avg_over_time(temperature[1i])`.
- To the `max(step, scrape_interval)`, where `scrape_interval` is the interval between [raw samples](https://docs.victoriametrics.com/keyconcepts/#raw-samples) - To the `max(step, scrape_interval)`, where `scrape_interval` is the interval between [raw samples](https://docs.victoriametrics.com/keyconcepts/#raw-samples)
for [default_rollup](#default_rollup) and [rate](#rate) functions. This allows avoiding unexpected gaps on the graph when `step` is smaller than `scrape_interval`. for [default_rollup](#default_rollup) and [rate](#rate) functions. This allows avoiding unexpected gaps on the graph when `step` is smaller than `scrape_interval`.
* Every [series selector](https://docs.victoriametrics.com/keyConcepts.html#filtering) in MetricsQL must be wrapped into a rollup function. * Every [series selector](https://docs.victoriametrics.com/keyconcepts/#filtering) in MetricsQL must be wrapped into a rollup function.
Otherwise, it is automatically wrapped into [default_rollup](#default_rollup). For example, `foo{bar="baz"}` Otherwise, it is automatically wrapped into [default_rollup](#default_rollup). For example, `foo{bar="baz"}`
is automatically converted to `default_rollup(foo{bar="baz"})` before performing the calculations. is automatically converted to `default_rollup(foo{bar="baz"})` before performing the calculations.
* If something other than [series selector](https://docs.victoriametrics.com/keyConcepts.html#filtering) is passed to rollup function, * If something other than [series selector](https://docs.victoriametrics.com/keyconcepts/#filtering) is passed to rollup function,
then the inner arg is automatically converted to a [subquery](#subqueries). then the inner arg is automatically converted to a [subquery](#subqueries).
* All the rollup functions accept optional `keep_metric_names` modifier. If it is set, then the function keeps metric names in results. * All the rollup functions accept optional `keep_metric_names` modifier. If it is set, then the function keeps metric names in results.
See [these docs](#keep_metric_names). See [these docs](#keep_metric_names).
@ -195,7 +195,7 @@ See also [present_over_time](#present_over_time).
`aggr_over_time(("rollup_func1", "rollup_func2", ...), series_selector[d])` is a [rollup function](#rollup-functions), `aggr_over_time(("rollup_func1", "rollup_func2", ...), series_selector[d])` is a [rollup function](#rollup-functions),
which calculates all the listed `rollup_func*` for raw samples on the given lookbehind window `d`. which calculates all the listed `rollup_func*` for raw samples on the given lookbehind window `d`.
The calculations are performed individually per each time series returned The calculations are performed individually per each time series returned
from the given [series_selector](https://docs.victoriametrics.com/keyConcepts.html#filtering). from the given [series_selector](https://docs.victoriametrics.com/keyconcepts/#filtering).
`rollup_func*` can contain any rollup function. For instance, `aggr_over_time(("min_over_time", "max_over_time", "rate"), m[d])` `rollup_func*` can contain any rollup function. For instance, `aggr_over_time(("min_over_time", "max_over_time", "rate"), m[d])`
would calculate [min_over_time](#min_over_time), [max_over_time](#max_over_time) and [rate](#rate) for `m[d]`. would calculate [min_over_time](#min_over_time), [max_over_time](#max_over_time) and [rate](#rate) for `m[d]`.
@ -204,7 +204,7 @@ would calculate [min_over_time](#min_over_time), [max_over_time](#max_over_time)
`ascent_over_time(series_selector[d])` is a [rollup function](#rollup-functions), which calculates `ascent_over_time(series_selector[d])` is a [rollup function](#rollup-functions), which calculates
ascent of raw sample values on the given lookbehind window `d`. The calculations are performed individually ascent of raw sample values on the given lookbehind window `d`. The calculations are performed individually
per each time series returned from the given [series_selector](https://docs.victoriametrics.com/keyConcepts.html#filtering). per each time series returned from the given [series_selector](https://docs.victoriametrics.com/keyconcepts/#filtering).
This function is useful for tracking height gains in GPS tracking. Metric names are stripped from the resulting rollups. This function is useful for tracking height gains in GPS tracking. Metric names are stripped from the resulting rollups.
@ -216,7 +216,7 @@ See also [descent_over_time](#descent_over_time).
`avg_over_time(series_selector[d])` is a [rollup function](#rollup-functions), which calculates the average value `avg_over_time(series_selector[d])` is a [rollup function](#rollup-functions), which calculates the average value
over raw samples on the given lookbehind window `d` per each time series returned over raw samples on the given lookbehind window `d` per each time series returned
from the given [series_selector](https://docs.victoriametrics.com/keyConcepts.html#filtering). from the given [series_selector](https://docs.victoriametrics.com/keyconcepts/#filtering).
This function is supported by PromQL. This function is supported by PromQL.
@ -226,7 +226,7 @@ See also [median_over_time](#median_over_time).
`changes(series_selector[d])` is a [rollup function](#rollup-functions), which calculates the number of times `changes(series_selector[d])` is a [rollup function](#rollup-functions), which calculates the number of times
the raw samples changed on the given lookbehind window `d` per each time series returned the raw samples changed on the given lookbehind window `d` per each time series returned
from the given [series_selector](https://docs.victoriametrics.com/keyConcepts.html#filtering). from the given [series_selector](https://docs.victoriametrics.com/keyconcepts/#filtering).
Unlike `changes()` in Prometheus it takes into account the change from the last sample before the given lookbehind window `d`. Unlike `changes()` in Prometheus it takes into account the change from the last sample before the given lookbehind window `d`.
See [this article](https://medium.com/@romanhavronenko/victoriametrics-promql-compliance-d4318203f51e) for details. See [this article](https://medium.com/@romanhavronenko/victoriametrics-promql-compliance-d4318203f51e) for details.
@ -241,7 +241,7 @@ See also [changes_prometheus](#changes_prometheus).
`changes_prometheus(series_selector[d])` is a [rollup function](#rollup-functions), which calculates the number of times `changes_prometheus(series_selector[d])` is a [rollup function](#rollup-functions), which calculates the number of times
the raw samples changed on the given lookbehind window `d` per each time series returned the raw samples changed on the given lookbehind window `d` per each time series returned
from the given [series_selector](https://docs.victoriametrics.com/keyConcepts.html#filtering). from the given [series_selector](https://docs.victoriametrics.com/keyconcepts/#filtering).
It doesn't take into account the change from the last sample before the given lookbehind window `d` in the same way as Prometheus does. It doesn't take into account the change from the last sample before the given lookbehind window `d` in the same way as Prometheus does.
See [this article](https://medium.com/@romanhavronenko/victoriametrics-promql-compliance-d4318203f51e) for details. See [this article](https://medium.com/@romanhavronenko/victoriametrics-promql-compliance-d4318203f51e) for details.
@ -256,7 +256,7 @@ See also [changes](#changes).
`count_eq_over_time(series_selector[d], eq)` is a [rollup function](#rollup-functions), which calculates the number of raw samples `count_eq_over_time(series_selector[d], eq)` is a [rollup function](#rollup-functions), which calculates the number of raw samples
on the given lookbehind window `d`, which are equal to `eq`. It is calculated independently per each time series returned on the given lookbehind window `d`, which are equal to `eq`. It is calculated independently per each time series returned
from the given [series_selector](https://docs.victoriametrics.com/keyConcepts.html#filtering). from the given [series_selector](https://docs.victoriametrics.com/keyconcepts/#filtering).
Metric names are stripped from the resulting rollups. Add [keep_metric_names](#keep_metric_names) modifier in order to keep metric names. Metric names are stripped from the resulting rollups. Add [keep_metric_names](#keep_metric_names) modifier in order to keep metric names.
@ -266,7 +266,7 @@ See also [count_over_time](#count_over_time), [share_eq_over_time](#share_eq_ove
`count_gt_over_time(series_selector[d], gt)` is a [rollup function](#rollup-functions), which calculates the number of raw samples `count_gt_over_time(series_selector[d], gt)` is a [rollup function](#rollup-functions), which calculates the number of raw samples
on the given lookbehind window `d`, which are bigger than `gt`. It is calculated independently per each time series returned on the given lookbehind window `d`, which are bigger than `gt`. It is calculated independently per each time series returned
from the given [series_selector](https://docs.victoriametrics.com/keyConcepts.html#filtering). from the given [series_selector](https://docs.victoriametrics.com/keyconcepts/#filtering).
Metric names are stripped from the resulting rollups. Add [keep_metric_names](#keep_metric_names) modifier in order to keep metric names. Metric names are stripped from the resulting rollups. Add [keep_metric_names](#keep_metric_names) modifier in order to keep metric names.
@ -276,7 +276,7 @@ See also [count_over_time](#count_over_time) and [share_gt_over_time](#share_gt_
`count_le_over_time(series_selector[d], le)` is a [rollup function](#rollup-functions), which calculates the number of raw samples `count_le_over_time(series_selector[d], le)` is a [rollup function](#rollup-functions), which calculates the number of raw samples
on the given lookbehind window `d`, which don't exceed `le`. It is calculated independently per each time series returned on the given lookbehind window `d`, which don't exceed `le`. It is calculated independently per each time series returned
from the given [series_selector](https://docs.victoriametrics.com/keyConcepts.html#filtering). from the given [series_selector](https://docs.victoriametrics.com/keyconcepts/#filtering).
Metric names are stripped from the resulting rollups. Add [keep_metric_names](#keep_metric_names) modifier in order to keep metric names. Metric names are stripped from the resulting rollups. Add [keep_metric_names](#keep_metric_names) modifier in order to keep metric names.
@ -286,7 +286,7 @@ See also [count_over_time](#count_over_time) and [share_le_over_time](#share_le_
`count_ne_over_time(series_selector[d], ne)` is a [rollup function](#rollup-functions), which calculates the number of raw samples `count_ne_over_time(series_selector[d], ne)` is a [rollup function](#rollup-functions), which calculates the number of raw samples
on the given lookbehind window `d`, which aren't equal to `ne`. It is calculated independently per each time series returned on the given lookbehind window `d`, which aren't equal to `ne`. It is calculated independently per each time series returned
from the given [series_selector](https://docs.victoriametrics.com/keyConcepts.html#filtering). from the given [series_selector](https://docs.victoriametrics.com/keyconcepts/#filtering).
Metric names are stripped from the resulting rollups. Add [keep_metric_names](#keep_metric_names) modifier in order to keep metric names. Metric names are stripped from the resulting rollups. Add [keep_metric_names](#keep_metric_names) modifier in order to keep metric names.
@ -295,7 +295,7 @@ See also [count_over_time](#count_over_time).
#### count_over_time #### count_over_time
`count_over_time(series_selector[d])` is a [rollup function](#rollup-functions), which calculates the number of raw samples `count_over_time(series_selector[d])` is a [rollup function](#rollup-functions), which calculates the number of raw samples
on the given lookbehind window `d` per each time series returned from the given [series_selector](https://docs.victoriametrics.com/keyConcepts.html#filtering). on the given lookbehind window `d` per each time series returned from the given [series_selector](https://docs.victoriametrics.com/keyconcepts/#filtering).
Metric names are stripped from the resulting rollups. Add [keep_metric_names](#keep_metric_names) modifier in order to keep metric names. Metric names are stripped from the resulting rollups. Add [keep_metric_names](#keep_metric_names) modifier in order to keep metric names.
@ -307,7 +307,7 @@ See also [count_le_over_time](#count_le_over_time), [count_gt_over_time](#count_
`count_values_over_time("label", series_selector[d])` is a [rollup function](#rollup-functions), which counts the number of raw samples `count_values_over_time("label", series_selector[d])` is a [rollup function](#rollup-functions), which counts the number of raw samples
with the same value over the given lookbehind window and stores the counts in a time series with an additional `label`, which contains each initial value. with the same value over the given lookbehind window and stores the counts in a time series with an additional `label`, which contains each initial value.
The results are calculated independently per each time series returned from the given [series_selector](https://docs.victoriametrics.com/keyConcepts.html#filtering). The results are calculated independently per each time series returned from the given [series_selector](https://docs.victoriametrics.com/keyconcepts/#filtering).
Metric names are stripped from the resulting rollups. Add [keep_metric_names](#keep_metric_names) modifier in order to keep metric names. Metric names are stripped from the resulting rollups. Add [keep_metric_names](#keep_metric_names) modifier in order to keep metric names.
@ -316,7 +316,7 @@ See also [count_eq_over_time](#count_eq_over_time), [count_values](#count_values
#### decreases_over_time #### decreases_over_time
`decreases_over_time(series_selector[d])` is a [rollup function](#rollup-functions), which calculates the number of raw sample value decreases `decreases_over_time(series_selector[d])` is a [rollup function](#rollup-functions), which calculates the number of raw sample value decreases
over the given lookbehind window `d` per each time series returned from the given [series_selector](https://docs.victoriametrics.com/keyConcepts.html#filtering). over the given lookbehind window `d` per each time series returned from the given [series_selector](https://docs.victoriametrics.com/keyconcepts/#filtering).
Metric names are stripped from the resulting rollups. Add [keep_metric_names](#keep_metric_names) modifier in order to keep metric names. Metric names are stripped from the resulting rollups. Add [keep_metric_names](#keep_metric_names) modifier in order to keep metric names.
@ -325,7 +325,7 @@ See also [increases_over_time](#increases_over_time).
#### default_rollup #### default_rollup
`default_rollup(series_selector[d])` is a [rollup function](#rollup-functions), which returns the last raw sample value on the given lookbehind window `d` `default_rollup(series_selector[d])` is a [rollup function](#rollup-functions), which returns the last raw sample value on the given lookbehind window `d`
per each time series returned from the given [series_selector](https://docs.victoriametrics.com/keyConcepts.html#filtering). per each time series returned from the given [series_selector](https://docs.victoriametrics.com/keyconcepts/#filtering).
If the lookbehind window is skipped in square brackets, then it is automatically calculated as `max(step, scrape_interval)`, where `step` is the query arg value If the lookbehind window is skipped in square brackets, then it is automatically calculated as `max(step, scrape_interval)`, where `step` is the query arg value
passed to [/api/v1/query_range](https://docs.victoriametrics.com/keyconcepts/#range-query) or [/api/v1/query](https://docs.victoriametrics.com/keyconcepts/#instant-query), passed to [/api/v1/query_range](https://docs.victoriametrics.com/keyconcepts/#range-query) or [/api/v1/query](https://docs.victoriametrics.com/keyconcepts/#instant-query),
@ -336,7 +336,7 @@ This allows avoiding unexpected gaps on the graph when `step` is smaller than th
`delta(series_selector[d])` is a [rollup function](#rollup-functions), which calculates the difference between `delta(series_selector[d])` is a [rollup function](#rollup-functions), which calculates the difference between
the last sample before the given lookbehind window `d` and the last sample at the given lookbehind window `d` the last sample before the given lookbehind window `d` and the last sample at the given lookbehind window `d`
per each time series returned from the given [series_selector](https://docs.victoriametrics.com/keyConcepts.html#filtering). per each time series returned from the given [series_selector](https://docs.victoriametrics.com/keyconcepts/#filtering).
The behaviour of `delta()` function in MetricsQL is slightly different to the behaviour of `delta()` function in Prometheus. The behaviour of `delta()` function in MetricsQL is slightly different to the behaviour of `delta()` function in Prometheus.
See [this article](https://medium.com/@romanhavronenko/victoriametrics-promql-compliance-d4318203f51e) for details. See [this article](https://medium.com/@romanhavronenko/victoriametrics-promql-compliance-d4318203f51e) for details.
@ -351,7 +351,7 @@ See also [increase](#increase) and [delta_prometheus](#delta_prometheus).
`delta_prometheus(series_selector[d])` is a [rollup function](#rollup-functions), which calculates the difference between `delta_prometheus(series_selector[d])` is a [rollup function](#rollup-functions), which calculates the difference between
the first and the last samples at the given lookbehind window `d` per each time series returned the first and the last samples at the given lookbehind window `d` per each time series returned
from the given [series_selector](https://docs.victoriametrics.com/keyConcepts.html#filtering). from the given [series_selector](https://docs.victoriametrics.com/keyconcepts/#filtering).
The behaviour of `delta_prometheus()` is close to the behaviour of `delta()` function in Prometheus. The behaviour of `delta_prometheus()` is close to the behaviour of `delta()` function in Prometheus.
See [this article](https://medium.com/@romanhavronenko/victoriametrics-promql-compliance-d4318203f51e) for details. See [this article](https://medium.com/@romanhavronenko/victoriametrics-promql-compliance-d4318203f51e) for details.
@ -363,7 +363,7 @@ See also [delta](#delta).
#### deriv #### deriv
`deriv(series_selector[d])` is a [rollup function](#rollup-functions), which calculates per-second derivative over the given lookbehind window `d` `deriv(series_selector[d])` is a [rollup function](#rollup-functions), which calculates per-second derivative over the given lookbehind window `d`
per each time series returned from the given [series_selector](https://docs.victoriametrics.com/keyConcepts.html#filtering). per each time series returned from the given [series_selector](https://docs.victoriametrics.com/keyconcepts/#filtering).
The derivative is calculated using linear regression. The derivative is calculated using linear regression.
Metric names are stripped from the resulting rollups. Add [keep_metric_names](#keep_metric_names) modifier in order to keep metric names. Metric names are stripped from the resulting rollups. Add [keep_metric_names](#keep_metric_names) modifier in order to keep metric names.
@ -376,7 +376,7 @@ See also [deriv_fast](#deriv_fast) and [ideriv](#ideriv).
`deriv_fast(series_selector[d])` is a [rollup function](#rollup-functions), which calculates per-second derivative `deriv_fast(series_selector[d])` is a [rollup function](#rollup-functions), which calculates per-second derivative
using the first and the last raw samples on the given lookbehind window `d` per each time series returned using the first and the last raw samples on the given lookbehind window `d` per each time series returned
from the given [series_selector](https://docs.victoriametrics.com/keyConcepts.html#filtering). from the given [series_selector](https://docs.victoriametrics.com/keyconcepts/#filtering).
Metric names are stripped from the resulting rollups. Add [keep_metric_names](#keep_metric_names) modifier in order to keep metric names. Metric names are stripped from the resulting rollups. Add [keep_metric_names](#keep_metric_names) modifier in order to keep metric names.
@ -386,7 +386,7 @@ See also [deriv](#deriv) and [ideriv](#ideriv).
`descent_over_time(series_selector[d])` is a [rollup function](#rollup-functions), which calculates descent of raw sample values `descent_over_time(series_selector[d])` is a [rollup function](#rollup-functions), which calculates descent of raw sample values
on the given lookbehind window `d`. The calculations are performed individually per each time series returned on the given lookbehind window `d`. The calculations are performed individually per each time series returned
from the given [series_selector](https://docs.victoriametrics.com/keyConcepts.html#filtering). from the given [series_selector](https://docs.victoriametrics.com/keyconcepts/#filtering).
This function is useful for tracking height loss in GPS tracking. This function is useful for tracking height loss in GPS tracking.
@ -397,7 +397,7 @@ See also [ascent_over_time](#ascent_over_time).
#### distinct_over_time #### distinct_over_time
`distinct_over_time(series_selector[d])` is a [rollup function](#rollup-functions), which returns the number of distinct raw sample values `distinct_over_time(series_selector[d])` is a [rollup function](#rollup-functions), which returns the number of distinct raw sample values
on the given lookbehind window `d` per each time series returned from the given [series_selector](https://docs.victoriametrics.com/keyConcepts.html#filtering). on the given lookbehind window `d` per each time series returned from the given [series_selector](https://docs.victoriametrics.com/keyconcepts/#filtering).
Metric names are stripped from the resulting rollups. Add [keep_metric_names](#keep_metric_names) modifier in order to keep metric names. Metric names are stripped from the resulting rollups. Add [keep_metric_names](#keep_metric_names) modifier in order to keep metric names.
@ -406,7 +406,7 @@ See also [count_values_over_time](#count_values_over_time).
#### duration_over_time #### duration_over_time
`duration_over_time(series_selector[d], max_interval)` is a [rollup function](#rollup-functions), which returns the duration in seconds `duration_over_time(series_selector[d], max_interval)` is a [rollup function](#rollup-functions), which returns the duration in seconds
when time series returned from the given [series_selector](https://docs.victoriametrics.com/keyConcepts.html#filtering) were present when time series returned from the given [series_selector](https://docs.victoriametrics.com/keyconcepts/#filtering) were present
over the given lookbehind window `d`. It is expected that intervals between adjacent samples per each series don't exceed the `max_interval`. over the given lookbehind window `d`. It is expected that intervals between adjacent samples per each series don't exceed the `max_interval`.
Otherwise, such intervals are considered as gaps and aren't counted. Otherwise, such intervals are considered as gaps and aren't counted.
@ -417,7 +417,7 @@ See also [lifetime](#lifetime) and [lag](#lag).
#### first_over_time #### first_over_time
`first_over_time(series_selector[d])` is a [rollup function](#rollup-functions), which returns the first raw sample value `first_over_time(series_selector[d])` is a [rollup function](#rollup-functions), which returns the first raw sample value
on the given lookbehind window `d` per each time series returned from the given [series_selector](https://docs.victoriametrics.com/keyConcepts.html#filtering). on the given lookbehind window `d` per each time series returned from the given [series_selector](https://docs.victoriametrics.com/keyconcepts/#filtering).
See also [last_over_time](#last_over_time) and [tfirst_over_time](#tfirst_over_time). See also [last_over_time](#last_over_time) and [tfirst_over_time](#tfirst_over_time).
@ -425,7 +425,7 @@ See also [last_over_time](#last_over_time) and [tfirst_over_time](#tfirst_over_t
`geomean_over_time(series_selector[d])` is a [rollup function](#rollup-functions), which calculates [geometric mean](https://en.wikipedia.org/wiki/Geometric_mean) `geomean_over_time(series_selector[d])` is a [rollup function](#rollup-functions), which calculates [geometric mean](https://en.wikipedia.org/wiki/Geometric_mean)
over raw samples on the given lookbehind window `d` per each time series returned over raw samples on the given lookbehind window `d` per each time series returned
from the given [series_selector](https://docs.victoriametrics.com/keyConcepts.html#filtering). from the given [series_selector](https://docs.victoriametrics.com/keyconcepts/#filtering).
Metric names are stripped from the resulting rollups. Add [keep_metric_names](#keep_metric_names) modifier in order to keep metric names. Metric names are stripped from the resulting rollups. Add [keep_metric_names](#keep_metric_names) modifier in order to keep metric names.
@ -433,9 +433,9 @@ Metric names are stripped from the resulting rollups. Add [keep_metric_names](#k
`histogram_over_time(series_selector[d])` is a [rollup function](#rollup-functions), which calculates `histogram_over_time(series_selector[d])` is a [rollup function](#rollup-functions), which calculates
[VictoriaMetrics histogram](https://godoc.org/github.com/VictoriaMetrics/metrics#Histogram) over raw samples on the given lookbehind window `d`. [VictoriaMetrics histogram](https://godoc.org/github.com/VictoriaMetrics/metrics#Histogram) over raw samples on the given lookbehind window `d`.
It is calculated individually per each time series returned from the given [series_selector](https://docs.victoriametrics.com/keyConcepts.html#filtering). It is calculated individually per each time series returned from the given [series_selector](https://docs.victoriametrics.com/keyconcepts/#filtering).
The resulting histograms are useful to pass to [histogram_quantile](#histogram_quantile) for calculating quantiles The resulting histograms are useful to pass to [histogram_quantile](#histogram_quantile) for calculating quantiles
over multiple [gauges](https://docs.victoriametrics.com/keyConcepts.html#gauge). over multiple [gauges](https://docs.victoriametrics.com/keyconcepts/#gauge).
For example, the following query calculates median temperature by country over the last 24 hours: For example, the following query calculates median temperature by country over the last 24 hours:
`histogram_quantile(0.5, sum(histogram_over_time(temperature[24h])) by (vmrange,country))`. `histogram_quantile(0.5, sum(histogram_over_time(temperature[24h])) by (vmrange,country))`.
@ -459,8 +459,8 @@ See also [hoeffding_bound_lower](#hoeffding_bound_lower).
`holt_winters(series_selector[d], sf, tf)` is a [rollup function](#rollup-functions), which calculates Holt-Winters value `holt_winters(series_selector[d], sf, tf)` is a [rollup function](#rollup-functions), which calculates Holt-Winters value
(aka [double exponential smoothing](https://en.wikipedia.org/wiki/Exponential_smoothing#Double_exponential_smoothing)) for raw samples (aka [double exponential smoothing](https://en.wikipedia.org/wiki/Exponential_smoothing#Double_exponential_smoothing)) for raw samples
over the given lookbehind window `d` using the given smoothing factor `sf` and the given trend factor `tf`. over the given lookbehind window `d` using the given smoothing factor `sf` and the given trend factor `tf`.
Both `sf` and `tf` must be in the range `[0...1]`. It is expected that the [series_selector](https://docs.victoriametrics.com/keyConcepts.html#filtering) Both `sf` and `tf` must be in the range `[0...1]`. It is expected that the [series_selector](https://docs.victoriametrics.com/keyconcepts/#filtering)
returns time series of [gauge type](https://docs.victoriametrics.com/keyConcepts.html#gauge). returns time series of [gauge type](https://docs.victoriametrics.com/keyconcepts/#gauge).
This function is supported by PromQL. This function is supported by PromQL.
@ -469,7 +469,7 @@ See also [range_linear_regression](#range_linear_regression).
#### idelta #### idelta
`idelta(series_selector[d])` is a [rollup function](#rollup-functions), which calculates the difference between the last two raw samples `idelta(series_selector[d])` is a [rollup function](#rollup-functions), which calculates the difference between the last two raw samples
on the given lookbehind window `d` per each time series returned from the given [series_selector](https://docs.victoriametrics.com/keyConcepts.html#filtering). on the given lookbehind window `d` per each time series returned from the given [series_selector](https://docs.victoriametrics.com/keyconcepts/#filtering).
Metric names are stripped from the resulting rollups. Add [keep_metric_names](#keep_metric_names) modifier in order to keep metric names. Metric names are stripped from the resulting rollups. Add [keep_metric_names](#keep_metric_names) modifier in order to keep metric names.
@ -481,7 +481,7 @@ See also [delta](#delta).
`ideriv(series_selector[d])` is a [rollup function](#rollup-functions), which calculates the per-second derivative based on the last two raw samples `ideriv(series_selector[d])` is a [rollup function](#rollup-functions), which calculates the per-second derivative based on the last two raw samples
over the given lookbehind window `d`. The derivative is calculated independently per each time series returned over the given lookbehind window `d`. The derivative is calculated independently per each time series returned
from the given [series_selector](https://docs.victoriametrics.com/keyConcepts.html#filtering). from the given [series_selector](https://docs.victoriametrics.com/keyconcepts/#filtering).
Metric names are stripped from the resulting rollups. Add [keep_metric_names](#keep_metric_names) modifier in order to keep metric names. Metric names are stripped from the resulting rollups. Add [keep_metric_names](#keep_metric_names) modifier in order to keep metric names.
@ -490,8 +490,8 @@ See also [deriv](#deriv).
#### increase #### increase
`increase(series_selector[d])` is a [rollup function](#rollup-functions), which calculates the increase over the given lookbehind window `d` `increase(series_selector[d])` is a [rollup function](#rollup-functions), which calculates the increase over the given lookbehind window `d`
per each time series returned from the given [series_selector](https://docs.victoriametrics.com/keyConcepts.html#filtering). per each time series returned from the given [series_selector](https://docs.victoriametrics.com/keyconcepts/#filtering).
It is expected that the `series_selector` returns time series of [counter type](https://docs.victoriametrics.com/keyConcepts.html#counter). It is expected that the `series_selector` returns time series of [counter type](https://docs.victoriametrics.com/keyconcepts/#counter).
Unlike Prometheus, it takes into account the last sample before the given lookbehind window `d` when calculating the result. Unlike Prometheus, it takes into account the last sample before the given lookbehind window `d` when calculating the result.
See [this article](https://medium.com/@romanhavronenko/victoriametrics-promql-compliance-d4318203f51e) for details. See [this article](https://medium.com/@romanhavronenko/victoriametrics-promql-compliance-d4318203f51e) for details.
@ -505,8 +505,8 @@ See also [increase_pure](#increase_pure), [increase_prometheus](#increase_promet
#### increase_prometheus #### increase_prometheus
`increase_prometheus(series_selector[d])` is a [rollup function](#rollup-functions), which calculates the increase `increase_prometheus(series_selector[d])` is a [rollup function](#rollup-functions), which calculates the increase
over the given lookbehind window `d` per each time series returned from the given [series_selector](https://docs.victoriametrics.com/keyConcepts.html#filtering). over the given lookbehind window `d` per each time series returned from the given [series_selector](https://docs.victoriametrics.com/keyconcepts/#filtering).
It is expected that the `series_selector` returns time series of [counter type](https://docs.victoriametrics.com/keyConcepts.html#counter). It is expected that the `series_selector` returns time series of [counter type](https://docs.victoriametrics.com/keyconcepts/#counter).
It doesn't take into account the last sample before the given lookbehind window `d` when calculating the result in the same way as Prometheus does. It doesn't take into account the last sample before the given lookbehind window `d` when calculating the result in the same way as Prometheus does.
See [this article](https://medium.com/@romanhavronenko/victoriametrics-promql-compliance-d4318203f51e) for details. See [this article](https://medium.com/@romanhavronenko/victoriametrics-promql-compliance-d4318203f51e) for details.
@ -517,13 +517,13 @@ See also [increase_pure](#increase_pure) and [increase](#increase).
#### increase_pure #### increase_pure
`increase_pure(series_selector[d])` is a [rollup function](#rollup-functions), which works the same as [increase](#increase) except `increase_pure(series_selector[d])` is a [rollup function](#rollup-functions), which works the same as [increase](#increase) except
of the following corner case - it assumes that [counters](https://docs.victoriametrics.com/keyConcepts.html#counter) always start from 0, of the following corner case - it assumes that [counters](https://docs.victoriametrics.com/keyconcepts/#counter) always start from 0,
while [increase](#increase) ignores the first value in a series if it is too big. while [increase](#increase) ignores the first value in a series if it is too big.
#### increases_over_time #### increases_over_time
`increases_over_time(series_selector[d])` is a [rollup function](#rollup-functions), which calculates the number of raw sample value increases `increases_over_time(series_selector[d])` is a [rollup function](#rollup-functions), which calculates the number of raw sample value increases
over the given lookbehind window `d` per each time series returned from the given [series_selector](https://docs.victoriametrics.com/keyConcepts.html#filtering). over the given lookbehind window `d` per each time series returned from the given [series_selector](https://docs.victoriametrics.com/keyconcepts/#filtering).
Metric names are stripped from the resulting rollups. Add [keep_metric_names](#keep_metric_names) modifier in order to keep metric names. Metric names are stripped from the resulting rollups. Add [keep_metric_names](#keep_metric_names) modifier in order to keep metric names.
@ -532,15 +532,15 @@ See also [decreases_over_time](#decreases_over_time).
#### integrate #### integrate
`integrate(series_selector[d])` is a [rollup function](#rollup-functions), which calculates the integral over raw samples on the given lookbehind window `d` `integrate(series_selector[d])` is a [rollup function](#rollup-functions), which calculates the integral over raw samples on the given lookbehind window `d`
per each time series returned from the given [series_selector](https://docs.victoriametrics.com/keyConcepts.html#filtering). per each time series returned from the given [series_selector](https://docs.victoriametrics.com/keyconcepts/#filtering).
Metric names are stripped from the resulting rollups. Add [keep_metric_names](#keep_metric_names) modifier in order to keep metric names. Metric names are stripped from the resulting rollups. Add [keep_metric_names](#keep_metric_names) modifier in order to keep metric names.
#### irate #### irate
`irate(series_selector[d])` is a [rollup function](#rollup-functions), which calculates the "instant" per-second increase rate over the last two raw samples `irate(series_selector[d])` is a [rollup function](#rollup-functions), which calculates the "instant" per-second increase rate over the last two raw samples
on the given lookbehind window `d` per each time series returned from the given [series_selector](https://docs.victoriametrics.com/keyConcepts.html#filtering). on the given lookbehind window `d` per each time series returned from the given [series_selector](https://docs.victoriametrics.com/keyconcepts/#filtering).
It is expected that the `series_selector` returns time series of [counter type](https://docs.victoriametrics.com/keyConcepts.html#counter). It is expected that the `series_selector` returns time series of [counter type](https://docs.victoriametrics.com/keyconcepts/#counter).
Metric names are stripped from the resulting rollups. Add [keep_metric_names](#keep_metric_names) modifier in order to keep metric names. Metric names are stripped from the resulting rollups. Add [keep_metric_names](#keep_metric_names) modifier in order to keep metric names.
@ -552,7 +552,7 @@ See also [rate](#rate) and [rollup_rate](#rollup_rate).
`lag(series_selector[d])` is a [rollup function](#rollup-functions), which returns the duration in seconds between the last sample `lag(series_selector[d])` is a [rollup function](#rollup-functions), which returns the duration in seconds between the last sample
on the given lookbehind window `d` and the timestamp of the current point. It is calculated independently per each time series returned on the given lookbehind window `d` and the timestamp of the current point. It is calculated independently per each time series returned
from the given [series_selector](https://docs.victoriametrics.com/keyConcepts.html#filtering). from the given [series_selector](https://docs.victoriametrics.com/keyconcepts/#filtering).
Metric names are stripped from the resulting rollups. Add [keep_metric_names](#keep_metric_names) modifier in order to keep metric names. Metric names are stripped from the resulting rollups. Add [keep_metric_names](#keep_metric_names) modifier in order to keep metric names.
@ -561,7 +561,7 @@ See also [lifetime](#lifetime) and [duration_over_time](#duration_over_time).
#### last_over_time #### last_over_time
`last_over_time(series_selector[d])` is a [rollup function](#rollup-functions), which returns the last raw sample value on the given lookbehind window `d` `last_over_time(series_selector[d])` is a [rollup function](#rollup-functions), which returns the last raw sample value on the given lookbehind window `d`
per each time series returned from the given [series_selector](https://docs.victoriametrics.com/keyConcepts.html#filtering). per each time series returned from the given [series_selector](https://docs.victoriametrics.com/keyconcepts/#filtering).
This function is supported by PromQL. This function is supported by PromQL.
@ -570,7 +570,7 @@ See also [first_over_time](#first_over_time) and [tlast_over_time](#tlast_over_t
#### lifetime #### lifetime
`lifetime(series_selector[d])` is a [rollup function](#rollup-functions), which returns the duration in seconds between the last and the first sample `lifetime(series_selector[d])` is a [rollup function](#rollup-functions), which returns the duration in seconds between the last and the first sample
on the given lookbehind window `d` per each time series returned from the given [series_selector](https://docs.victoriametrics.com/keyConcepts.html#filtering). on the given lookbehind window `d` per each time series returned from the given [series_selector](https://docs.victoriametrics.com/keyconcepts/#filtering).
Metric names are stripped from the resulting rollups. Add [keep_metric_names](#keep_metric_names) modifier in order to keep metric names. Metric names are stripped from the resulting rollups. Add [keep_metric_names](#keep_metric_names) modifier in order to keep metric names.
@ -579,14 +579,14 @@ See also [duration_over_time](#duration_over_time) and [lag](#lag).
#### mad_over_time #### mad_over_time
`mad_over_time(series_selector[d])` is a [rollup function](#rollup-functions), which calculates [median absolute deviation](https://en.wikipedia.org/wiki/Median_absolute_deviation) `mad_over_time(series_selector[d])` is a [rollup function](#rollup-functions), which calculates [median absolute deviation](https://en.wikipedia.org/wiki/Median_absolute_deviation)
over raw samples on the given lookbehind window `d` per each time series returned from the given [series_selector](https://docs.victoriametrics.com/keyConcepts.html#filtering). over raw samples on the given lookbehind window `d` per each time series returned from the given [series_selector](https://docs.victoriametrics.com/keyconcepts/#filtering).
See also [mad](#mad), [range_mad](#range_mad) and [outlier_iqr_over_time](#outlier_iqr_over_time). See also [mad](#mad), [range_mad](#range_mad) and [outlier_iqr_over_time](#outlier_iqr_over_time).
#### max_over_time #### max_over_time
`max_over_time(series_selector[d])` is a [rollup function](#rollup-functions), which calculates the maximum value over raw samples `max_over_time(series_selector[d])` is a [rollup function](#rollup-functions), which calculates the maximum value over raw samples
on the given lookbehind window `d` per each time series returned from the given [series_selector](https://docs.victoriametrics.com/keyConcepts.html#filtering). on the given lookbehind window `d` per each time series returned from the given [series_selector](https://docs.victoriametrics.com/keyconcepts/#filtering).
This function is supported by PromQL. This function is supported by PromQL.
@ -596,14 +596,14 @@ See also [tmax_over_time](#tmax_over_time).
`median_over_time(series_selector[d])` is a [rollup function](#rollup-functions), which calculates median value over raw samples `median_over_time(series_selector[d])` is a [rollup function](#rollup-functions), which calculates median value over raw samples
on the given lookbehind window `d` per each time series returned on the given lookbehind window `d` per each time series returned
from the given [series_selector](https://docs.victoriametrics.com/keyConcepts.html#filtering). from the given [series_selector](https://docs.victoriametrics.com/keyconcepts/#filtering).
See also [avg_over_time](#avg_over_time). See also [avg_over_time](#avg_over_time).
#### min_over_time #### min_over_time
`min_over_time(series_selector[d])` is a [rollup function](#rollup-functions), which calculates the minimum value over raw samples `min_over_time(series_selector[d])` is a [rollup function](#rollup-functions), which calculates the minimum value over raw samples
on the given lookbehind window `d` per each time series returned from the given [series_selector](https://docs.victoriametrics.com/keyConcepts.html#filtering). on the given lookbehind window `d` per each time series returned from the given [series_selector](https://docs.victoriametrics.com/keyconcepts/#filtering).
This function is supported by PromQL. This function is supported by PromQL.
@ -613,7 +613,7 @@ See also [tmin_over_time](#tmin_over_time).
`mode_over_time(series_selector[d])` is a [rollup function](#rollup-functions), which calculates [mode](https://en.wikipedia.org/wiki/Mode_(statistics)) `mode_over_time(series_selector[d])` is a [rollup function](#rollup-functions), which calculates [mode](https://en.wikipedia.org/wiki/Mode_(statistics))
for raw samples on the given lookbehind window `d`. It is calculated individually per each time series returned for raw samples on the given lookbehind window `d`. It is calculated individually per each time series returned
from the given [series_selector](https://docs.victoriametrics.com/keyConcepts.html#filtering). It is expected that raw sample values are discrete. from the given [series_selector](https://docs.victoriametrics.com/keyconcepts/#filtering). It is expected that raw sample values are discrete.
#### outlier_iqr_over_time #### outlier_iqr_over_time
@ -631,7 +631,7 @@ See also [outliers_iqr](#outliers_iqr).
`predict_linear(series_selector[d], t)` is a [rollup function](#rollup-functions), which calculates the value `t` seconds in the future using `predict_linear(series_selector[d], t)` is a [rollup function](#rollup-functions), which calculates the value `t` seconds in the future using
linear interpolation over raw samples on the given lookbehind window `d`. The predicted value is calculated individually per each time series linear interpolation over raw samples on the given lookbehind window `d`. The predicted value is calculated individually per each time series
returned from the given [series_selector](https://docs.victoriametrics.com/keyConcepts.html#filtering). returned from the given [series_selector](https://docs.victoriametrics.com/keyconcepts/#filtering).
This function is supported by PromQL. This function is supported by PromQL.
@ -649,7 +649,7 @@ This function is supported by PromQL.
#### quantile_over_time #### quantile_over_time
`quantile_over_time(phi, series_selector[d])` is a [rollup function](#rollup-functions), which calculates `phi`-quantile over raw samples `quantile_over_time(phi, series_selector[d])` is a [rollup function](#rollup-functions), which calculates `phi`-quantile over raw samples
on the given lookbehind window `d` per each time series returned from the given [series_selector](https://docs.victoriametrics.com/keyConcepts.html#filtering). on the given lookbehind window `d` per each time series returned from the given [series_selector](https://docs.victoriametrics.com/keyconcepts/#filtering).
The `phi` value must be in the range `[0...1]`. The `phi` value must be in the range `[0...1]`.
This function is supported by PromQL. This function is supported by PromQL.
@ -660,7 +660,7 @@ See also [quantiles_over_time](#quantiles_over_time).
`quantiles_over_time("phiLabel", phi1, ..., phiN, series_selector[d])` is a [rollup function](#rollup-functions), which calculates `phi*`-quantiles `quantiles_over_time("phiLabel", phi1, ..., phiN, series_selector[d])` is a [rollup function](#rollup-functions), which calculates `phi*`-quantiles
over raw samples on the given lookbehind window `d` per each time series returned over raw samples on the given lookbehind window `d` per each time series returned
from the given [series_selector](https://docs.victoriametrics.com/keyConcepts.html#filtering). from the given [series_selector](https://docs.victoriametrics.com/keyconcepts/#filtering).
The function returns individual series per each `phi*` with `{phiLabel="phi*"}` label. `phi*` values must be in the range `[0...1]`. The function returns individual series per each `phi*` with `{phiLabel="phi*"}` label. `phi*` values must be in the range `[0...1]`.
See also [quantile_over_time](#quantile_over_time). See also [quantile_over_time](#quantile_over_time).
@ -668,7 +668,7 @@ See also [quantile_over_time](#quantile_over_time).
#### range_over_time #### range_over_time
`range_over_time(series_selector[d])` is a [rollup function](#rollup-functions), which calculates value range over raw samples `range_over_time(series_selector[d])` is a [rollup function](#rollup-functions), which calculates value range over raw samples
on the given lookbehind window `d` per each time series returned from the given [series_selector](https://docs.victoriametrics.com/keyConcepts.html#filtering). on the given lookbehind window `d` per each time series returned from the given [series_selector](https://docs.victoriametrics.com/keyconcepts/#filtering).
E.g. it calculates `max_over_time(series_selector[d]) - min_over_time(series_selector[d])`. E.g. it calculates `max_over_time(series_selector[d]) - min_over_time(series_selector[d])`.
Metric names are stripped from the resulting rollups. Add [keep_metric_names](#keep_metric_names) modifier in order to keep metric names. Metric names are stripped from the resulting rollups. Add [keep_metric_names](#keep_metric_names) modifier in order to keep metric names.
@ -676,8 +676,8 @@ Metric names are stripped from the resulting rollups. Add [keep_metric_names](#k
#### rate #### rate
`rate(series_selector[d])` is a [rollup function](#rollup-functions), which calculates the average per-second increase rate `rate(series_selector[d])` is a [rollup function](#rollup-functions), which calculates the average per-second increase rate
over the given lookbehind window `d` per each time series returned from the given [series_selector](https://docs.victoriametrics.com/keyConcepts.html#filtering). over the given lookbehind window `d` per each time series returned from the given [series_selector](https://docs.victoriametrics.com/keyconcepts/#filtering).
It is expected that the `series_selector` returns time series of [counter type](https://docs.victoriametrics.com/keyConcepts.html#counter). It is expected that the `series_selector` returns time series of [counter type](https://docs.victoriametrics.com/keyconcepts/#counter).
If the lookbehind window is skipped in square brackets, then it is automatically calculated as `max(step, scrape_interval)`, where `step` is the query arg value If the lookbehind window is skipped in square brackets, then it is automatically calculated as `max(step, scrape_interval)`, where `step` is the query arg value
passed to [/api/v1/query_range](https://docs.victoriametrics.com/keyconcepts/#range-query) or [/api/v1/query](https://docs.victoriametrics.com/keyconcepts/#instant-query), passed to [/api/v1/query_range](https://docs.victoriametrics.com/keyconcepts/#range-query) or [/api/v1/query](https://docs.victoriametrics.com/keyconcepts/#instant-query),
@ -694,16 +694,16 @@ See also [irate](#irate) and [rollup_rate](#rollup_rate).
`rate_over_sum(series_selector[d])` is a [rollup function](#rollup-functions), which calculates per-second rate over the sum of raw samples `rate_over_sum(series_selector[d])` is a [rollup function](#rollup-functions), which calculates per-second rate over the sum of raw samples
on the given lookbehind window `d`. The calculations are performed individually per each time series returned on the given lookbehind window `d`. The calculations are performed individually per each time series returned
from the given [series_selector](https://docs.victoriametrics.com/keyConcepts.html#filtering). from the given [series_selector](https://docs.victoriametrics.com/keyconcepts/#filtering).
Metric names are stripped from the resulting rollups. Add [keep_metric_names](#keep_metric_names) modifier in order to keep metric names. Metric names are stripped from the resulting rollups. Add [keep_metric_names](#keep_metric_names) modifier in order to keep metric names.
#### resets #### resets
`resets(series_selector[d])` is a [rollup function](#rollup-functions), which returns the number `resets(series_selector[d])` is a [rollup function](#rollup-functions), which returns the number
of [counter](https://docs.victoriametrics.com/keyConcepts.html#counter) resets over the given lookbehind window `d` of [counter](https://docs.victoriametrics.com/keyconcepts/#counter) resets over the given lookbehind window `d`
per each time series returned from the given [series_selector](https://docs.victoriametrics.com/keyConcepts.html#filtering). per each time series returned from the given [series_selector](https://docs.victoriametrics.com/keyconcepts/#filtering).
It is expected that the `series_selector` returns time series of [counter type](https://docs.victoriametrics.com/keyConcepts.html#counter). It is expected that the `series_selector` returns time series of [counter type](https://docs.victoriametrics.com/keyconcepts/#counter).
Metric names are stripped from the resulting rollups. Add [keep_metric_names](#keep_metric_names) modifier in order to keep metric names. Metric names are stripped from the resulting rollups. Add [keep_metric_names](#keep_metric_names) modifier in order to keep metric names.
@ -713,7 +713,7 @@ This function is supported by PromQL.
`rollup(series_selector[d])` is a [rollup function](#rollup-functions), which calculates `min`, `max` and `avg` values for raw samples `rollup(series_selector[d])` is a [rollup function](#rollup-functions), which calculates `min`, `max` and `avg` values for raw samples
on the given lookbehind window `d` and returns them in time series with `rollup="min"`, `rollup="max"` and `rollup="avg"` additional labels. on the given lookbehind window `d` and returns them in time series with `rollup="min"`, `rollup="max"` and `rollup="avg"` additional labels.
These values are calculated individually per each time series returned from the given [series_selector](https://docs.victoriametrics.com/keyConcepts.html#filtering). These values are calculated individually per each time series returned from the given [series_selector](https://docs.victoriametrics.com/keyconcepts/#filtering).
Optional 2nd argument `"min"`, `"max"` or `"avg"` can be passed to keep only one calculation result and without adding a label. Optional 2nd argument `"min"`, `"max"` or `"avg"` can be passed to keep only one calculation result and without adding a label.
See also [label_match](#label_match). See also [label_match](#label_match).
@ -723,7 +723,7 @@ See also [label_match](#label_match).
`rollup_candlestick(series_selector[d])` is a [rollup function](#rollup-functions), which calculates `open`, `high`, `low` and `close` values (aka OHLC) `rollup_candlestick(series_selector[d])` is a [rollup function](#rollup-functions), which calculates `open`, `high`, `low` and `close` values (aka OHLC)
over raw samples on the given lookbehind window `d` and returns them in time series with `rollup="open"`, `rollup="high"`, `rollup="low"` and `rollup="close"` additional labels. over raw samples on the given lookbehind window `d` and returns them in time series with `rollup="open"`, `rollup="high"`, `rollup="low"` and `rollup="close"` additional labels.
The calculations are performed individually per each time series returned The calculations are performed individually per each time series returned
from the given [series_selector](https://docs.victoriametrics.com/keyConcepts.html#filtering). This function is useful for financial applications. from the given [series_selector](https://docs.victoriametrics.com/keyconcepts/#filtering). This function is useful for financial applications.
Optional 2nd argument `"open"`, `"high"` or `"low"` or `"close"` can be passed to keep only one calculation result and without adding a label. Optional 2nd argument `"open"`, `"high"` or `"low"` or `"close"` can be passed to keep only one calculation result and without adding a label.
See also [label_match](#label_match). See also [label_match](#label_match).
@ -733,7 +733,7 @@ See also [label_match](#label_match).
`rollup_delta(series_selector[d])` is a [rollup function](#rollup-functions), which calculates differences between adjacent raw samples `rollup_delta(series_selector[d])` is a [rollup function](#rollup-functions), which calculates differences between adjacent raw samples
on the given lookbehind window `d` and returns `min`, `max` and `avg` values for the calculated differences on the given lookbehind window `d` and returns `min`, `max` and `avg` values for the calculated differences
and returns them in time series with `rollup="min"`, `rollup="max"` and `rollup="avg"` additional labels. and returns them in time series with `rollup="min"`, `rollup="max"` and `rollup="avg"` additional labels.
The calculations are performed individually per each time series returned from the given [series_selector](https://docs.victoriametrics.com/keyConcepts.html#filtering). The calculations are performed individually per each time series returned from the given [series_selector](https://docs.victoriametrics.com/keyconcepts/#filtering).
Optional 2nd argument `"min"`, `"max"` or `"avg"` can be passed to keep only one calculation result and without adding a label. Optional 2nd argument `"min"`, `"max"` or `"avg"` can be passed to keep only one calculation result and without adding a label.
See also [label_match](#label_match). See also [label_match](#label_match).
@ -747,7 +747,7 @@ See also [rollup_increase](#rollup_increase).
`rollup_deriv(series_selector[d])` is a [rollup function](#rollup-functions), which calculates per-second derivatives `rollup_deriv(series_selector[d])` is a [rollup function](#rollup-functions), which calculates per-second derivatives
for adjacent raw samples on the given lookbehind window `d` and returns `min`, `max` and `avg` values for the calculated per-second derivatives for adjacent raw samples on the given lookbehind window `d` and returns `min`, `max` and `avg` values for the calculated per-second derivatives
and returns them in time series with `rollup="min"`, `rollup="max"` and `rollup="avg"` additional labels. and returns them in time series with `rollup="min"`, `rollup="max"` and `rollup="avg"` additional labels.
The calculations are performed individually per each time series returned from the given [series_selector](https://docs.victoriametrics.com/keyConcepts.html#filtering). The calculations are performed individually per each time series returned from the given [series_selector](https://docs.victoriametrics.com/keyconcepts/#filtering).
Optional 2nd argument `"min"`, `"max"` or `"avg"` can be passed to keep only one calculation result and without adding a label. Optional 2nd argument `"min"`, `"max"` or `"avg"` can be passed to keep only one calculation result and without adding a label.
See also [label_match](#label_match). See also [label_match](#label_match).
@ -759,7 +759,7 @@ Metric names are stripped from the resulting rollups. Add [keep_metric_names](#k
`rollup_increase(series_selector[d])` is a [rollup function](#rollup-functions), which calculates increases for adjacent raw samples `rollup_increase(series_selector[d])` is a [rollup function](#rollup-functions), which calculates increases for adjacent raw samples
on the given lookbehind window `d` and returns `min`, `max` and `avg` values for the calculated increases on the given lookbehind window `d` and returns `min`, `max` and `avg` values for the calculated increases
and returns them in time series with `rollup="min"`, `rollup="max"` and `rollup="avg"` additional labels. and returns them in time series with `rollup="min"`, `rollup="max"` and `rollup="avg"` additional labels.
The calculations are performed individually per each time series returned from the given [series_selector](https://docs.victoriametrics.com/keyConcepts.html#filtering). The calculations are performed individually per each time series returned from the given [series_selector](https://docs.victoriametrics.com/keyconcepts/#filtering).
Optional 2nd argument `"min"`, `"max"` or `"avg"` can be passed to keep only one calculation result and without adding a label. Optional 2nd argument `"min"`, `"max"` or `"avg"` can be passed to keep only one calculation result and without adding a label.
See also [label_match](#label_match). See also [label_match](#label_match).
@ -778,7 +778,7 @@ when to use `rollup_rate()`.
Optional 2nd argument `"min"`, `"max"` or `"avg"` can be passed to keep only one calculation result and without adding a label. Optional 2nd argument `"min"`, `"max"` or `"avg"` can be passed to keep only one calculation result and without adding a label.
See also [label_match](#label_match). See also [label_match](#label_match).
The calculations are performed individually per each time series returned from the given [series_selector](https://docs.victoriametrics.com/keyConcepts.html#filtering). The calculations are performed individually per each time series returned from the given [series_selector](https://docs.victoriametrics.com/keyconcepts/#filtering).
Metric names are stripped from the resulting rollups. Add [keep_metric_names](#keep_metric_names) modifier in order to keep metric names. Metric names are stripped from the resulting rollups. Add [keep_metric_names](#keep_metric_names) modifier in order to keep metric names.
@ -787,7 +787,7 @@ Metric names are stripped from the resulting rollups. Add [keep_metric_names](#k
`rollup_scrape_interval(series_selector[d])` is a [rollup function](#rollup-functions), which calculates the interval in seconds between `rollup_scrape_interval(series_selector[d])` is a [rollup function](#rollup-functions), which calculates the interval in seconds between
adjacent raw samples on the given lookbehind window `d` and returns `min`, `max` and `avg` values for the calculated interval adjacent raw samples on the given lookbehind window `d` and returns `min`, `max` and `avg` values for the calculated interval
and returns them in time series with `rollup="min"`, `rollup="max"` and `rollup="avg"` additional labels. and returns them in time series with `rollup="min"`, `rollup="max"` and `rollup="avg"` additional labels.
The calculations are performed individually per each time series returned from the given [series_selector](https://docs.victoriametrics.com/keyConcepts.html#filtering). The calculations are performed individually per each time series returned from the given [series_selector](https://docs.victoriametrics.com/keyconcepts/#filtering).
Optional 2nd argument `"min"`, `"max"` or `"avg"` can be passed to keep only one calculation result and without adding a label. Optional 2nd argument `"min"`, `"max"` or `"avg"` can be passed to keep only one calculation result and without adding a label.
See also [label_match](#label_match). See also [label_match](#label_match).
@ -797,7 +797,7 @@ Metric names are stripped from the resulting rollups. Add [keep_metric_names](#k
#### scrape_interval #### scrape_interval
`scrape_interval(series_selector[d])` is a [rollup function](#rollup-functions), which calculates the average interval in seconds between raw samples `scrape_interval(series_selector[d])` is a [rollup function](#rollup-functions), which calculates the average interval in seconds between raw samples
on the given lookbehind window `d` per each time series returned from the given [series_selector](https://docs.victoriametrics.com/keyConcepts.html#filtering). on the given lookbehind window `d` per each time series returned from the given [series_selector](https://docs.victoriametrics.com/keyconcepts/#filtering).
Metric names are stripped from the resulting rollups. Add [keep_metric_names](#keep_metric_names) modifier in order to keep metric names. Metric names are stripped from the resulting rollups. Add [keep_metric_names](#keep_metric_names) modifier in order to keep metric names.
@ -807,7 +807,7 @@ See also [rollup_scrape_interval](#rollup_scrape_interval).
`share_gt_over_time(series_selector[d], gt)` is a [rollup function](#rollup-functions), which returns share (in the range `[0...1]`) of raw samples `share_gt_over_time(series_selector[d], gt)` is a [rollup function](#rollup-functions), which returns share (in the range `[0...1]`) of raw samples
on the given lookbehind window `d`, which are bigger than `gt`. It is calculated independently per each time series returned on the given lookbehind window `d`, which are bigger than `gt`. It is calculated independently per each time series returned
from the given [series_selector](https://docs.victoriametrics.com/keyConcepts.html#filtering). from the given [series_selector](https://docs.victoriametrics.com/keyconcepts/#filtering).
This function is useful for calculating SLI and SLO. Example: `share_gt_over_time(up[24h], 0)` - returns service availability for the last 24 hours. This function is useful for calculating SLI and SLO. Example: `share_gt_over_time(up[24h], 0)` - returns service availability for the last 24 hours.
@ -819,7 +819,7 @@ See also [share_le_over_time](#share_le_over_time) and [count_gt_over_time](#cou
`share_le_over_time(series_selector[d], le)` is a [rollup function](#rollup-functions), which returns share (in the range `[0...1]`) of raw samples `share_le_over_time(series_selector[d], le)` is a [rollup function](#rollup-functions), which returns share (in the range `[0...1]`) of raw samples
on the given lookbehind window `d`, which are smaller or equal to `le`. It is calculated independently per each time series returned on the given lookbehind window `d`, which are smaller or equal to `le`. It is calculated independently per each time series returned
from the given [series_selector](https://docs.victoriametrics.com/keyConcepts.html#filtering). from the given [series_selector](https://docs.victoriametrics.com/keyconcepts/#filtering).
This function is useful for calculating SLI and SLO. Example: `share_le_over_time(memory_usage_bytes[24h], 100*1024*1024)` returns This function is useful for calculating SLI and SLO. Example: `share_le_over_time(memory_usage_bytes[24h], 100*1024*1024)` returns
the share of time series values for the last 24 hours when memory usage was below or equal to 100MB. the share of time series values for the last 24 hours when memory usage was below or equal to 100MB.
@ -832,7 +832,7 @@ See also [share_gt_over_time](#share_gt_over_time) and [count_le_over_time](#cou
`share_eq_over_time(series_selector[d], eq)` is a [rollup function](#rollup-functions), which returns share (in the range `[0...1]`) of raw samples `share_eq_over_time(series_selector[d], eq)` is a [rollup function](#rollup-functions), which returns share (in the range `[0...1]`) of raw samples
on the given lookbehind window `d`, which are equal to `eq`. It is calculated independently per each time series returned on the given lookbehind window `d`, which are equal to `eq`. It is calculated independently per each time series returned
from the given [series_selector](https://docs.victoriametrics.com/keyConcepts.html#filtering). from the given [series_selector](https://docs.victoriametrics.com/keyconcepts/#filtering).
Metric names are stripped from the resulting rollups. Add [keep_metric_names](#keep_metric_names) modifier in order to keep metric names. Metric names are stripped from the resulting rollups. Add [keep_metric_names](#keep_metric_names) modifier in order to keep metric names.
@ -841,15 +841,15 @@ See also [count_eq_over_time](#count_eq_over_time).
#### stale_samples_over_time #### stale_samples_over_time
`stale_samples_over_time(series_selector[d])` is a [rollup function](#rollup-functions), which calculates the number `stale_samples_over_time(series_selector[d])` is a [rollup function](#rollup-functions), which calculates the number
of [staleness markers](https://docs.victoriametrics.com/vmagent.html#prometheus-staleness-markers) on the given lookbehind window `d` of [staleness markers](https://docs.victoriametrics.com/vmagent/#prometheus-staleness-markers) on the given lookbehind window `d`
per each time series matching the given [series_selector](https://docs.victoriametrics.com/keyConcepts.html#filtering). per each time series matching the given [series_selector](https://docs.victoriametrics.com/keyconcepts/#filtering).
Metric names are stripped from the resulting rollups. Add [keep_metric_names](#keep_metric_names) modifier in order to keep metric names. Metric names are stripped from the resulting rollups. Add [keep_metric_names](#keep_metric_names) modifier in order to keep metric names.
#### stddev_over_time #### stddev_over_time
`stddev_over_time(series_selector[d])` is a [rollup function](#rollup-functions), which calculates standard deviation over raw samples `stddev_over_time(series_selector[d])` is a [rollup function](#rollup-functions), which calculates standard deviation over raw samples
on the given lookbehind window `d` per each time series returned from the given [series_selector](https://docs.victoriametrics.com/keyConcepts.html#filtering). on the given lookbehind window `d` per each time series returned from the given [series_selector](https://docs.victoriametrics.com/keyconcepts/#filtering).
Metric names are stripped from the resulting rollups. Add [keep_metric_names](#keep_metric_names) modifier in order to keep metric names. Metric names are stripped from the resulting rollups. Add [keep_metric_names](#keep_metric_names) modifier in order to keep metric names.
@ -860,7 +860,7 @@ See also [stdvar_over_time](#stdvar_over_time).
#### stdvar_over_time #### stdvar_over_time
`stdvar_over_time(series_selector[d])` is a [rollup function](#rollup-functions), which calculates standard variance over raw samples `stdvar_over_time(series_selector[d])` is a [rollup function](#rollup-functions), which calculates standard variance over raw samples
on the given lookbehind window `d` per each time series returned from the given [series_selector](https://docs.victoriametrics.com/keyConcepts.html#filtering). on the given lookbehind window `d` per each time series returned from the given [series_selector](https://docs.victoriametrics.com/keyconcepts/#filtering).
Metric names are stripped from the resulting rollups. Add [keep_metric_names](#keep_metric_names) modifier in order to keep metric names. Metric names are stripped from the resulting rollups. Add [keep_metric_names](#keep_metric_names) modifier in order to keep metric names.
@ -871,7 +871,7 @@ See also [stddev_over_time](#stddev_over_time).
#### sum_eq_over_time #### sum_eq_over_time
`sum_eq_over_time(series_selector[d], eq)` is a [rollup function](#rollup-function), which calculates the sum of raw sample values equal to `eq` `sum_eq_over_time(series_selector[d], eq)` is a [rollup function](#rollup-function), which calculates the sum of raw sample values equal to `eq`
on the given lookbehind window `d` per each time series returned from the given [series_selector](https://docs.victoriametrics.com/keyConcepts.html#filtering). on the given lookbehind window `d` per each time series returned from the given [series_selector](https://docs.victoriametrics.com/keyconcepts/#filtering).
Metric names are stripped from the resulting rollups. Add [keep_metric_names](#keep_metric_names) modifier in order to keep metric names. Metric names are stripped from the resulting rollups. Add [keep_metric_names](#keep_metric_names) modifier in order to keep metric names.
@ -880,7 +880,7 @@ See also [sum_over_time](#sum_over_time) and [count_eq_over_time](#count_eq_over
#### sum_gt_over_time #### sum_gt_over_time
`sum_gt_over_time(series_selector[d], gt)` is a [rollup function](#rollup-function), which calculates the sum of raw sample values bigger than `gt` `sum_gt_over_time(series_selector[d], gt)` is a [rollup function](#rollup-function), which calculates the sum of raw sample values bigger than `gt`
on the given lookbehind window `d` per each time series returned from the given [series_selector](https://docs.victoriametrics.com/keyConcepts.html#filtering). on the given lookbehind window `d` per each time series returned from the given [series_selector](https://docs.victoriametrics.com/keyconcepts/#filtering).
Metric names are stripped from the resulting rollups. Add [keep_metric_names](#keep_metric_names) modifier in order to keep metric names. Metric names are stripped from the resulting rollups. Add [keep_metric_names](#keep_metric_names) modifier in order to keep metric names.
@ -889,7 +889,7 @@ See also [sum_over_time](#sum_over_time) and [count_gt_over_time](#count_gt_over
#### sum_le_over_time #### sum_le_over_time
`sum_le_over_time(series_selector[d], le)` is a [rollup function](#rollup-function), which calculates the sum of raw sample values smaller or equal to `le` `sum_le_over_time(series_selector[d], le)` is a [rollup function](#rollup-function), which calculates the sum of raw sample values smaller or equal to `le`
on the given lookbehind window `d` per each time series returned from the given [series_selector](https://docs.victoriametrics.com/keyConcepts.html#filtering). on the given lookbehind window `d` per each time series returned from the given [series_selector](https://docs.victoriametrics.com/keyconcepts/#filtering).
Metric names are stripped from the resulting rollups. Add [keep_metric_names](#keep_metric_names) modifier in order to keep metric names. Metric names are stripped from the resulting rollups. Add [keep_metric_names](#keep_metric_names) modifier in order to keep metric names.
@ -898,7 +898,7 @@ See also [sum_over_time](#sum_over_time) and [count_le_over_time](#count_le_over
#### sum_over_time #### sum_over_time
`sum_over_time(series_selector[d])` is a [rollup function](#rollup-functions), which calculates the sum of raw sample values `sum_over_time(series_selector[d])` is a [rollup function](#rollup-functions), which calculates the sum of raw sample values
on the given lookbehind window `d` per each time series returned from the given [series_selector](https://docs.victoriametrics.com/keyConcepts.html#filtering). on the given lookbehind window `d` per each time series returned from the given [series_selector](https://docs.victoriametrics.com/keyconcepts/#filtering).
Metric names are stripped from the resulting rollups. Add [keep_metric_names](#keep_metric_names) modifier in order to keep metric names. Metric names are stripped from the resulting rollups. Add [keep_metric_names](#keep_metric_names) modifier in order to keep metric names.
@ -907,14 +907,14 @@ This function is supported by PromQL.
#### sum2_over_time #### sum2_over_time
`sum2_over_time(series_selector[d])` is a [rollup function](#rollup-functions), which calculates the sum of squares for raw sample values `sum2_over_time(series_selector[d])` is a [rollup function](#rollup-functions), which calculates the sum of squares for raw sample values
on the given lookbehind window `d` per each time series returned from the given [series_selector](https://docs.victoriametrics.com/keyConcepts.html#filtering). on the given lookbehind window `d` per each time series returned from the given [series_selector](https://docs.victoriametrics.com/keyconcepts/#filtering).
Metric names are stripped from the resulting rollups. Add [keep_metric_names](#keep_metric_names) modifier in order to keep metric names. Metric names are stripped from the resulting rollups. Add [keep_metric_names](#keep_metric_names) modifier in order to keep metric names.
#### timestamp #### timestamp
`timestamp(series_selector[d])` is a [rollup function](#rollup-functions), which returns the timestamp in seconds with millisecond precision for the last raw sample `timestamp(series_selector[d])` is a [rollup function](#rollup-functions), which returns the timestamp in seconds with millisecond precision for the last raw sample
on the given lookbehind window `d` per each time series returned from the given [series_selector](https://docs.victoriametrics.com/keyConcepts.html#filtering). on the given lookbehind window `d` per each time series returned from the given [series_selector](https://docs.victoriametrics.com/keyconcepts/#filtering).
Metric names are stripped from the resulting rollups. Add [keep_metric_names](#keep_metric_names) modifier in order to keep metric names. Metric names are stripped from the resulting rollups. Add [keep_metric_names](#keep_metric_names) modifier in order to keep metric names.
@ -925,7 +925,7 @@ See also [time](#time) and [now](#now).
#### timestamp_with_name #### timestamp_with_name
`timestamp_with_name(series_selector[d])` is a [rollup function](#rollup-functions), which returns the timestamp in seconds with millisecond precision for the last raw sample `timestamp_with_name(series_selector[d])` is a [rollup function](#rollup-functions), which returns the timestamp in seconds with millisecond precision for the last raw sample
on the given lookbehind window `d` per each time series returned from the given [series_selector](https://docs.victoriametrics.com/keyConcepts.html#filtering). on the given lookbehind window `d` per each time series returned from the given [series_selector](https://docs.victoriametrics.com/keyconcepts/#filtering).
Metric names are preserved in the resulting rollups. Metric names are preserved in the resulting rollups.
@ -934,7 +934,7 @@ See also [timestamp](#timestamp) and [keep_metric_names](#keep_metric_names) mod
#### tfirst_over_time #### tfirst_over_time
`tfirst_over_time(series_selector[d])` is a [rollup function](#rollup-functions), which returns the timestamp in seconds with millisecond precision for the first raw sample `tfirst_over_time(series_selector[d])` is a [rollup function](#rollup-functions), which returns the timestamp in seconds with millisecond precision for the first raw sample
on the given lookbehind window `d` per each time series returned from the given [series_selector](https://docs.victoriametrics.com/keyConcepts.html#filtering). on the given lookbehind window `d` per each time series returned from the given [series_selector](https://docs.victoriametrics.com/keyconcepts/#filtering).
Metric names are stripped from the resulting rollups. Add [keep_metric_names](#keep_metric_names) modifier in order to keep metric names. Metric names are stripped from the resulting rollups. Add [keep_metric_names](#keep_metric_names) modifier in order to keep metric names.
@ -943,7 +943,7 @@ See also [first_over_time](#first_over_time).
#### tlast_change_over_time #### tlast_change_over_time
`tlast_change_over_time(series_selector[d])` is a [rollup function](#rollup-functions), which returns the timestamp in seconds with millisecond precision for the last change `tlast_change_over_time(series_selector[d])` is a [rollup function](#rollup-functions), which returns the timestamp in seconds with millisecond precision for the last change
per each time series returned from the given [series_selector](https://docs.victoriametrics.com/keyConcepts.html#filtering) on the given lookbehind window `d`. per each time series returned from the given [series_selector](https://docs.victoriametrics.com/keyconcepts/#filtering) on the given lookbehind window `d`.
Metric names are stripped from the resulting rollups. Add [keep_metric_names](#keep_metric_names) modifier in order to keep metric names. Metric names are stripped from the resulting rollups. Add [keep_metric_names](#keep_metric_names) modifier in order to keep metric names.
@ -959,7 +959,7 @@ See also [tlast_change_over_time](#tlast_change_over_time).
`tmax_over_time(series_selector[d])` is a [rollup function](#rollup-functions), which returns the timestamp in seconds with millisecond precision for the raw sample `tmax_over_time(series_selector[d])` is a [rollup function](#rollup-functions), which returns the timestamp in seconds with millisecond precision for the raw sample
with the maximum value on the given lookbehind window `d`. It is calculated independently per each time series returned with the maximum value on the given lookbehind window `d`. It is calculated independently per each time series returned
from the given [series_selector](https://docs.victoriametrics.com/keyConcepts.html#filtering). from the given [series_selector](https://docs.victoriametrics.com/keyconcepts/#filtering).
Metric names are stripped from the resulting rollups. Add [keep_metric_names](#keep_metric_names) modifier in order to keep metric names. Metric names are stripped from the resulting rollups. Add [keep_metric_names](#keep_metric_names) modifier in order to keep metric names.
@ -969,7 +969,7 @@ See also [max_over_time](#max_over_time).
`tmin_over_time(series_selector[d])` is a [rollup function](#rollup-functions), which returns the timestamp in seconds with millisecond precision for the raw sample `tmin_over_time(series_selector[d])` is a [rollup function](#rollup-functions), which returns the timestamp in seconds with millisecond precision for the raw sample
with the minimum value on the given lookbehind window `d`. It is calculated independently per each time series returned with the minimum value on the given lookbehind window `d`. It is calculated independently per each time series returned
from the given [series_selector](https://docs.victoriametrics.com/keyConcepts.html#filtering). from the given [series_selector](https://docs.victoriametrics.com/keyconcepts/#filtering).
Metric names are stripped from the resulting rollups. Add [keep_metric_names](#keep_metric_names) modifier in order to keep metric names. Metric names are stripped from the resulting rollups. Add [keep_metric_names](#keep_metric_names) modifier in order to keep metric names.
@ -979,7 +979,7 @@ See also [min_over_time](#min_over_time).
`zscore_over_time(series_selector[d])` is a [rollup function](#rollup-functions), which returns [z-score](https://en.wikipedia.org/wiki/Standard_score) `zscore_over_time(series_selector[d])` is a [rollup function](#rollup-functions), which returns [z-score](https://en.wikipedia.org/wiki/Standard_score)
for raw samples on the given lookbehind window `d`. It is calculated independently per each time series returned for raw samples on the given lookbehind window `d`. It is calculated independently per each time series returned
from the given [series_selector](https://docs.victoriametrics.com/keyConcepts.html#filtering). from the given [series_selector](https://docs.victoriametrics.com/keyconcepts/#filtering).
Metric names are stripped from the resulting rollups. Add [keep_metric_names](#keep_metric_names) modifier in order to keep metric names. Metric names are stripped from the resulting rollups. Add [keep_metric_names](#keep_metric_names) modifier in order to keep metric names.
@ -994,7 +994,7 @@ returned from the rollup `delta(temperature[24h])`.
Additional details: Additional details:
* If transform function is applied directly to a [series selector](https://docs.victoriametrics.com/keyConcepts.html#filtering), * If transform function is applied directly to a [series selector](https://docs.victoriametrics.com/keyconcepts/#filtering),
then the [default_rollup()](#default_rollup) function is automatically applied before calculating the transformations. then the [default_rollup()](#default_rollup) function is automatically applied before calculating the transformations.
For example, `abs(temperature)` is implicitly transformed to `abs(default_rollup(temperature))`. For example, `abs(temperature)` is implicitly transformed to `abs(default_rollup(temperature))`.
* All the transform functions accept optional `keep_metric_names` modifier. If it is set, * All the transform functions accept optional `keep_metric_names` modifier. If it is set,
@ -1230,7 +1230,7 @@ by replacing all the values bigger or equal to 30 with 40.
#### end #### end
`end()` is a [transform function](#transform-functions), which returns the unix timestamp in seconds for the last point. `end()` is a [transform function](#transform-functions), which returns the unix timestamp in seconds for the last point.
It is known as `end` query arg passed to [/api/v1/query_range](https://docs.victoriametrics.com/keyConcepts.html#range-query). It is known as `end` query arg passed to [/api/v1/query_range](https://docs.victoriametrics.com/keyconcepts/#range-query).
See also [start](#start), [time](#time) and [now](#now). See also [start](#start), [time](#time) and [now](#now).
@ -1653,14 +1653,14 @@ This function is supported by PromQL.
`start()` is a [transform function](#transform-functions), which returns unix timestamp in seconds for the first point. `start()` is a [transform function](#transform-functions), which returns unix timestamp in seconds for the first point.
It is known as `start` query arg passed to [/api/v1/query_range](https://docs.victoriametrics.com/keyConcepts.html#range-query). It is known as `start` query arg passed to [/api/v1/query_range](https://docs.victoriametrics.com/keyconcepts/#range-query).
See also [end](#end), [time](#time) and [now](#now). See also [end](#end), [time](#time) and [now](#now).
#### step #### step
`step()` is a [transform function](#transform-functions), which returns the step in seconds (aka interval) between the returned points. `step()` is a [transform function](#transform-functions), which returns the step in seconds (aka interval) between the returned points.
It is known as `step` query arg passed to [/api/v1/query_range](https://docs.victoriametrics.com/keyConcepts.html#range-query). It is known as `step` query arg passed to [/api/v1/query_range](https://docs.victoriametrics.com/keyconcepts/#range-query).
See also [start](#start) and [end](#end). See also [start](#start) and [end](#end).
@ -1717,7 +1717,7 @@ This function is supported by PromQL.
Additional details: Additional details:
* If label manipulation function is applied directly to a [series_selector](https://docs.victoriametrics.com/keyConcepts.html#filtering), * If label manipulation function is applied directly to a [series_selector](https://docs.victoriametrics.com/keyconcepts/#filtering),
then the [default_rollup()](#default_rollup) function is automatically applied before performing the label transformation. then the [default_rollup()](#default_rollup) function is automatically applied before performing the label transformation.
For example, `alias(temperature, "foo")` is implicitly transformed to `alias(default_rollup(temperature), "foo")`. For example, `alias(temperature, "foo")` is implicitly transformed to `alias(default_rollup(temperature), "foo")`.
@ -1894,7 +1894,7 @@ Additional details:
and calculate the [count](#count) aggregate function independently per each group, while `count(up) without (instance)` and calculate the [count](#count) aggregate function independently per each group, while `count(up) without (instance)`
would group [rollup results](#rollup-functions) by all the labels except `instance` before calculating [count](#count) aggregate function independently per each group. would group [rollup results](#rollup-functions) by all the labels except `instance` before calculating [count](#count) aggregate function independently per each group.
Multiple labels can be put in `by` and `without` modifiers. Multiple labels can be put in `by` and `without` modifiers.
* If the aggregate function is applied directly to a [series_selector](https://docs.victoriametrics.com/keyConcepts.html#filtering), * If the aggregate function is applied directly to a [series_selector](https://docs.victoriametrics.com/keyconcepts/#filtering),
then the [default_rollup()](#default_rollup) function is automatically applied before calculating the aggregate. then the [default_rollup()](#default_rollup) function is automatically applied before calculating the aggregate.
For example, `count(up)` is implicitly transformed to `count(default_rollup(up))`. For example, `count(up)` is implicitly transformed to `count(default_rollup(up))`.
* Aggregate functions accept arbitrary number of args. For example, `avg(q1, q2, q3)` would return the average values for every point * Aggregate functions accept arbitrary number of args. For example, `avg(q1, q2, q3)` would return the average values for every point
@ -2104,7 +2104,7 @@ See also [quantile](#quantile).
`share(q) by (group_labels)` is [aggregate function](#aggregate-functions), which returns shares in the range `[0..1]` `share(q) by (group_labels)` is [aggregate function](#aggregate-functions), which returns shares in the range `[0..1]`
for every non-negative points returned by `q` per each timestamp, so the sum of shares per each `group_labels` equals 1. for every non-negative points returned by `q` per each timestamp, so the sum of shares per each `group_labels` equals 1.
This function is useful for normalizing [histogram bucket](https://docs.victoriametrics.com/keyConcepts.html#histogram) shares This function is useful for normalizing [histogram bucket](https://docs.victoriametrics.com/keyconcepts/#histogram) shares
into `[0..1]` range: into `[0..1]` range:
```metricsql ```metricsql
@ -2208,7 +2208,7 @@ See also [zscore_over_time](#zscore_over_time), [range_trim_zscore](#range_trim_
## Subqueries ## Subqueries
MetricsQL supports and extends PromQL subqueries. See [this article](https://valyala.medium.com/prometheus-subqueries-in-victoriametrics-9b1492b720b3) for details. MetricsQL supports and extends PromQL subqueries. See [this article](https://valyala.medium.com/prometheus-subqueries-in-victoriametrics-9b1492b720b3) for details.
Any [rollup function](#rollup-functions) for something other than [series selector](https://docs.victoriametrics.com/keyConcepts.html#filtering) form a subquery. Any [rollup function](#rollup-functions) for something other than [series selector](https://docs.victoriametrics.com/keyconcepts/#filtering) form a subquery.
Nested rollup functions can be implicit thanks to the [implicit query conversions](#implicit-query-conversions). Nested rollup functions can be implicit thanks to the [implicit query conversions](#implicit-query-conversions).
For example, `delta(sum(m))` is implicitly converted to `delta(sum(default_rollup(m))[1i:1i])`, so it becomes a subquery, For example, `delta(sum(m))` is implicitly converted to `delta(sum(default_rollup(m))[1i:1i])`, so it becomes a subquery,
since it contains [default_rollup](#default_rollup) nested into [delta](#delta). since it contains [default_rollup](#default_rollup) nested into [delta](#delta).
@ -2219,19 +2219,19 @@ VictoriaMetrics performs subqueries in the following way:
For example, for expression `max_over_time(rate(http_requests_total[5m])[1h:30s])` the inner function `rate(http_requests_total[5m])` For example, for expression `max_over_time(rate(http_requests_total[5m])[1h:30s])` the inner function `rate(http_requests_total[5m])`
is calculated with `step=30s`. The resulting data points are aligned by the `step`. is calculated with `step=30s`. The resulting data points are aligned by the `step`.
* It calculates the outer rollup function over the results of the inner rollup function using the `step` value * It calculates the outer rollup function over the results of the inner rollup function using the `step` value
passed by Grafana to [/api/v1/query_range](https://docs.victoriametrics.com/keyConcepts.html#range-query). passed by Grafana to [/api/v1/query_range](https://docs.victoriametrics.com/keyconcepts/#range-query).
## Implicit query conversions ## Implicit query conversions
VictoriaMetrics performs the following implicit conversions for incoming queries before starting the calculations: VictoriaMetrics performs the following implicit conversions for incoming queries before starting the calculations:
* If lookbehind window in square brackets is missing inside [rollup function](#rollup-functions), then it is automatically set to the following value: * If lookbehind window in square brackets is missing inside [rollup function](#rollup-functions), then it is automatically set to the following value:
- To `step` value passed to [/api/v1/query_range](https://docs.victoriametrics.com/keyConcepts.html#range-query) or [/api/v1/query](https://docs.victoriametrics.com/keyconcepts/#instant-query) - To `step` value passed to [/api/v1/query_range](https://docs.victoriametrics.com/keyconcepts/#range-query) or [/api/v1/query](https://docs.victoriametrics.com/keyconcepts/#instant-query)
for all the [rollup functions](#rollup-functions) except of [default_rollup](#default_rollup) and [rate](#rate). This value is known as `$__interval` in Grafana or `1i` in MetricsQL. for all the [rollup functions](#rollup-functions) except of [default_rollup](#default_rollup) and [rate](#rate). This value is known as `$__interval` in Grafana or `1i` in MetricsQL.
For example, `avg_over_time(temperature)` is automatically transformed to `avg_over_time(temperature[1i])`. For example, `avg_over_time(temperature)` is automatically transformed to `avg_over_time(temperature[1i])`.
- To the `max(step, scrape_interval)`, where `scrape_interval` is the interval between [raw samples](https://docs.victoriametrics.com/keyconcepts/#raw-samples) - To the `max(step, scrape_interval)`, where `scrape_interval` is the interval between [raw samples](https://docs.victoriametrics.com/keyconcepts/#raw-samples)
for [default_rollup](#default_rollup) and [rate](#rate) functions. This allows avoiding unexpected gaps on the graph when `step` is smaller than `scrape_interval`. for [default_rollup](#default_rollup) and [rate](#rate) functions. This allows avoiding unexpected gaps on the graph when `step` is smaller than `scrape_interval`.
* All the [series selectors](https://docs.victoriametrics.com/keyConcepts.html#filtering), * All the [series selectors](https://docs.victoriametrics.com/keyconcepts/#filtering),
which aren't wrapped into [rollup functions](#rollup-functions), are automatically wrapped into [default_rollup](#default_rollup) function. which aren't wrapped into [rollup functions](#rollup-functions), are automatically wrapped into [default_rollup](#default_rollup) function.
Examples: Examples:
* `foo` is transformed to `default_rollup(foo)` * `foo` is transformed to `default_rollup(foo)`
@ -2242,6 +2242,6 @@ VictoriaMetrics performs the following implicit conversions for incoming queries
it is [transform function](#transform-functions) it is [transform function](#transform-functions)
* If `step` in square brackets is missing inside [subquery](#subqueries), then `1i` step is automatically added there. * If `step` in square brackets is missing inside [subquery](#subqueries), then `1i` step is automatically added there.
For example, `avg_over_time(rate(http_requests_total[5m])[1h])` is automatically converted to `avg_over_time(rate(http_requests_total[5m])[1h:1i])`. For example, `avg_over_time(rate(http_requests_total[5m])[1h])` is automatically converted to `avg_over_time(rate(http_requests_total[5m])[1h:1i])`.
* If something other than [series selector](https://docs.victoriametrics.com/keyConcepts.html#filtering) * If something other than [series selector](https://docs.victoriametrics.com/keyconcepts/#filtering)
is passed to [rollup function](#rollup-functions), then a [subquery](#subqueries) with `1i` lookbehind window and `1i` step is automatically formed. is passed to [rollup function](#rollup-functions), then a [subquery](#subqueries) with `1i` lookbehind window and `1i` step is automatically formed.
For example, `rate(sum(up))` is automatically converted to `rate((sum(default_rollup(up)))[1i:1i])`. For example, `rate(sum(up))` is automatically converted to `rate((sum(default_rollup(up)))[1i:1i])`.

View File

@ -22,7 +22,7 @@ However, there are some [intentional differences](https://medium.com/@romanhavro
[Standalone MetricsQL package](https://godoc.org/github.com/VictoriaMetrics/metricsql) can be used for parsing MetricsQL in external apps. [Standalone MetricsQL package](https://godoc.org/github.com/VictoriaMetrics/metricsql) can be used for parsing MetricsQL in external apps.
If you are unfamiliar with PromQL, then it is suggested reading [this tutorial for beginners](https://medium.com/@valyala/promql-tutorial-for-beginners-9ab455142085) If you are unfamiliar with PromQL, then it is suggested reading [this tutorial for beginners](https://medium.com/@valyala/promql-tutorial-for-beginners-9ab455142085)
and introduction into [basic querying via MetricsQL](https://docs.victoriametrics.com/keyConcepts.html#metricsql). and introduction into [basic querying via MetricsQL](https://docs.victoriametrics.com/keyconcepts/#metricsql).
The following functionality is implemented differently in MetricsQL compared to PromQL. This improves user experience: The following functionality is implemented differently in MetricsQL compared to PromQL. This improves user experience:
@ -70,15 +70,15 @@ The list of MetricsQL features on top of PromQL:
VictoriaMetrics can be used as Graphite datasource in Grafana. See [these docs](https://docs.victoriametrics.com/#graphite-api-usage) for details. VictoriaMetrics can be used as Graphite datasource in Grafana. See [these docs](https://docs.victoriametrics.com/#graphite-api-usage) for details.
See also [label_graphite_group](#label_graphite_group) function, which can be used for extracting the given groups from Graphite metric name. See also [label_graphite_group](#label_graphite_group) function, which can be used for extracting the given groups from Graphite metric name.
* Lookbehind window in square brackets for [rollup functions](#rollup-functions) may be omitted. VictoriaMetrics automatically selects the lookbehind window * Lookbehind window in square brackets for [rollup functions](#rollup-functions) may be omitted. VictoriaMetrics automatically selects the lookbehind window
depending on the `step` query arg passed to [/api/v1/query_range](https://docs.victoriametrics.com/keyConcepts.html#range-query) depending on the `step` query arg passed to [/api/v1/query_range](https://docs.victoriametrics.com/keyconcepts/#range-query)
and the real interval between [raw samples](https://docs.victoriametrics.com/keyconcepts/#raw-samples) (aka `scrape_interval`). and the real interval between [raw samples](https://docs.victoriametrics.com/keyconcepts/#raw-samples) (aka `scrape_interval`).
For instance, the following query is valid in VictoriaMetrics: `rate(node_network_receive_bytes_total)`. For instance, the following query is valid in VictoriaMetrics: `rate(node_network_receive_bytes_total)`.
It is roughly equivalent to `rate(node_network_receive_bytes_total[$__interval])` when used in Grafana. It is roughly equivalent to `rate(node_network_receive_bytes_total[$__interval])` when used in Grafana.
The difference is documented in [rate() docs](#rate). The difference is documented in [rate() docs](#rate).
* Numeric values can contain `_` delimiters for better readability. For example, `1_234_567_890` can be used in queries instead of `1234567890`. * Numeric values can contain `_` delimiters for better readability. For example, `1_234_567_890` can be used in queries instead of `1234567890`.
* [Series selectors](https://docs.victoriametrics.com/keyConcepts.html#filtering) accept multiple `or` filters. For example, `{env="prod",job="a" or env="dev",job="b"}` * [Series selectors](https://docs.victoriametrics.com/keyconcepts/#filtering) accept multiple `or` filters. For example, `{env="prod",job="a" or env="dev",job="b"}`
selects series with `{env="prod",job="a"}` or `{env="dev",job="b"}` labels. selects series with `{env="prod",job="a"}` or `{env="dev",job="b"}` labels.
See [these docs](https://docs.victoriametrics.com/keyConcepts.html#filtering-by-multiple-or-filters) for details. See [these docs](https://docs.victoriametrics.com/keyconcepts/#filtering-by-multiple-or-filters) for details.
* Support for `group_left(*)` and `group_right(*)` for copying all the labels from time series on the `one` side * Support for `group_left(*)` and `group_right(*)` for copying all the labels from time series on the `one` side
of [many-to-one operations](https://prometheus.io/docs/prometheus/latest/querying/operators/#many-to-one-and-one-to-many-vector-matches). of [many-to-one operations](https://prometheus.io/docs/prometheus/latest/querying/operators/#many-to-one-and-one-to-many-vector-matches).
The copied label names may clash with the existing label names, so MetricsQL provides an ability to add prefix to the copied metric names The copied label names may clash with the existing label names, so MetricsQL provides an ability to add prefix to the copied metric names
@ -153,26 +153,26 @@ MetricsQL provides the following functions:
### Rollup functions ### Rollup functions
**Rollup functions** (aka range functions or window functions) calculate rollups over **raw samples** **Rollup functions** (aka range functions or window functions) calculate rollups over **raw samples**
on the given lookbehind window for the [selected time series](https://docs.victoriametrics.com/keyConcepts.html#filtering). on the given lookbehind window for the [selected time series](https://docs.victoriametrics.com/keyconcepts/#filtering).
For example, `avg_over_time(temperature[24h])` calculates the average temperature over raw samples for the last 24 hours. For example, `avg_over_time(temperature[24h])` calculates the average temperature over raw samples for the last 24 hours.
Additional details: Additional details:
* If rollup functions are used for building graphs in Grafana, then the rollup is calculated independently per each point on the graph. * If rollup functions are used for building graphs in Grafana, then the rollup is calculated independently per each point on the graph.
For example, every point for `avg_over_time(temperature[24h])` graph shows the average temperature for the last 24 hours ending at this point. For example, every point for `avg_over_time(temperature[24h])` graph shows the average temperature for the last 24 hours ending at this point.
The interval between points is set as `step` query arg passed by Grafana to [/api/v1/query_range](https://docs.victoriametrics.com/keyConcepts.html#range-query). The interval between points is set as `step` query arg passed by Grafana to [/api/v1/query_range](https://docs.victoriametrics.com/keyconcepts/#range-query).
* If the given [series selector](https://docs.victoriametrics.com/keyConcepts.html#filtering) returns multiple time series, * If the given [series selector](https://docs.victoriametrics.com/keyconcepts/#filtering) returns multiple time series,
then rollups are calculated individually per each returned series. then rollups are calculated individually per each returned series.
* If lookbehind window in square brackets is missing, then it is automatically set to the following value: * If lookbehind window in square brackets is missing, then it is automatically set to the following value:
- To `step` value passed to [/api/v1/query_range](https://docs.victoriametrics.com/keyConcepts.html#range-query) or [/api/v1/query](https://docs.victoriametrics.com/keyconcepts/#instant-query) - To `step` value passed to [/api/v1/query_range](https://docs.victoriametrics.com/keyconcepts/#range-query) or [/api/v1/query](https://docs.victoriametrics.com/keyconcepts/#instant-query)
for all the [rollup functions](#rollup-functions) except of [default_rollup](#default_rollup) and [rate](#rate). This value is known as `$__interval` in Grafana or `1i` in MetricsQL. for all the [rollup functions](#rollup-functions) except of [default_rollup](#default_rollup) and [rate](#rate). This value is known as `$__interval` in Grafana or `1i` in MetricsQL.
For example, `avg_over_time(temperature)` is automatically transformed to `avg_over_time(temperature[1i])`. For example, `avg_over_time(temperature)` is automatically transformed to `avg_over_time(temperature[1i])`.
- To the `max(step, scrape_interval)`, where `scrape_interval` is the interval between [raw samples](https://docs.victoriametrics.com/keyconcepts/#raw-samples) - To the `max(step, scrape_interval)`, where `scrape_interval` is the interval between [raw samples](https://docs.victoriametrics.com/keyconcepts/#raw-samples)
for [default_rollup](#default_rollup) and [rate](#rate) functions. This allows avoiding unexpected gaps on the graph when `step` is smaller than `scrape_interval`. for [default_rollup](#default_rollup) and [rate](#rate) functions. This allows avoiding unexpected gaps on the graph when `step` is smaller than `scrape_interval`.
* Every [series selector](https://docs.victoriametrics.com/keyConcepts.html#filtering) in MetricsQL must be wrapped into a rollup function. * Every [series selector](https://docs.victoriametrics.com/keyconcepts/#filtering) in MetricsQL must be wrapped into a rollup function.
Otherwise, it is automatically wrapped into [default_rollup](#default_rollup). For example, `foo{bar="baz"}` Otherwise, it is automatically wrapped into [default_rollup](#default_rollup). For example, `foo{bar="baz"}`
is automatically converted to `default_rollup(foo{bar="baz"})` before performing the calculations. is automatically converted to `default_rollup(foo{bar="baz"})` before performing the calculations.
* If something other than [series selector](https://docs.victoriametrics.com/keyConcepts.html#filtering) is passed to rollup function, * If something other than [series selector](https://docs.victoriametrics.com/keyconcepts/#filtering) is passed to rollup function,
then the inner arg is automatically converted to a [subquery](#subqueries). then the inner arg is automatically converted to a [subquery](#subqueries).
* All the rollup functions accept optional `keep_metric_names` modifier. If it is set, then the function keeps metric names in results. * All the rollup functions accept optional `keep_metric_names` modifier. If it is set, then the function keeps metric names in results.
See [these docs](#keep_metric_names). See [these docs](#keep_metric_names).
@ -195,7 +195,7 @@ See also [present_over_time](#present_over_time).
`aggr_over_time(("rollup_func1", "rollup_func2", ...), series_selector[d])` is a [rollup function](#rollup-functions), `aggr_over_time(("rollup_func1", "rollup_func2", ...), series_selector[d])` is a [rollup function](#rollup-functions),
which calculates all the listed `rollup_func*` for raw samples on the given lookbehind window `d`. which calculates all the listed `rollup_func*` for raw samples on the given lookbehind window `d`.
The calculations are performed individually per each time series returned The calculations are performed individually per each time series returned
from the given [series_selector](https://docs.victoriametrics.com/keyConcepts.html#filtering). from the given [series_selector](https://docs.victoriametrics.com/keyconcepts/#filtering).
`rollup_func*` can contain any rollup function. For instance, `aggr_over_time(("min_over_time", "max_over_time", "rate"), m[d])` `rollup_func*` can contain any rollup function. For instance, `aggr_over_time(("min_over_time", "max_over_time", "rate"), m[d])`
would calculate [min_over_time](#min_over_time), [max_over_time](#max_over_time) and [rate](#rate) for `m[d]`. would calculate [min_over_time](#min_over_time), [max_over_time](#max_over_time) and [rate](#rate) for `m[d]`.
@ -204,7 +204,7 @@ would calculate [min_over_time](#min_over_time), [max_over_time](#max_over_time)
`ascent_over_time(series_selector[d])` is a [rollup function](#rollup-functions), which calculates `ascent_over_time(series_selector[d])` is a [rollup function](#rollup-functions), which calculates
ascent of raw sample values on the given lookbehind window `d`. The calculations are performed individually ascent of raw sample values on the given lookbehind window `d`. The calculations are performed individually
per each time series returned from the given [series_selector](https://docs.victoriametrics.com/keyConcepts.html#filtering). per each time series returned from the given [series_selector](https://docs.victoriametrics.com/keyconcepts/#filtering).
This function is useful for tracking height gains in GPS tracking. Metric names are stripped from the resulting rollups. This function is useful for tracking height gains in GPS tracking. Metric names are stripped from the resulting rollups.
@ -216,7 +216,7 @@ See also [descent_over_time](#descent_over_time).
`avg_over_time(series_selector[d])` is a [rollup function](#rollup-functions), which calculates the average value `avg_over_time(series_selector[d])` is a [rollup function](#rollup-functions), which calculates the average value
over raw samples on the given lookbehind window `d` per each time series returned over raw samples on the given lookbehind window `d` per each time series returned
from the given [series_selector](https://docs.victoriametrics.com/keyConcepts.html#filtering). from the given [series_selector](https://docs.victoriametrics.com/keyconcepts/#filtering).
This function is supported by PromQL. This function is supported by PromQL.
@ -226,7 +226,7 @@ See also [median_over_time](#median_over_time).
`changes(series_selector[d])` is a [rollup function](#rollup-functions), which calculates the number of times `changes(series_selector[d])` is a [rollup function](#rollup-functions), which calculates the number of times
the raw samples changed on the given lookbehind window `d` per each time series returned the raw samples changed on the given lookbehind window `d` per each time series returned
from the given [series_selector](https://docs.victoriametrics.com/keyConcepts.html#filtering). from the given [series_selector](https://docs.victoriametrics.com/keyconcepts/#filtering).
Unlike `changes()` in Prometheus it takes into account the change from the last sample before the given lookbehind window `d`. Unlike `changes()` in Prometheus it takes into account the change from the last sample before the given lookbehind window `d`.
See [this article](https://medium.com/@romanhavronenko/victoriametrics-promql-compliance-d4318203f51e) for details. See [this article](https://medium.com/@romanhavronenko/victoriametrics-promql-compliance-d4318203f51e) for details.
@ -241,7 +241,7 @@ See also [changes_prometheus](#changes_prometheus).
`changes_prometheus(series_selector[d])` is a [rollup function](#rollup-functions), which calculates the number of times `changes_prometheus(series_selector[d])` is a [rollup function](#rollup-functions), which calculates the number of times
the raw samples changed on the given lookbehind window `d` per each time series returned the raw samples changed on the given lookbehind window `d` per each time series returned
from the given [series_selector](https://docs.victoriametrics.com/keyConcepts.html#filtering). from the given [series_selector](https://docs.victoriametrics.com/keyconcepts/#filtering).
It doesn't take into account the change from the last sample before the given lookbehind window `d` in the same way as Prometheus does. It doesn't take into account the change from the last sample before the given lookbehind window `d` in the same way as Prometheus does.
See [this article](https://medium.com/@romanhavronenko/victoriametrics-promql-compliance-d4318203f51e) for details. See [this article](https://medium.com/@romanhavronenko/victoriametrics-promql-compliance-d4318203f51e) for details.
@ -256,7 +256,7 @@ See also [changes](#changes).
`count_eq_over_time(series_selector[d], eq)` is a [rollup function](#rollup-functions), which calculates the number of raw samples `count_eq_over_time(series_selector[d], eq)` is a [rollup function](#rollup-functions), which calculates the number of raw samples
on the given lookbehind window `d`, which are equal to `eq`. It is calculated independently per each time series returned on the given lookbehind window `d`, which are equal to `eq`. It is calculated independently per each time series returned
from the given [series_selector](https://docs.victoriametrics.com/keyConcepts.html#filtering). from the given [series_selector](https://docs.victoriametrics.com/keyconcepts/#filtering).
Metric names are stripped from the resulting rollups. Add [keep_metric_names](#keep_metric_names) modifier in order to keep metric names. Metric names are stripped from the resulting rollups. Add [keep_metric_names](#keep_metric_names) modifier in order to keep metric names.
@ -266,7 +266,7 @@ See also [count_over_time](#count_over_time), [share_eq_over_time](#share_eq_ove
`count_gt_over_time(series_selector[d], gt)` is a [rollup function](#rollup-functions), which calculates the number of raw samples `count_gt_over_time(series_selector[d], gt)` is a [rollup function](#rollup-functions), which calculates the number of raw samples
on the given lookbehind window `d`, which are bigger than `gt`. It is calculated independently per each time series returned on the given lookbehind window `d`, which are bigger than `gt`. It is calculated independently per each time series returned
from the given [series_selector](https://docs.victoriametrics.com/keyConcepts.html#filtering). from the given [series_selector](https://docs.victoriametrics.com/keyconcepts/#filtering).
Metric names are stripped from the resulting rollups. Add [keep_metric_names](#keep_metric_names) modifier in order to keep metric names. Metric names are stripped from the resulting rollups. Add [keep_metric_names](#keep_metric_names) modifier in order to keep metric names.
@ -276,7 +276,7 @@ See also [count_over_time](#count_over_time) and [share_gt_over_time](#share_gt_
`count_le_over_time(series_selector[d], le)` is a [rollup function](#rollup-functions), which calculates the number of raw samples `count_le_over_time(series_selector[d], le)` is a [rollup function](#rollup-functions), which calculates the number of raw samples
on the given lookbehind window `d`, which don't exceed `le`. It is calculated independently per each time series returned on the given lookbehind window `d`, which don't exceed `le`. It is calculated independently per each time series returned
from the given [series_selector](https://docs.victoriametrics.com/keyConcepts.html#filtering). from the given [series_selector](https://docs.victoriametrics.com/keyconcepts/#filtering).
Metric names are stripped from the resulting rollups. Add [keep_metric_names](#keep_metric_names) modifier in order to keep metric names. Metric names are stripped from the resulting rollups. Add [keep_metric_names](#keep_metric_names) modifier in order to keep metric names.
@ -286,7 +286,7 @@ See also [count_over_time](#count_over_time) and [share_le_over_time](#share_le_
`count_ne_over_time(series_selector[d], ne)` is a [rollup function](#rollup-functions), which calculates the number of raw samples `count_ne_over_time(series_selector[d], ne)` is a [rollup function](#rollup-functions), which calculates the number of raw samples
on the given lookbehind window `d`, which aren't equal to `ne`. It is calculated independently per each time series returned on the given lookbehind window `d`, which aren't equal to `ne`. It is calculated independently per each time series returned
from the given [series_selector](https://docs.victoriametrics.com/keyConcepts.html#filtering). from the given [series_selector](https://docs.victoriametrics.com/keyconcepts/#filtering).
Metric names are stripped from the resulting rollups. Add [keep_metric_names](#keep_metric_names) modifier in order to keep metric names. Metric names are stripped from the resulting rollups. Add [keep_metric_names](#keep_metric_names) modifier in order to keep metric names.
@ -295,7 +295,7 @@ See also [count_over_time](#count_over_time).
#### count_over_time #### count_over_time
`count_over_time(series_selector[d])` is a [rollup function](#rollup-functions), which calculates the number of raw samples `count_over_time(series_selector[d])` is a [rollup function](#rollup-functions), which calculates the number of raw samples
on the given lookbehind window `d` per each time series returned from the given [series_selector](https://docs.victoriametrics.com/keyConcepts.html#filtering). on the given lookbehind window `d` per each time series returned from the given [series_selector](https://docs.victoriametrics.com/keyconcepts/#filtering).
Metric names are stripped from the resulting rollups. Add [keep_metric_names](#keep_metric_names) modifier in order to keep metric names. Metric names are stripped from the resulting rollups. Add [keep_metric_names](#keep_metric_names) modifier in order to keep metric names.
@ -307,7 +307,7 @@ See also [count_le_over_time](#count_le_over_time), [count_gt_over_time](#count_
`count_values_over_time("label", series_selector[d])` is a [rollup function](#rollup-functions), which counts the number of raw samples `count_values_over_time("label", series_selector[d])` is a [rollup function](#rollup-functions), which counts the number of raw samples
with the same value over the given lookbehind window and stores the counts in a time series with an additional `label`, which contains each initial value. with the same value over the given lookbehind window and stores the counts in a time series with an additional `label`, which contains each initial value.
The results are calculated independently per each time series returned from the given [series_selector](https://docs.victoriametrics.com/keyConcepts.html#filtering). The results are calculated independently per each time series returned from the given [series_selector](https://docs.victoriametrics.com/keyconcepts/#filtering).
Metric names are stripped from the resulting rollups. Add [keep_metric_names](#keep_metric_names) modifier in order to keep metric names. Metric names are stripped from the resulting rollups. Add [keep_metric_names](#keep_metric_names) modifier in order to keep metric names.
@ -316,7 +316,7 @@ See also [count_eq_over_time](#count_eq_over_time), [count_values](#count_values
#### decreases_over_time #### decreases_over_time
`decreases_over_time(series_selector[d])` is a [rollup function](#rollup-functions), which calculates the number of raw sample value decreases `decreases_over_time(series_selector[d])` is a [rollup function](#rollup-functions), which calculates the number of raw sample value decreases
over the given lookbehind window `d` per each time series returned from the given [series_selector](https://docs.victoriametrics.com/keyConcepts.html#filtering). over the given lookbehind window `d` per each time series returned from the given [series_selector](https://docs.victoriametrics.com/keyconcepts/#filtering).
Metric names are stripped from the resulting rollups. Add [keep_metric_names](#keep_metric_names) modifier in order to keep metric names. Metric names are stripped from the resulting rollups. Add [keep_metric_names](#keep_metric_names) modifier in order to keep metric names.
@ -325,7 +325,7 @@ See also [increases_over_time](#increases_over_time).
#### default_rollup #### default_rollup
`default_rollup(series_selector[d])` is a [rollup function](#rollup-functions), which returns the last raw sample value on the given lookbehind window `d` `default_rollup(series_selector[d])` is a [rollup function](#rollup-functions), which returns the last raw sample value on the given lookbehind window `d`
per each time series returned from the given [series_selector](https://docs.victoriametrics.com/keyConcepts.html#filtering). per each time series returned from the given [series_selector](https://docs.victoriametrics.com/keyconcepts/#filtering).
If the lookbehind window is skipped in square brackets, then it is automatically calculated as `max(step, scrape_interval)`, where `step` is the query arg value If the lookbehind window is skipped in square brackets, then it is automatically calculated as `max(step, scrape_interval)`, where `step` is the query arg value
passed to [/api/v1/query_range](https://docs.victoriametrics.com/keyconcepts/#range-query) or [/api/v1/query](https://docs.victoriametrics.com/keyconcepts/#instant-query), passed to [/api/v1/query_range](https://docs.victoriametrics.com/keyconcepts/#range-query) or [/api/v1/query](https://docs.victoriametrics.com/keyconcepts/#instant-query),
@ -336,7 +336,7 @@ This allows avoiding unexpected gaps on the graph when `step` is smaller than th
`delta(series_selector[d])` is a [rollup function](#rollup-functions), which calculates the difference between `delta(series_selector[d])` is a [rollup function](#rollup-functions), which calculates the difference between
the last sample before the given lookbehind window `d` and the last sample at the given lookbehind window `d` the last sample before the given lookbehind window `d` and the last sample at the given lookbehind window `d`
per each time series returned from the given [series_selector](https://docs.victoriametrics.com/keyConcepts.html#filtering). per each time series returned from the given [series_selector](https://docs.victoriametrics.com/keyconcepts/#filtering).
The behaviour of `delta()` function in MetricsQL is slightly different to the behaviour of `delta()` function in Prometheus. The behaviour of `delta()` function in MetricsQL is slightly different to the behaviour of `delta()` function in Prometheus.
See [this article](https://medium.com/@romanhavronenko/victoriametrics-promql-compliance-d4318203f51e) for details. See [this article](https://medium.com/@romanhavronenko/victoriametrics-promql-compliance-d4318203f51e) for details.
@ -351,7 +351,7 @@ See also [increase](#increase) and [delta_prometheus](#delta_prometheus).
`delta_prometheus(series_selector[d])` is a [rollup function](#rollup-functions), which calculates the difference between `delta_prometheus(series_selector[d])` is a [rollup function](#rollup-functions), which calculates the difference between
the first and the last samples at the given lookbehind window `d` per each time series returned the first and the last samples at the given lookbehind window `d` per each time series returned
from the given [series_selector](https://docs.victoriametrics.com/keyConcepts.html#filtering). from the given [series_selector](https://docs.victoriametrics.com/keyconcepts/#filtering).
The behaviour of `delta_prometheus()` is close to the behaviour of `delta()` function in Prometheus. The behaviour of `delta_prometheus()` is close to the behaviour of `delta()` function in Prometheus.
See [this article](https://medium.com/@romanhavronenko/victoriametrics-promql-compliance-d4318203f51e) for details. See [this article](https://medium.com/@romanhavronenko/victoriametrics-promql-compliance-d4318203f51e) for details.
@ -363,7 +363,7 @@ See also [delta](#delta).
#### deriv #### deriv
`deriv(series_selector[d])` is a [rollup function](#rollup-functions), which calculates per-second derivative over the given lookbehind window `d` `deriv(series_selector[d])` is a [rollup function](#rollup-functions), which calculates per-second derivative over the given lookbehind window `d`
per each time series returned from the given [series_selector](https://docs.victoriametrics.com/keyConcepts.html#filtering). per each time series returned from the given [series_selector](https://docs.victoriametrics.com/keyconcepts/#filtering).
The derivative is calculated using linear regression. The derivative is calculated using linear regression.
Metric names are stripped from the resulting rollups. Add [keep_metric_names](#keep_metric_names) modifier in order to keep metric names. Metric names are stripped from the resulting rollups. Add [keep_metric_names](#keep_metric_names) modifier in order to keep metric names.
@ -376,7 +376,7 @@ See also [deriv_fast](#deriv_fast) and [ideriv](#ideriv).
`deriv_fast(series_selector[d])` is a [rollup function](#rollup-functions), which calculates per-second derivative `deriv_fast(series_selector[d])` is a [rollup function](#rollup-functions), which calculates per-second derivative
using the first and the last raw samples on the given lookbehind window `d` per each time series returned using the first and the last raw samples on the given lookbehind window `d` per each time series returned
from the given [series_selector](https://docs.victoriametrics.com/keyConcepts.html#filtering). from the given [series_selector](https://docs.victoriametrics.com/keyconcepts/#filtering).
Metric names are stripped from the resulting rollups. Add [keep_metric_names](#keep_metric_names) modifier in order to keep metric names. Metric names are stripped from the resulting rollups. Add [keep_metric_names](#keep_metric_names) modifier in order to keep metric names.
@ -386,7 +386,7 @@ See also [deriv](#deriv) and [ideriv](#ideriv).
`descent_over_time(series_selector[d])` is a [rollup function](#rollup-functions), which calculates descent of raw sample values `descent_over_time(series_selector[d])` is a [rollup function](#rollup-functions), which calculates descent of raw sample values
on the given lookbehind window `d`. The calculations are performed individually per each time series returned on the given lookbehind window `d`. The calculations are performed individually per each time series returned
from the given [series_selector](https://docs.victoriametrics.com/keyConcepts.html#filtering). from the given [series_selector](https://docs.victoriametrics.com/keyconcepts/#filtering).
This function is useful for tracking height loss in GPS tracking. This function is useful for tracking height loss in GPS tracking.
@ -397,7 +397,7 @@ See also [ascent_over_time](#ascent_over_time).
#### distinct_over_time #### distinct_over_time
`distinct_over_time(series_selector[d])` is a [rollup function](#rollup-functions), which returns the number of distinct raw sample values `distinct_over_time(series_selector[d])` is a [rollup function](#rollup-functions), which returns the number of distinct raw sample values
on the given lookbehind window `d` per each time series returned from the given [series_selector](https://docs.victoriametrics.com/keyConcepts.html#filtering). on the given lookbehind window `d` per each time series returned from the given [series_selector](https://docs.victoriametrics.com/keyconcepts/#filtering).
Metric names are stripped from the resulting rollups. Add [keep_metric_names](#keep_metric_names) modifier in order to keep metric names. Metric names are stripped from the resulting rollups. Add [keep_metric_names](#keep_metric_names) modifier in order to keep metric names.
@ -406,7 +406,7 @@ See also [count_values_over_time](#count_values_over_time).
#### duration_over_time #### duration_over_time
`duration_over_time(series_selector[d], max_interval)` is a [rollup function](#rollup-functions), which returns the duration in seconds `duration_over_time(series_selector[d], max_interval)` is a [rollup function](#rollup-functions), which returns the duration in seconds
when time series returned from the given [series_selector](https://docs.victoriametrics.com/keyConcepts.html#filtering) were present when time series returned from the given [series_selector](https://docs.victoriametrics.com/keyconcepts/#filtering) were present
over the given lookbehind window `d`. It is expected that intervals between adjacent samples per each series don't exceed the `max_interval`. over the given lookbehind window `d`. It is expected that intervals between adjacent samples per each series don't exceed the `max_interval`.
Otherwise, such intervals are considered as gaps and aren't counted. Otherwise, such intervals are considered as gaps and aren't counted.
@ -417,7 +417,7 @@ See also [lifetime](#lifetime) and [lag](#lag).
#### first_over_time #### first_over_time
`first_over_time(series_selector[d])` is a [rollup function](#rollup-functions), which returns the first raw sample value `first_over_time(series_selector[d])` is a [rollup function](#rollup-functions), which returns the first raw sample value
on the given lookbehind window `d` per each time series returned from the given [series_selector](https://docs.victoriametrics.com/keyConcepts.html#filtering). on the given lookbehind window `d` per each time series returned from the given [series_selector](https://docs.victoriametrics.com/keyconcepts/#filtering).
See also [last_over_time](#last_over_time) and [tfirst_over_time](#tfirst_over_time). See also [last_over_time](#last_over_time) and [tfirst_over_time](#tfirst_over_time).
@ -425,7 +425,7 @@ See also [last_over_time](#last_over_time) and [tfirst_over_time](#tfirst_over_t
`geomean_over_time(series_selector[d])` is a [rollup function](#rollup-functions), which calculates [geometric mean](https://en.wikipedia.org/wiki/Geometric_mean) `geomean_over_time(series_selector[d])` is a [rollup function](#rollup-functions), which calculates [geometric mean](https://en.wikipedia.org/wiki/Geometric_mean)
over raw samples on the given lookbehind window `d` per each time series returned over raw samples on the given lookbehind window `d` per each time series returned
from the given [series_selector](https://docs.victoriametrics.com/keyConcepts.html#filtering). from the given [series_selector](https://docs.victoriametrics.com/keyconcepts/#filtering).
Metric names are stripped from the resulting rollups. Add [keep_metric_names](#keep_metric_names) modifier in order to keep metric names. Metric names are stripped from the resulting rollups. Add [keep_metric_names](#keep_metric_names) modifier in order to keep metric names.
@ -433,9 +433,9 @@ Metric names are stripped from the resulting rollups. Add [keep_metric_names](#k
`histogram_over_time(series_selector[d])` is a [rollup function](#rollup-functions), which calculates `histogram_over_time(series_selector[d])` is a [rollup function](#rollup-functions), which calculates
[VictoriaMetrics histogram](https://godoc.org/github.com/VictoriaMetrics/metrics#Histogram) over raw samples on the given lookbehind window `d`. [VictoriaMetrics histogram](https://godoc.org/github.com/VictoriaMetrics/metrics#Histogram) over raw samples on the given lookbehind window `d`.
It is calculated individually per each time series returned from the given [series_selector](https://docs.victoriametrics.com/keyConcepts.html#filtering). It is calculated individually per each time series returned from the given [series_selector](https://docs.victoriametrics.com/keyconcepts/#filtering).
The resulting histograms are useful to pass to [histogram_quantile](#histogram_quantile) for calculating quantiles The resulting histograms are useful to pass to [histogram_quantile](#histogram_quantile) for calculating quantiles
over multiple [gauges](https://docs.victoriametrics.com/keyConcepts.html#gauge). over multiple [gauges](https://docs.victoriametrics.com/keyconcepts/#gauge).
For example, the following query calculates median temperature by country over the last 24 hours: For example, the following query calculates median temperature by country over the last 24 hours:
`histogram_quantile(0.5, sum(histogram_over_time(temperature[24h])) by (vmrange,country))`. `histogram_quantile(0.5, sum(histogram_over_time(temperature[24h])) by (vmrange,country))`.
@ -459,8 +459,8 @@ See also [hoeffding_bound_lower](#hoeffding_bound_lower).
`holt_winters(series_selector[d], sf, tf)` is a [rollup function](#rollup-functions), which calculates Holt-Winters value `holt_winters(series_selector[d], sf, tf)` is a [rollup function](#rollup-functions), which calculates Holt-Winters value
(aka [double exponential smoothing](https://en.wikipedia.org/wiki/Exponential_smoothing#Double_exponential_smoothing)) for raw samples (aka [double exponential smoothing](https://en.wikipedia.org/wiki/Exponential_smoothing#Double_exponential_smoothing)) for raw samples
over the given lookbehind window `d` using the given smoothing factor `sf` and the given trend factor `tf`. over the given lookbehind window `d` using the given smoothing factor `sf` and the given trend factor `tf`.
Both `sf` and `tf` must be in the range `[0...1]`. It is expected that the [series_selector](https://docs.victoriametrics.com/keyConcepts.html#filtering) Both `sf` and `tf` must be in the range `[0...1]`. It is expected that the [series_selector](https://docs.victoriametrics.com/keyconcepts/#filtering)
returns time series of [gauge type](https://docs.victoriametrics.com/keyConcepts.html#gauge). returns time series of [gauge type](https://docs.victoriametrics.com/keyconcepts/#gauge).
This function is supported by PromQL. This function is supported by PromQL.
@ -469,7 +469,7 @@ See also [range_linear_regression](#range_linear_regression).
#### idelta #### idelta
`idelta(series_selector[d])` is a [rollup function](#rollup-functions), which calculates the difference between the last two raw samples `idelta(series_selector[d])` is a [rollup function](#rollup-functions), which calculates the difference between the last two raw samples
on the given lookbehind window `d` per each time series returned from the given [series_selector](https://docs.victoriametrics.com/keyConcepts.html#filtering). on the given lookbehind window `d` per each time series returned from the given [series_selector](https://docs.victoriametrics.com/keyconcepts/#filtering).
Metric names are stripped from the resulting rollups. Add [keep_metric_names](#keep_metric_names) modifier in order to keep metric names. Metric names are stripped from the resulting rollups. Add [keep_metric_names](#keep_metric_names) modifier in order to keep metric names.
@ -481,7 +481,7 @@ See also [delta](#delta).
`ideriv(series_selector[d])` is a [rollup function](#rollup-functions), which calculates the per-second derivative based on the last two raw samples `ideriv(series_selector[d])` is a [rollup function](#rollup-functions), which calculates the per-second derivative based on the last two raw samples
over the given lookbehind window `d`. The derivative is calculated independently per each time series returned over the given lookbehind window `d`. The derivative is calculated independently per each time series returned
from the given [series_selector](https://docs.victoriametrics.com/keyConcepts.html#filtering). from the given [series_selector](https://docs.victoriametrics.com/keyconcepts/#filtering).
Metric names are stripped from the resulting rollups. Add [keep_metric_names](#keep_metric_names) modifier in order to keep metric names. Metric names are stripped from the resulting rollups. Add [keep_metric_names](#keep_metric_names) modifier in order to keep metric names.
@ -490,8 +490,8 @@ See also [deriv](#deriv).
#### increase #### increase
`increase(series_selector[d])` is a [rollup function](#rollup-functions), which calculates the increase over the given lookbehind window `d` `increase(series_selector[d])` is a [rollup function](#rollup-functions), which calculates the increase over the given lookbehind window `d`
per each time series returned from the given [series_selector](https://docs.victoriametrics.com/keyConcepts.html#filtering). per each time series returned from the given [series_selector](https://docs.victoriametrics.com/keyconcepts/#filtering).
It is expected that the `series_selector` returns time series of [counter type](https://docs.victoriametrics.com/keyConcepts.html#counter). It is expected that the `series_selector` returns time series of [counter type](https://docs.victoriametrics.com/keyconcepts/#counter).
Unlike Prometheus, it takes into account the last sample before the given lookbehind window `d` when calculating the result. Unlike Prometheus, it takes into account the last sample before the given lookbehind window `d` when calculating the result.
See [this article](https://medium.com/@romanhavronenko/victoriametrics-promql-compliance-d4318203f51e) for details. See [this article](https://medium.com/@romanhavronenko/victoriametrics-promql-compliance-d4318203f51e) for details.
@ -505,8 +505,8 @@ See also [increase_pure](#increase_pure), [increase_prometheus](#increase_promet
#### increase_prometheus #### increase_prometheus
`increase_prometheus(series_selector[d])` is a [rollup function](#rollup-functions), which calculates the increase `increase_prometheus(series_selector[d])` is a [rollup function](#rollup-functions), which calculates the increase
over the given lookbehind window `d` per each time series returned from the given [series_selector](https://docs.victoriametrics.com/keyConcepts.html#filtering). over the given lookbehind window `d` per each time series returned from the given [series_selector](https://docs.victoriametrics.com/keyconcepts/#filtering).
It is expected that the `series_selector` returns time series of [counter type](https://docs.victoriametrics.com/keyConcepts.html#counter). It is expected that the `series_selector` returns time series of [counter type](https://docs.victoriametrics.com/keyconcepts/#counter).
It doesn't take into account the last sample before the given lookbehind window `d` when calculating the result in the same way as Prometheus does. It doesn't take into account the last sample before the given lookbehind window `d` when calculating the result in the same way as Prometheus does.
See [this article](https://medium.com/@romanhavronenko/victoriametrics-promql-compliance-d4318203f51e) for details. See [this article](https://medium.com/@romanhavronenko/victoriametrics-promql-compliance-d4318203f51e) for details.
@ -517,13 +517,13 @@ See also [increase_pure](#increase_pure) and [increase](#increase).
#### increase_pure #### increase_pure
`increase_pure(series_selector[d])` is a [rollup function](#rollup-functions), which works the same as [increase](#increase) except `increase_pure(series_selector[d])` is a [rollup function](#rollup-functions), which works the same as [increase](#increase) except
of the following corner case - it assumes that [counters](https://docs.victoriametrics.com/keyConcepts.html#counter) always start from 0, of the following corner case - it assumes that [counters](https://docs.victoriametrics.com/keyconcepts/#counter) always start from 0,
while [increase](#increase) ignores the first value in a series if it is too big. while [increase](#increase) ignores the first value in a series if it is too big.
#### increases_over_time #### increases_over_time
`increases_over_time(series_selector[d])` is a [rollup function](#rollup-functions), which calculates the number of raw sample value increases `increases_over_time(series_selector[d])` is a [rollup function](#rollup-functions), which calculates the number of raw sample value increases
over the given lookbehind window `d` per each time series returned from the given [series_selector](https://docs.victoriametrics.com/keyConcepts.html#filtering). over the given lookbehind window `d` per each time series returned from the given [series_selector](https://docs.victoriametrics.com/keyconcepts/#filtering).
Metric names are stripped from the resulting rollups. Add [keep_metric_names](#keep_metric_names) modifier in order to keep metric names. Metric names are stripped from the resulting rollups. Add [keep_metric_names](#keep_metric_names) modifier in order to keep metric names.
@ -532,15 +532,15 @@ See also [decreases_over_time](#decreases_over_time).
#### integrate #### integrate
`integrate(series_selector[d])` is a [rollup function](#rollup-functions), which calculates the integral over raw samples on the given lookbehind window `d` `integrate(series_selector[d])` is a [rollup function](#rollup-functions), which calculates the integral over raw samples on the given lookbehind window `d`
per each time series returned from the given [series_selector](https://docs.victoriametrics.com/keyConcepts.html#filtering). per each time series returned from the given [series_selector](https://docs.victoriametrics.com/keyconcepts/#filtering).
Metric names are stripped from the resulting rollups. Add [keep_metric_names](#keep_metric_names) modifier in order to keep metric names. Metric names are stripped from the resulting rollups. Add [keep_metric_names](#keep_metric_names) modifier in order to keep metric names.
#### irate #### irate
`irate(series_selector[d])` is a [rollup function](#rollup-functions), which calculates the "instant" per-second increase rate over the last two raw samples `irate(series_selector[d])` is a [rollup function](#rollup-functions), which calculates the "instant" per-second increase rate over the last two raw samples
on the given lookbehind window `d` per each time series returned from the given [series_selector](https://docs.victoriametrics.com/keyConcepts.html#filtering). on the given lookbehind window `d` per each time series returned from the given [series_selector](https://docs.victoriametrics.com/keyconcepts/#filtering).
It is expected that the `series_selector` returns time series of [counter type](https://docs.victoriametrics.com/keyConcepts.html#counter). It is expected that the `series_selector` returns time series of [counter type](https://docs.victoriametrics.com/keyconcepts/#counter).
Metric names are stripped from the resulting rollups. Add [keep_metric_names](#keep_metric_names) modifier in order to keep metric names. Metric names are stripped from the resulting rollups. Add [keep_metric_names](#keep_metric_names) modifier in order to keep metric names.
@ -552,7 +552,7 @@ See also [rate](#rate) and [rollup_rate](#rollup_rate).
`lag(series_selector[d])` is a [rollup function](#rollup-functions), which returns the duration in seconds between the last sample `lag(series_selector[d])` is a [rollup function](#rollup-functions), which returns the duration in seconds between the last sample
on the given lookbehind window `d` and the timestamp of the current point. It is calculated independently per each time series returned on the given lookbehind window `d` and the timestamp of the current point. It is calculated independently per each time series returned
from the given [series_selector](https://docs.victoriametrics.com/keyConcepts.html#filtering). from the given [series_selector](https://docs.victoriametrics.com/keyconcepts/#filtering).
Metric names are stripped from the resulting rollups. Add [keep_metric_names](#keep_metric_names) modifier in order to keep metric names. Metric names are stripped from the resulting rollups. Add [keep_metric_names](#keep_metric_names) modifier in order to keep metric names.
@ -561,7 +561,7 @@ See also [lifetime](#lifetime) and [duration_over_time](#duration_over_time).
#### last_over_time #### last_over_time
`last_over_time(series_selector[d])` is a [rollup function](#rollup-functions), which returns the last raw sample value on the given lookbehind window `d` `last_over_time(series_selector[d])` is a [rollup function](#rollup-functions), which returns the last raw sample value on the given lookbehind window `d`
per each time series returned from the given [series_selector](https://docs.victoriametrics.com/keyConcepts.html#filtering). per each time series returned from the given [series_selector](https://docs.victoriametrics.com/keyconcepts/#filtering).
This function is supported by PromQL. This function is supported by PromQL.
@ -570,7 +570,7 @@ See also [first_over_time](#first_over_time) and [tlast_over_time](#tlast_over_t
#### lifetime #### lifetime
`lifetime(series_selector[d])` is a [rollup function](#rollup-functions), which returns the duration in seconds between the last and the first sample `lifetime(series_selector[d])` is a [rollup function](#rollup-functions), which returns the duration in seconds between the last and the first sample
on the given lookbehind window `d` per each time series returned from the given [series_selector](https://docs.victoriametrics.com/keyConcepts.html#filtering). on the given lookbehind window `d` per each time series returned from the given [series_selector](https://docs.victoriametrics.com/keyconcepts/#filtering).
Metric names are stripped from the resulting rollups. Add [keep_metric_names](#keep_metric_names) modifier in order to keep metric names. Metric names are stripped from the resulting rollups. Add [keep_metric_names](#keep_metric_names) modifier in order to keep metric names.
@ -579,14 +579,14 @@ See also [duration_over_time](#duration_over_time) and [lag](#lag).
#### mad_over_time #### mad_over_time
`mad_over_time(series_selector[d])` is a [rollup function](#rollup-functions), which calculates [median absolute deviation](https://en.wikipedia.org/wiki/Median_absolute_deviation) `mad_over_time(series_selector[d])` is a [rollup function](#rollup-functions), which calculates [median absolute deviation](https://en.wikipedia.org/wiki/Median_absolute_deviation)
over raw samples on the given lookbehind window `d` per each time series returned from the given [series_selector](https://docs.victoriametrics.com/keyConcepts.html#filtering). over raw samples on the given lookbehind window `d` per each time series returned from the given [series_selector](https://docs.victoriametrics.com/keyconcepts/#filtering).
See also [mad](#mad), [range_mad](#range_mad) and [outlier_iqr_over_time](#outlier_iqr_over_time). See also [mad](#mad), [range_mad](#range_mad) and [outlier_iqr_over_time](#outlier_iqr_over_time).
#### max_over_time #### max_over_time
`max_over_time(series_selector[d])` is a [rollup function](#rollup-functions), which calculates the maximum value over raw samples `max_over_time(series_selector[d])` is a [rollup function](#rollup-functions), which calculates the maximum value over raw samples
on the given lookbehind window `d` per each time series returned from the given [series_selector](https://docs.victoriametrics.com/keyConcepts.html#filtering). on the given lookbehind window `d` per each time series returned from the given [series_selector](https://docs.victoriametrics.com/keyconcepts/#filtering).
This function is supported by PromQL. This function is supported by PromQL.
@ -596,14 +596,14 @@ See also [tmax_over_time](#tmax_over_time).
`median_over_time(series_selector[d])` is a [rollup function](#rollup-functions), which calculates median value over raw samples `median_over_time(series_selector[d])` is a [rollup function](#rollup-functions), which calculates median value over raw samples
on the given lookbehind window `d` per each time series returned on the given lookbehind window `d` per each time series returned
from the given [series_selector](https://docs.victoriametrics.com/keyConcepts.html#filtering). from the given [series_selector](https://docs.victoriametrics.com/keyconcepts/#filtering).
See also [avg_over_time](#avg_over_time). See also [avg_over_time](#avg_over_time).
#### min_over_time #### min_over_time
`min_over_time(series_selector[d])` is a [rollup function](#rollup-functions), which calculates the minimum value over raw samples `min_over_time(series_selector[d])` is a [rollup function](#rollup-functions), which calculates the minimum value over raw samples
on the given lookbehind window `d` per each time series returned from the given [series_selector](https://docs.victoriametrics.com/keyConcepts.html#filtering). on the given lookbehind window `d` per each time series returned from the given [series_selector](https://docs.victoriametrics.com/keyconcepts/#filtering).
This function is supported by PromQL. This function is supported by PromQL.
@ -613,7 +613,7 @@ See also [tmin_over_time](#tmin_over_time).
`mode_over_time(series_selector[d])` is a [rollup function](#rollup-functions), which calculates [mode](https://en.wikipedia.org/wiki/Mode_(statistics)) `mode_over_time(series_selector[d])` is a [rollup function](#rollup-functions), which calculates [mode](https://en.wikipedia.org/wiki/Mode_(statistics))
for raw samples on the given lookbehind window `d`. It is calculated individually per each time series returned for raw samples on the given lookbehind window `d`. It is calculated individually per each time series returned
from the given [series_selector](https://docs.victoriametrics.com/keyConcepts.html#filtering). It is expected that raw sample values are discrete. from the given [series_selector](https://docs.victoriametrics.com/keyconcepts/#filtering). It is expected that raw sample values are discrete.
#### outlier_iqr_over_time #### outlier_iqr_over_time
@ -631,7 +631,7 @@ See also [outliers_iqr](#outliers_iqr).
`predict_linear(series_selector[d], t)` is a [rollup function](#rollup-functions), which calculates the value `t` seconds in the future using `predict_linear(series_selector[d], t)` is a [rollup function](#rollup-functions), which calculates the value `t` seconds in the future using
linear interpolation over raw samples on the given lookbehind window `d`. The predicted value is calculated individually per each time series linear interpolation over raw samples on the given lookbehind window `d`. The predicted value is calculated individually per each time series
returned from the given [series_selector](https://docs.victoriametrics.com/keyConcepts.html#filtering). returned from the given [series_selector](https://docs.victoriametrics.com/keyconcepts/#filtering).
This function is supported by PromQL. This function is supported by PromQL.
@ -649,7 +649,7 @@ This function is supported by PromQL.
#### quantile_over_time #### quantile_over_time
`quantile_over_time(phi, series_selector[d])` is a [rollup function](#rollup-functions), which calculates `phi`-quantile over raw samples `quantile_over_time(phi, series_selector[d])` is a [rollup function](#rollup-functions), which calculates `phi`-quantile over raw samples
on the given lookbehind window `d` per each time series returned from the given [series_selector](https://docs.victoriametrics.com/keyConcepts.html#filtering). on the given lookbehind window `d` per each time series returned from the given [series_selector](https://docs.victoriametrics.com/keyconcepts/#filtering).
The `phi` value must be in the range `[0...1]`. The `phi` value must be in the range `[0...1]`.
This function is supported by PromQL. This function is supported by PromQL.
@ -660,7 +660,7 @@ See also [quantiles_over_time](#quantiles_over_time).
`quantiles_over_time("phiLabel", phi1, ..., phiN, series_selector[d])` is a [rollup function](#rollup-functions), which calculates `phi*`-quantiles `quantiles_over_time("phiLabel", phi1, ..., phiN, series_selector[d])` is a [rollup function](#rollup-functions), which calculates `phi*`-quantiles
over raw samples on the given lookbehind window `d` per each time series returned over raw samples on the given lookbehind window `d` per each time series returned
from the given [series_selector](https://docs.victoriametrics.com/keyConcepts.html#filtering). from the given [series_selector](https://docs.victoriametrics.com/keyconcepts/#filtering).
The function returns individual series per each `phi*` with `{phiLabel="phi*"}` label. `phi*` values must be in the range `[0...1]`. The function returns individual series per each `phi*` with `{phiLabel="phi*"}` label. `phi*` values must be in the range `[0...1]`.
See also [quantile_over_time](#quantile_over_time). See also [quantile_over_time](#quantile_over_time).
@ -668,7 +668,7 @@ See also [quantile_over_time](#quantile_over_time).
#### range_over_time #### range_over_time
`range_over_time(series_selector[d])` is a [rollup function](#rollup-functions), which calculates value range over raw samples `range_over_time(series_selector[d])` is a [rollup function](#rollup-functions), which calculates value range over raw samples
on the given lookbehind window `d` per each time series returned from the given [series_selector](https://docs.victoriametrics.com/keyConcepts.html#filtering). on the given lookbehind window `d` per each time series returned from the given [series_selector](https://docs.victoriametrics.com/keyconcepts/#filtering).
E.g. it calculates `max_over_time(series_selector[d]) - min_over_time(series_selector[d])`. E.g. it calculates `max_over_time(series_selector[d]) - min_over_time(series_selector[d])`.
Metric names are stripped from the resulting rollups. Add [keep_metric_names](#keep_metric_names) modifier in order to keep metric names. Metric names are stripped from the resulting rollups. Add [keep_metric_names](#keep_metric_names) modifier in order to keep metric names.
@ -676,8 +676,8 @@ Metric names are stripped from the resulting rollups. Add [keep_metric_names](#k
#### rate #### rate
`rate(series_selector[d])` is a [rollup function](#rollup-functions), which calculates the average per-second increase rate `rate(series_selector[d])` is a [rollup function](#rollup-functions), which calculates the average per-second increase rate
over the given lookbehind window `d` per each time series returned from the given [series_selector](https://docs.victoriametrics.com/keyConcepts.html#filtering). over the given lookbehind window `d` per each time series returned from the given [series_selector](https://docs.victoriametrics.com/keyconcepts/#filtering).
It is expected that the `series_selector` returns time series of [counter type](https://docs.victoriametrics.com/keyConcepts.html#counter). It is expected that the `series_selector` returns time series of [counter type](https://docs.victoriametrics.com/keyconcepts/#counter).
If the lookbehind window is skipped in square brackets, then it is automatically calculated as `max(step, scrape_interval)`, where `step` is the query arg value If the lookbehind window is skipped in square brackets, then it is automatically calculated as `max(step, scrape_interval)`, where `step` is the query arg value
passed to [/api/v1/query_range](https://docs.victoriametrics.com/keyconcepts/#range-query) or [/api/v1/query](https://docs.victoriametrics.com/keyconcepts/#instant-query), passed to [/api/v1/query_range](https://docs.victoriametrics.com/keyconcepts/#range-query) or [/api/v1/query](https://docs.victoriametrics.com/keyconcepts/#instant-query),
@ -694,16 +694,16 @@ See also [irate](#irate) and [rollup_rate](#rollup_rate).
`rate_over_sum(series_selector[d])` is a [rollup function](#rollup-functions), which calculates per-second rate over the sum of raw samples `rate_over_sum(series_selector[d])` is a [rollup function](#rollup-functions), which calculates per-second rate over the sum of raw samples
on the given lookbehind window `d`. The calculations are performed individually per each time series returned on the given lookbehind window `d`. The calculations are performed individually per each time series returned
from the given [series_selector](https://docs.victoriametrics.com/keyConcepts.html#filtering). from the given [series_selector](https://docs.victoriametrics.com/keyconcepts/#filtering).
Metric names are stripped from the resulting rollups. Add [keep_metric_names](#keep_metric_names) modifier in order to keep metric names. Metric names are stripped from the resulting rollups. Add [keep_metric_names](#keep_metric_names) modifier in order to keep metric names.
#### resets #### resets
`resets(series_selector[d])` is a [rollup function](#rollup-functions), which returns the number `resets(series_selector[d])` is a [rollup function](#rollup-functions), which returns the number
of [counter](https://docs.victoriametrics.com/keyConcepts.html#counter) resets over the given lookbehind window `d` of [counter](https://docs.victoriametrics.com/keyconcepts/#counter) resets over the given lookbehind window `d`
per each time series returned from the given [series_selector](https://docs.victoriametrics.com/keyConcepts.html#filtering). per each time series returned from the given [series_selector](https://docs.victoriametrics.com/keyconcepts/#filtering).
It is expected that the `series_selector` returns time series of [counter type](https://docs.victoriametrics.com/keyConcepts.html#counter). It is expected that the `series_selector` returns time series of [counter type](https://docs.victoriametrics.com/keyconcepts/#counter).
Metric names are stripped from the resulting rollups. Add [keep_metric_names](#keep_metric_names) modifier in order to keep metric names. Metric names are stripped from the resulting rollups. Add [keep_metric_names](#keep_metric_names) modifier in order to keep metric names.
@ -713,7 +713,7 @@ This function is supported by PromQL.
`rollup(series_selector[d])` is a [rollup function](#rollup-functions), which calculates `min`, `max` and `avg` values for raw samples `rollup(series_selector[d])` is a [rollup function](#rollup-functions), which calculates `min`, `max` and `avg` values for raw samples
on the given lookbehind window `d` and returns them in time series with `rollup="min"`, `rollup="max"` and `rollup="avg"` additional labels. on the given lookbehind window `d` and returns them in time series with `rollup="min"`, `rollup="max"` and `rollup="avg"` additional labels.
These values are calculated individually per each time series returned from the given [series_selector](https://docs.victoriametrics.com/keyConcepts.html#filtering). These values are calculated individually per each time series returned from the given [series_selector](https://docs.victoriametrics.com/keyconcepts/#filtering).
Optional 2nd argument `"min"`, `"max"` or `"avg"` can be passed to keep only one calculation result and without adding a label. Optional 2nd argument `"min"`, `"max"` or `"avg"` can be passed to keep only one calculation result and without adding a label.
See also [label_match](#label_match). See also [label_match](#label_match).
@ -723,7 +723,7 @@ See also [label_match](#label_match).
`rollup_candlestick(series_selector[d])` is a [rollup function](#rollup-functions), which calculates `open`, `high`, `low` and `close` values (aka OHLC) `rollup_candlestick(series_selector[d])` is a [rollup function](#rollup-functions), which calculates `open`, `high`, `low` and `close` values (aka OHLC)
over raw samples on the given lookbehind window `d` and returns them in time series with `rollup="open"`, `rollup="high"`, `rollup="low"` and `rollup="close"` additional labels. over raw samples on the given lookbehind window `d` and returns them in time series with `rollup="open"`, `rollup="high"`, `rollup="low"` and `rollup="close"` additional labels.
The calculations are performed individually per each time series returned The calculations are performed individually per each time series returned
from the given [series_selector](https://docs.victoriametrics.com/keyConcepts.html#filtering). This function is useful for financial applications. from the given [series_selector](https://docs.victoriametrics.com/keyconcepts/#filtering). This function is useful for financial applications.
Optional 2nd argument `"open"`, `"high"` or `"low"` or `"close"` can be passed to keep only one calculation result and without adding a label. Optional 2nd argument `"open"`, `"high"` or `"low"` or `"close"` can be passed to keep only one calculation result and without adding a label.
See also [label_match](#label_match). See also [label_match](#label_match).
@ -733,7 +733,7 @@ See also [label_match](#label_match).
`rollup_delta(series_selector[d])` is a [rollup function](#rollup-functions), which calculates differences between adjacent raw samples `rollup_delta(series_selector[d])` is a [rollup function](#rollup-functions), which calculates differences between adjacent raw samples
on the given lookbehind window `d` and returns `min`, `max` and `avg` values for the calculated differences on the given lookbehind window `d` and returns `min`, `max` and `avg` values for the calculated differences
and returns them in time series with `rollup="min"`, `rollup="max"` and `rollup="avg"` additional labels. and returns them in time series with `rollup="min"`, `rollup="max"` and `rollup="avg"` additional labels.
The calculations are performed individually per each time series returned from the given [series_selector](https://docs.victoriametrics.com/keyConcepts.html#filtering). The calculations are performed individually per each time series returned from the given [series_selector](https://docs.victoriametrics.com/keyconcepts/#filtering).
Optional 2nd argument `"min"`, `"max"` or `"avg"` can be passed to keep only one calculation result and without adding a label. Optional 2nd argument `"min"`, `"max"` or `"avg"` can be passed to keep only one calculation result and without adding a label.
See also [label_match](#label_match). See also [label_match](#label_match).
@ -747,7 +747,7 @@ See also [rollup_increase](#rollup_increase).
`rollup_deriv(series_selector[d])` is a [rollup function](#rollup-functions), which calculates per-second derivatives `rollup_deriv(series_selector[d])` is a [rollup function](#rollup-functions), which calculates per-second derivatives
for adjacent raw samples on the given lookbehind window `d` and returns `min`, `max` and `avg` values for the calculated per-second derivatives for adjacent raw samples on the given lookbehind window `d` and returns `min`, `max` and `avg` values for the calculated per-second derivatives
and returns them in time series with `rollup="min"`, `rollup="max"` and `rollup="avg"` additional labels. and returns them in time series with `rollup="min"`, `rollup="max"` and `rollup="avg"` additional labels.
The calculations are performed individually per each time series returned from the given [series_selector](https://docs.victoriametrics.com/keyConcepts.html#filtering). The calculations are performed individually per each time series returned from the given [series_selector](https://docs.victoriametrics.com/keyconcepts/#filtering).
Optional 2nd argument `"min"`, `"max"` or `"avg"` can be passed to keep only one calculation result and without adding a label. Optional 2nd argument `"min"`, `"max"` or `"avg"` can be passed to keep only one calculation result and without adding a label.
See also [label_match](#label_match). See also [label_match](#label_match).
@ -759,7 +759,7 @@ Metric names are stripped from the resulting rollups. Add [keep_metric_names](#k
`rollup_increase(series_selector[d])` is a [rollup function](#rollup-functions), which calculates increases for adjacent raw samples `rollup_increase(series_selector[d])` is a [rollup function](#rollup-functions), which calculates increases for adjacent raw samples
on the given lookbehind window `d` and returns `min`, `max` and `avg` values for the calculated increases on the given lookbehind window `d` and returns `min`, `max` and `avg` values for the calculated increases
and returns them in time series with `rollup="min"`, `rollup="max"` and `rollup="avg"` additional labels. and returns them in time series with `rollup="min"`, `rollup="max"` and `rollup="avg"` additional labels.
The calculations are performed individually per each time series returned from the given [series_selector](https://docs.victoriametrics.com/keyConcepts.html#filtering). The calculations are performed individually per each time series returned from the given [series_selector](https://docs.victoriametrics.com/keyconcepts/#filtering).
Optional 2nd argument `"min"`, `"max"` or `"avg"` can be passed to keep only one calculation result and without adding a label. Optional 2nd argument `"min"`, `"max"` or `"avg"` can be passed to keep only one calculation result and without adding a label.
See also [label_match](#label_match). See also [label_match](#label_match).
@ -778,7 +778,7 @@ when to use `rollup_rate()`.
Optional 2nd argument `"min"`, `"max"` or `"avg"` can be passed to keep only one calculation result and without adding a label. Optional 2nd argument `"min"`, `"max"` or `"avg"` can be passed to keep only one calculation result and without adding a label.
See also [label_match](#label_match). See also [label_match](#label_match).
The calculations are performed individually per each time series returned from the given [series_selector](https://docs.victoriametrics.com/keyConcepts.html#filtering). The calculations are performed individually per each time series returned from the given [series_selector](https://docs.victoriametrics.com/keyconcepts/#filtering).
Metric names are stripped from the resulting rollups. Add [keep_metric_names](#keep_metric_names) modifier in order to keep metric names. Metric names are stripped from the resulting rollups. Add [keep_metric_names](#keep_metric_names) modifier in order to keep metric names.
@ -787,7 +787,7 @@ Metric names are stripped from the resulting rollups. Add [keep_metric_names](#k
`rollup_scrape_interval(series_selector[d])` is a [rollup function](#rollup-functions), which calculates the interval in seconds between `rollup_scrape_interval(series_selector[d])` is a [rollup function](#rollup-functions), which calculates the interval in seconds between
adjacent raw samples on the given lookbehind window `d` and returns `min`, `max` and `avg` values for the calculated interval adjacent raw samples on the given lookbehind window `d` and returns `min`, `max` and `avg` values for the calculated interval
and returns them in time series with `rollup="min"`, `rollup="max"` and `rollup="avg"` additional labels. and returns them in time series with `rollup="min"`, `rollup="max"` and `rollup="avg"` additional labels.
The calculations are performed individually per each time series returned from the given [series_selector](https://docs.victoriametrics.com/keyConcepts.html#filtering). The calculations are performed individually per each time series returned from the given [series_selector](https://docs.victoriametrics.com/keyconcepts/#filtering).
Optional 2nd argument `"min"`, `"max"` or `"avg"` can be passed to keep only one calculation result and without adding a label. Optional 2nd argument `"min"`, `"max"` or `"avg"` can be passed to keep only one calculation result and without adding a label.
See also [label_match](#label_match). See also [label_match](#label_match).
@ -797,7 +797,7 @@ Metric names are stripped from the resulting rollups. Add [keep_metric_names](#k
#### scrape_interval #### scrape_interval
`scrape_interval(series_selector[d])` is a [rollup function](#rollup-functions), which calculates the average interval in seconds between raw samples `scrape_interval(series_selector[d])` is a [rollup function](#rollup-functions), which calculates the average interval in seconds between raw samples
on the given lookbehind window `d` per each time series returned from the given [series_selector](https://docs.victoriametrics.com/keyConcepts.html#filtering). on the given lookbehind window `d` per each time series returned from the given [series_selector](https://docs.victoriametrics.com/keyconcepts/#filtering).
Metric names are stripped from the resulting rollups. Add [keep_metric_names](#keep_metric_names) modifier in order to keep metric names. Metric names are stripped from the resulting rollups. Add [keep_metric_names](#keep_metric_names) modifier in order to keep metric names.
@ -807,7 +807,7 @@ See also [rollup_scrape_interval](#rollup_scrape_interval).
`share_gt_over_time(series_selector[d], gt)` is a [rollup function](#rollup-functions), which returns share (in the range `[0...1]`) of raw samples `share_gt_over_time(series_selector[d], gt)` is a [rollup function](#rollup-functions), which returns share (in the range `[0...1]`) of raw samples
on the given lookbehind window `d`, which are bigger than `gt`. It is calculated independently per each time series returned on the given lookbehind window `d`, which are bigger than `gt`. It is calculated independently per each time series returned
from the given [series_selector](https://docs.victoriametrics.com/keyConcepts.html#filtering). from the given [series_selector](https://docs.victoriametrics.com/keyconcepts/#filtering).
This function is useful for calculating SLI and SLO. Example: `share_gt_over_time(up[24h], 0)` - returns service availability for the last 24 hours. This function is useful for calculating SLI and SLO. Example: `share_gt_over_time(up[24h], 0)` - returns service availability for the last 24 hours.
@ -819,7 +819,7 @@ See also [share_le_over_time](#share_le_over_time) and [count_gt_over_time](#cou
`share_le_over_time(series_selector[d], le)` is a [rollup function](#rollup-functions), which returns share (in the range `[0...1]`) of raw samples `share_le_over_time(series_selector[d], le)` is a [rollup function](#rollup-functions), which returns share (in the range `[0...1]`) of raw samples
on the given lookbehind window `d`, which are smaller or equal to `le`. It is calculated independently per each time series returned on the given lookbehind window `d`, which are smaller or equal to `le`. It is calculated independently per each time series returned
from the given [series_selector](https://docs.victoriametrics.com/keyConcepts.html#filtering). from the given [series_selector](https://docs.victoriametrics.com/keyconcepts/#filtering).
This function is useful for calculating SLI and SLO. Example: `share_le_over_time(memory_usage_bytes[24h], 100*1024*1024)` returns This function is useful for calculating SLI and SLO. Example: `share_le_over_time(memory_usage_bytes[24h], 100*1024*1024)` returns
the share of time series values for the last 24 hours when memory usage was below or equal to 100MB. the share of time series values for the last 24 hours when memory usage was below or equal to 100MB.
@ -832,7 +832,7 @@ See also [share_gt_over_time](#share_gt_over_time) and [count_le_over_time](#cou
`share_eq_over_time(series_selector[d], eq)` is a [rollup function](#rollup-functions), which returns share (in the range `[0...1]`) of raw samples `share_eq_over_time(series_selector[d], eq)` is a [rollup function](#rollup-functions), which returns share (in the range `[0...1]`) of raw samples
on the given lookbehind window `d`, which are equal to `eq`. It is calculated independently per each time series returned on the given lookbehind window `d`, which are equal to `eq`. It is calculated independently per each time series returned
from the given [series_selector](https://docs.victoriametrics.com/keyConcepts.html#filtering). from the given [series_selector](https://docs.victoriametrics.com/keyconcepts/#filtering).
Metric names are stripped from the resulting rollups. Add [keep_metric_names](#keep_metric_names) modifier in order to keep metric names. Metric names are stripped from the resulting rollups. Add [keep_metric_names](#keep_metric_names) modifier in order to keep metric names.
@ -841,15 +841,15 @@ See also [count_eq_over_time](#count_eq_over_time).
#### stale_samples_over_time #### stale_samples_over_time
`stale_samples_over_time(series_selector[d])` is a [rollup function](#rollup-functions), which calculates the number `stale_samples_over_time(series_selector[d])` is a [rollup function](#rollup-functions), which calculates the number
of [staleness markers](https://docs.victoriametrics.com/vmagent.html#prometheus-staleness-markers) on the given lookbehind window `d` of [staleness markers](https://docs.victoriametrics.com/vmagent/#prometheus-staleness-markers) on the given lookbehind window `d`
per each time series matching the given [series_selector](https://docs.victoriametrics.com/keyConcepts.html#filtering). per each time series matching the given [series_selector](https://docs.victoriametrics.com/keyconcepts/#filtering).
Metric names are stripped from the resulting rollups. Add [keep_metric_names](#keep_metric_names) modifier in order to keep metric names. Metric names are stripped from the resulting rollups. Add [keep_metric_names](#keep_metric_names) modifier in order to keep metric names.
#### stddev_over_time #### stddev_over_time
`stddev_over_time(series_selector[d])` is a [rollup function](#rollup-functions), which calculates standard deviation over raw samples `stddev_over_time(series_selector[d])` is a [rollup function](#rollup-functions), which calculates standard deviation over raw samples
on the given lookbehind window `d` per each time series returned from the given [series_selector](https://docs.victoriametrics.com/keyConcepts.html#filtering). on the given lookbehind window `d` per each time series returned from the given [series_selector](https://docs.victoriametrics.com/keyconcepts/#filtering).
Metric names are stripped from the resulting rollups. Add [keep_metric_names](#keep_metric_names) modifier in order to keep metric names. Metric names are stripped from the resulting rollups. Add [keep_metric_names](#keep_metric_names) modifier in order to keep metric names.
@ -860,7 +860,7 @@ See also [stdvar_over_time](#stdvar_over_time).
#### stdvar_over_time #### stdvar_over_time
`stdvar_over_time(series_selector[d])` is a [rollup function](#rollup-functions), which calculates standard variance over raw samples `stdvar_over_time(series_selector[d])` is a [rollup function](#rollup-functions), which calculates standard variance over raw samples
on the given lookbehind window `d` per each time series returned from the given [series_selector](https://docs.victoriametrics.com/keyConcepts.html#filtering). on the given lookbehind window `d` per each time series returned from the given [series_selector](https://docs.victoriametrics.com/keyconcepts/#filtering).
Metric names are stripped from the resulting rollups. Add [keep_metric_names](#keep_metric_names) modifier in order to keep metric names. Metric names are stripped from the resulting rollups. Add [keep_metric_names](#keep_metric_names) modifier in order to keep metric names.
@ -871,7 +871,7 @@ See also [stddev_over_time](#stddev_over_time).
#### sum_eq_over_time #### sum_eq_over_time
`sum_eq_over_time(series_selector[d], eq)` is a [rollup function](#rollup-function), which calculates the sum of raw sample values equal to `eq` `sum_eq_over_time(series_selector[d], eq)` is a [rollup function](#rollup-function), which calculates the sum of raw sample values equal to `eq`
on the given lookbehind window `d` per each time series returned from the given [series_selector](https://docs.victoriametrics.com/keyConcepts.html#filtering). on the given lookbehind window `d` per each time series returned from the given [series_selector](https://docs.victoriametrics.com/keyconcepts/#filtering).
Metric names are stripped from the resulting rollups. Add [keep_metric_names](#keep_metric_names) modifier in order to keep metric names. Metric names are stripped from the resulting rollups. Add [keep_metric_names](#keep_metric_names) modifier in order to keep metric names.
@ -880,7 +880,7 @@ See also [sum_over_time](#sum_over_time) and [count_eq_over_time](#count_eq_over
#### sum_gt_over_time #### sum_gt_over_time
`sum_gt_over_time(series_selector[d], gt)` is a [rollup function](#rollup-function), which calculates the sum of raw sample values bigger than `gt` `sum_gt_over_time(series_selector[d], gt)` is a [rollup function](#rollup-function), which calculates the sum of raw sample values bigger than `gt`
on the given lookbehind window `d` per each time series returned from the given [series_selector](https://docs.victoriametrics.com/keyConcepts.html#filtering). on the given lookbehind window `d` per each time series returned from the given [series_selector](https://docs.victoriametrics.com/keyconcepts/#filtering).
Metric names are stripped from the resulting rollups. Add [keep_metric_names](#keep_metric_names) modifier in order to keep metric names. Metric names are stripped from the resulting rollups. Add [keep_metric_names](#keep_metric_names) modifier in order to keep metric names.
@ -889,7 +889,7 @@ See also [sum_over_time](#sum_over_time) and [count_gt_over_time](#count_gt_over
#### sum_le_over_time #### sum_le_over_time
`sum_le_over_time(series_selector[d], le)` is a [rollup function](#rollup-function), which calculates the sum of raw sample values smaller or equal to `le` `sum_le_over_time(series_selector[d], le)` is a [rollup function](#rollup-function), which calculates the sum of raw sample values smaller or equal to `le`
on the given lookbehind window `d` per each time series returned from the given [series_selector](https://docs.victoriametrics.com/keyConcepts.html#filtering). on the given lookbehind window `d` per each time series returned from the given [series_selector](https://docs.victoriametrics.com/keyconcepts/#filtering).
Metric names are stripped from the resulting rollups. Add [keep_metric_names](#keep_metric_names) modifier in order to keep metric names. Metric names are stripped from the resulting rollups. Add [keep_metric_names](#keep_metric_names) modifier in order to keep metric names.
@ -898,7 +898,7 @@ See also [sum_over_time](#sum_over_time) and [count_le_over_time](#count_le_over
#### sum_over_time #### sum_over_time
`sum_over_time(series_selector[d])` is a [rollup function](#rollup-functions), which calculates the sum of raw sample values `sum_over_time(series_selector[d])` is a [rollup function](#rollup-functions), which calculates the sum of raw sample values
on the given lookbehind window `d` per each time series returned from the given [series_selector](https://docs.victoriametrics.com/keyConcepts.html#filtering). on the given lookbehind window `d` per each time series returned from the given [series_selector](https://docs.victoriametrics.com/keyconcepts/#filtering).
Metric names are stripped from the resulting rollups. Add [keep_metric_names](#keep_metric_names) modifier in order to keep metric names. Metric names are stripped from the resulting rollups. Add [keep_metric_names](#keep_metric_names) modifier in order to keep metric names.
@ -907,14 +907,14 @@ This function is supported by PromQL.
#### sum2_over_time #### sum2_over_time
`sum2_over_time(series_selector[d])` is a [rollup function](#rollup-functions), which calculates the sum of squares for raw sample values `sum2_over_time(series_selector[d])` is a [rollup function](#rollup-functions), which calculates the sum of squares for raw sample values
on the given lookbehind window `d` per each time series returned from the given [series_selector](https://docs.victoriametrics.com/keyConcepts.html#filtering). on the given lookbehind window `d` per each time series returned from the given [series_selector](https://docs.victoriametrics.com/keyconcepts/#filtering).
Metric names are stripped from the resulting rollups. Add [keep_metric_names](#keep_metric_names) modifier in order to keep metric names. Metric names are stripped from the resulting rollups. Add [keep_metric_names](#keep_metric_names) modifier in order to keep metric names.
#### timestamp #### timestamp
`timestamp(series_selector[d])` is a [rollup function](#rollup-functions), which returns the timestamp in seconds with millisecond precision for the last raw sample `timestamp(series_selector[d])` is a [rollup function](#rollup-functions), which returns the timestamp in seconds with millisecond precision for the last raw sample
on the given lookbehind window `d` per each time series returned from the given [series_selector](https://docs.victoriametrics.com/keyConcepts.html#filtering). on the given lookbehind window `d` per each time series returned from the given [series_selector](https://docs.victoriametrics.com/keyconcepts/#filtering).
Metric names are stripped from the resulting rollups. Add [keep_metric_names](#keep_metric_names) modifier in order to keep metric names. Metric names are stripped from the resulting rollups. Add [keep_metric_names](#keep_metric_names) modifier in order to keep metric names.
@ -925,7 +925,7 @@ See also [time](#time) and [now](#now).
#### timestamp_with_name #### timestamp_with_name
`timestamp_with_name(series_selector[d])` is a [rollup function](#rollup-functions), which returns the timestamp in seconds with millisecond precision for the last raw sample `timestamp_with_name(series_selector[d])` is a [rollup function](#rollup-functions), which returns the timestamp in seconds with millisecond precision for the last raw sample
on the given lookbehind window `d` per each time series returned from the given [series_selector](https://docs.victoriametrics.com/keyConcepts.html#filtering). on the given lookbehind window `d` per each time series returned from the given [series_selector](https://docs.victoriametrics.com/keyconcepts/#filtering).
Metric names are preserved in the resulting rollups. Metric names are preserved in the resulting rollups.
@ -934,7 +934,7 @@ See also [timestamp](#timestamp) and [keep_metric_names](#keep_metric_names) mod
#### tfirst_over_time #### tfirst_over_time
`tfirst_over_time(series_selector[d])` is a [rollup function](#rollup-functions), which returns the timestamp in seconds with millisecond precision for the first raw sample `tfirst_over_time(series_selector[d])` is a [rollup function](#rollup-functions), which returns the timestamp in seconds with millisecond precision for the first raw sample
on the given lookbehind window `d` per each time series returned from the given [series_selector](https://docs.victoriametrics.com/keyConcepts.html#filtering). on the given lookbehind window `d` per each time series returned from the given [series_selector](https://docs.victoriametrics.com/keyconcepts/#filtering).
Metric names are stripped from the resulting rollups. Add [keep_metric_names](#keep_metric_names) modifier in order to keep metric names. Metric names are stripped from the resulting rollups. Add [keep_metric_names](#keep_metric_names) modifier in order to keep metric names.
@ -943,7 +943,7 @@ See also [first_over_time](#first_over_time).
#### tlast_change_over_time #### tlast_change_over_time
`tlast_change_over_time(series_selector[d])` is a [rollup function](#rollup-functions), which returns the timestamp in seconds with millisecond precision for the last change `tlast_change_over_time(series_selector[d])` is a [rollup function](#rollup-functions), which returns the timestamp in seconds with millisecond precision for the last change
per each time series returned from the given [series_selector](https://docs.victoriametrics.com/keyConcepts.html#filtering) on the given lookbehind window `d`. per each time series returned from the given [series_selector](https://docs.victoriametrics.com/keyconcepts/#filtering) on the given lookbehind window `d`.
Metric names are stripped from the resulting rollups. Add [keep_metric_names](#keep_metric_names) modifier in order to keep metric names. Metric names are stripped from the resulting rollups. Add [keep_metric_names](#keep_metric_names) modifier in order to keep metric names.
@ -959,7 +959,7 @@ See also [tlast_change_over_time](#tlast_change_over_time).
`tmax_over_time(series_selector[d])` is a [rollup function](#rollup-functions), which returns the timestamp in seconds with millisecond precision for the raw sample `tmax_over_time(series_selector[d])` is a [rollup function](#rollup-functions), which returns the timestamp in seconds with millisecond precision for the raw sample
with the maximum value on the given lookbehind window `d`. It is calculated independently per each time series returned with the maximum value on the given lookbehind window `d`. It is calculated independently per each time series returned
from the given [series_selector](https://docs.victoriametrics.com/keyConcepts.html#filtering). from the given [series_selector](https://docs.victoriametrics.com/keyconcepts/#filtering).
Metric names are stripped from the resulting rollups. Add [keep_metric_names](#keep_metric_names) modifier in order to keep metric names. Metric names are stripped from the resulting rollups. Add [keep_metric_names](#keep_metric_names) modifier in order to keep metric names.
@ -969,7 +969,7 @@ See also [max_over_time](#max_over_time).
`tmin_over_time(series_selector[d])` is a [rollup function](#rollup-functions), which returns the timestamp in seconds with millisecond precision for the raw sample `tmin_over_time(series_selector[d])` is a [rollup function](#rollup-functions), which returns the timestamp in seconds with millisecond precision for the raw sample
with the minimum value on the given lookbehind window `d`. It is calculated independently per each time series returned with the minimum value on the given lookbehind window `d`. It is calculated independently per each time series returned
from the given [series_selector](https://docs.victoriametrics.com/keyConcepts.html#filtering). from the given [series_selector](https://docs.victoriametrics.com/keyconcepts/#filtering).
Metric names are stripped from the resulting rollups. Add [keep_metric_names](#keep_metric_names) modifier in order to keep metric names. Metric names are stripped from the resulting rollups. Add [keep_metric_names](#keep_metric_names) modifier in order to keep metric names.
@ -979,7 +979,7 @@ See also [min_over_time](#min_over_time).
`zscore_over_time(series_selector[d])` is a [rollup function](#rollup-functions), which returns [z-score](https://en.wikipedia.org/wiki/Standard_score) `zscore_over_time(series_selector[d])` is a [rollup function](#rollup-functions), which returns [z-score](https://en.wikipedia.org/wiki/Standard_score)
for raw samples on the given lookbehind window `d`. It is calculated independently per each time series returned for raw samples on the given lookbehind window `d`. It is calculated independently per each time series returned
from the given [series_selector](https://docs.victoriametrics.com/keyConcepts.html#filtering). from the given [series_selector](https://docs.victoriametrics.com/keyconcepts/#filtering).
Metric names are stripped from the resulting rollups. Add [keep_metric_names](#keep_metric_names) modifier in order to keep metric names. Metric names are stripped from the resulting rollups. Add [keep_metric_names](#keep_metric_names) modifier in order to keep metric names.
@ -994,7 +994,7 @@ returned from the rollup `delta(temperature[24h])`.
Additional details: Additional details:
* If transform function is applied directly to a [series selector](https://docs.victoriametrics.com/keyConcepts.html#filtering), * If transform function is applied directly to a [series selector](https://docs.victoriametrics.com/keyconcepts/#filtering),
then the [default_rollup()](#default_rollup) function is automatically applied before calculating the transformations. then the [default_rollup()](#default_rollup) function is automatically applied before calculating the transformations.
For example, `abs(temperature)` is implicitly transformed to `abs(default_rollup(temperature))`. For example, `abs(temperature)` is implicitly transformed to `abs(default_rollup(temperature))`.
* All the transform functions accept optional `keep_metric_names` modifier. If it is set, * All the transform functions accept optional `keep_metric_names` modifier. If it is set,
@ -1230,7 +1230,7 @@ by replacing all the values bigger or equal to 30 with 40.
#### end #### end
`end()` is a [transform function](#transform-functions), which returns the unix timestamp in seconds for the last point. `end()` is a [transform function](#transform-functions), which returns the unix timestamp in seconds for the last point.
It is known as `end` query arg passed to [/api/v1/query_range](https://docs.victoriametrics.com/keyConcepts.html#range-query). It is known as `end` query arg passed to [/api/v1/query_range](https://docs.victoriametrics.com/keyconcepts/#range-query).
See also [start](#start), [time](#time) and [now](#now). See also [start](#start), [time](#time) and [now](#now).
@ -1653,14 +1653,14 @@ This function is supported by PromQL.
`start()` is a [transform function](#transform-functions), which returns unix timestamp in seconds for the first point. `start()` is a [transform function](#transform-functions), which returns unix timestamp in seconds for the first point.
It is known as `start` query arg passed to [/api/v1/query_range](https://docs.victoriametrics.com/keyConcepts.html#range-query). It is known as `start` query arg passed to [/api/v1/query_range](https://docs.victoriametrics.com/keyconcepts/#range-query).
See also [end](#end), [time](#time) and [now](#now). See also [end](#end), [time](#time) and [now](#now).
#### step #### step
`step()` is a [transform function](#transform-functions), which returns the step in seconds (aka interval) between the returned points. `step()` is a [transform function](#transform-functions), which returns the step in seconds (aka interval) between the returned points.
It is known as `step` query arg passed to [/api/v1/query_range](https://docs.victoriametrics.com/keyConcepts.html#range-query). It is known as `step` query arg passed to [/api/v1/query_range](https://docs.victoriametrics.com/keyconcepts/#range-query).
See also [start](#start) and [end](#end). See also [start](#start) and [end](#end).
@ -1717,7 +1717,7 @@ This function is supported by PromQL.
Additional details: Additional details:
* If label manipulation function is applied directly to a [series_selector](https://docs.victoriametrics.com/keyConcepts.html#filtering), * If label manipulation function is applied directly to a [series_selector](https://docs.victoriametrics.com/keyconcepts/#filtering),
then the [default_rollup()](#default_rollup) function is automatically applied before performing the label transformation. then the [default_rollup()](#default_rollup) function is automatically applied before performing the label transformation.
For example, `alias(temperature, "foo")` is implicitly transformed to `alias(default_rollup(temperature), "foo")`. For example, `alias(temperature, "foo")` is implicitly transformed to `alias(default_rollup(temperature), "foo")`.
@ -1894,7 +1894,7 @@ Additional details:
and calculate the [count](#count) aggregate function independently per each group, while `count(up) without (instance)` and calculate the [count](#count) aggregate function independently per each group, while `count(up) without (instance)`
would group [rollup results](#rollup-functions) by all the labels except `instance` before calculating [count](#count) aggregate function independently per each group. would group [rollup results](#rollup-functions) by all the labels except `instance` before calculating [count](#count) aggregate function independently per each group.
Multiple labels can be put in `by` and `without` modifiers. Multiple labels can be put in `by` and `without` modifiers.
* If the aggregate function is applied directly to a [series_selector](https://docs.victoriametrics.com/keyConcepts.html#filtering), * If the aggregate function is applied directly to a [series_selector](https://docs.victoriametrics.com/keyconcepts/#filtering),
then the [default_rollup()](#default_rollup) function is automatically applied before calculating the aggregate. then the [default_rollup()](#default_rollup) function is automatically applied before calculating the aggregate.
For example, `count(up)` is implicitly transformed to `count(default_rollup(up))`. For example, `count(up)` is implicitly transformed to `count(default_rollup(up))`.
* Aggregate functions accept arbitrary number of args. For example, `avg(q1, q2, q3)` would return the average values for every point * Aggregate functions accept arbitrary number of args. For example, `avg(q1, q2, q3)` would return the average values for every point
@ -2104,7 +2104,7 @@ See also [quantile](#quantile).
`share(q) by (group_labels)` is [aggregate function](#aggregate-functions), which returns shares in the range `[0..1]` `share(q) by (group_labels)` is [aggregate function](#aggregate-functions), which returns shares in the range `[0..1]`
for every non-negative points returned by `q` per each timestamp, so the sum of shares per each `group_labels` equals 1. for every non-negative points returned by `q` per each timestamp, so the sum of shares per each `group_labels` equals 1.
This function is useful for normalizing [histogram bucket](https://docs.victoriametrics.com/keyConcepts.html#histogram) shares This function is useful for normalizing [histogram bucket](https://docs.victoriametrics.com/keyconcepts/#histogram) shares
into `[0..1]` range: into `[0..1]` range:
```metricsql ```metricsql
@ -2208,7 +2208,7 @@ See also [zscore_over_time](#zscore_over_time), [range_trim_zscore](#range_trim_
## Subqueries ## Subqueries
MetricsQL supports and extends PromQL subqueries. See [this article](https://valyala.medium.com/prometheus-subqueries-in-victoriametrics-9b1492b720b3) for details. MetricsQL supports and extends PromQL subqueries. See [this article](https://valyala.medium.com/prometheus-subqueries-in-victoriametrics-9b1492b720b3) for details.
Any [rollup function](#rollup-functions) for something other than [series selector](https://docs.victoriametrics.com/keyConcepts.html#filtering) form a subquery. Any [rollup function](#rollup-functions) for something other than [series selector](https://docs.victoriametrics.com/keyconcepts/#filtering) form a subquery.
Nested rollup functions can be implicit thanks to the [implicit query conversions](#implicit-query-conversions). Nested rollup functions can be implicit thanks to the [implicit query conversions](#implicit-query-conversions).
For example, `delta(sum(m))` is implicitly converted to `delta(sum(default_rollup(m))[1i:1i])`, so it becomes a subquery, For example, `delta(sum(m))` is implicitly converted to `delta(sum(default_rollup(m))[1i:1i])`, so it becomes a subquery,
since it contains [default_rollup](#default_rollup) nested into [delta](#delta). since it contains [default_rollup](#default_rollup) nested into [delta](#delta).
@ -2219,19 +2219,19 @@ VictoriaMetrics performs subqueries in the following way:
For example, for expression `max_over_time(rate(http_requests_total[5m])[1h:30s])` the inner function `rate(http_requests_total[5m])` For example, for expression `max_over_time(rate(http_requests_total[5m])[1h:30s])` the inner function `rate(http_requests_total[5m])`
is calculated with `step=30s`. The resulting data points are aligned by the `step`. is calculated with `step=30s`. The resulting data points are aligned by the `step`.
* It calculates the outer rollup function over the results of the inner rollup function using the `step` value * It calculates the outer rollup function over the results of the inner rollup function using the `step` value
passed by Grafana to [/api/v1/query_range](https://docs.victoriametrics.com/keyConcepts.html#range-query). passed by Grafana to [/api/v1/query_range](https://docs.victoriametrics.com/keyconcepts/#range-query).
## Implicit query conversions ## Implicit query conversions
VictoriaMetrics performs the following implicit conversions for incoming queries before starting the calculations: VictoriaMetrics performs the following implicit conversions for incoming queries before starting the calculations:
* If lookbehind window in square brackets is missing inside [rollup function](#rollup-functions), then it is automatically set to the following value: * If lookbehind window in square brackets is missing inside [rollup function](#rollup-functions), then it is automatically set to the following value:
- To `step` value passed to [/api/v1/query_range](https://docs.victoriametrics.com/keyConcepts.html#range-query) or [/api/v1/query](https://docs.victoriametrics.com/keyconcepts/#instant-query) - To `step` value passed to [/api/v1/query_range](https://docs.victoriametrics.com/keyconcepts/#range-query) or [/api/v1/query](https://docs.victoriametrics.com/keyconcepts/#instant-query)
for all the [rollup functions](#rollup-functions) except of [default_rollup](#default_rollup) and [rate](#rate). This value is known as `$__interval` in Grafana or `1i` in MetricsQL. for all the [rollup functions](#rollup-functions) except of [default_rollup](#default_rollup) and [rate](#rate). This value is known as `$__interval` in Grafana or `1i` in MetricsQL.
For example, `avg_over_time(temperature)` is automatically transformed to `avg_over_time(temperature[1i])`. For example, `avg_over_time(temperature)` is automatically transformed to `avg_over_time(temperature[1i])`.
- To the `max(step, scrape_interval)`, where `scrape_interval` is the interval between [raw samples](https://docs.victoriametrics.com/keyconcepts/#raw-samples) - To the `max(step, scrape_interval)`, where `scrape_interval` is the interval between [raw samples](https://docs.victoriametrics.com/keyconcepts/#raw-samples)
for [default_rollup](#default_rollup) and [rate](#rate) functions. This allows avoiding unexpected gaps on the graph when `step` is smaller than `scrape_interval`. for [default_rollup](#default_rollup) and [rate](#rate) functions. This allows avoiding unexpected gaps on the graph when `step` is smaller than `scrape_interval`.
* All the [series selectors](https://docs.victoriametrics.com/keyConcepts.html#filtering), * All the [series selectors](https://docs.victoriametrics.com/keyconcepts/#filtering),
which aren't wrapped into [rollup functions](#rollup-functions), are automatically wrapped into [default_rollup](#default_rollup) function. which aren't wrapped into [rollup functions](#rollup-functions), are automatically wrapped into [default_rollup](#default_rollup) function.
Examples: Examples:
* `foo` is transformed to `default_rollup(foo)` * `foo` is transformed to `default_rollup(foo)`
@ -2242,6 +2242,6 @@ VictoriaMetrics performs the following implicit conversions for incoming queries
it is [transform function](#transform-functions) it is [transform function](#transform-functions)
* If `step` in square brackets is missing inside [subquery](#subqueries), then `1i` step is automatically added there. * If `step` in square brackets is missing inside [subquery](#subqueries), then `1i` step is automatically added there.
For example, `avg_over_time(rate(http_requests_total[5m])[1h])` is automatically converted to `avg_over_time(rate(http_requests_total[5m])[1h:1i])`. For example, `avg_over_time(rate(http_requests_total[5m])[1h])` is automatically converted to `avg_over_time(rate(http_requests_total[5m])[1h:1i])`.
* If something other than [series selector](https://docs.victoriametrics.com/keyConcepts.html#filtering) * If something other than [series selector](https://docs.victoriametrics.com/keyconcepts/#filtering)
is passed to [rollup function](#rollup-functions), then a [subquery](#subqueries) with `1i` lookbehind window and `1i` step is automatically formed. is passed to [rollup function](#rollup-functions), then a [subquery](#subqueries) with `1i` lookbehind window and `1i` step is automatically formed.
For example, `rate(sum(up))` is automatically converted to `rate((sum(default_rollup(up)))[1i:1i])`. For example, `rate(sum(up))` is automatically converted to `rate((sum(default_rollup(up)))[1i:1i])`.