mirror of
https://github.com/VictoriaMetrics/VictoriaMetrics.git
synced 2024-11-23 12:31:07 +01:00
app/vmselect/promql: add histogram_share(le, buckets)
function
This commit is contained in:
parent
b1ded7cf9a
commit
f409f2d050
@ -2308,18 +2308,36 @@ func TestExecSuccess(t *testing.T) {
|
||||
resultExpected := []netstorage.Result{}
|
||||
f(q, resultExpected)
|
||||
})
|
||||
t.Run(`histogram_share(scalar)`, func(t *testing.T) {
|
||||
t.Parallel()
|
||||
q := `histogram_share(123, time())`
|
||||
resultExpected := []netstorage.Result{}
|
||||
f(q, resultExpected)
|
||||
})
|
||||
t.Run(`histogram_quantile(single-value-no-le)`, func(t *testing.T) {
|
||||
t.Parallel()
|
||||
q := `histogram_quantile(0.6, label_set(100, "foo", "bar"))`
|
||||
resultExpected := []netstorage.Result{}
|
||||
f(q, resultExpected)
|
||||
})
|
||||
t.Run(`histogram_share(single-value-no-le)`, func(t *testing.T) {
|
||||
t.Parallel()
|
||||
q := `histogram_share(123, label_set(100, "foo", "bar"))`
|
||||
resultExpected := []netstorage.Result{}
|
||||
f(q, resultExpected)
|
||||
})
|
||||
t.Run(`histogram_quantile(single-value-invalid-le)`, func(t *testing.T) {
|
||||
t.Parallel()
|
||||
q := `histogram_quantile(0.6, label_set(100, "le", "foobar"))`
|
||||
resultExpected := []netstorage.Result{}
|
||||
f(q, resultExpected)
|
||||
})
|
||||
t.Run(`histogram_share(single-value-invalid-le)`, func(t *testing.T) {
|
||||
t.Parallel()
|
||||
q := `histogram_share(50, label_set(100, "le", "foobar"))`
|
||||
resultExpected := []netstorage.Result{}
|
||||
f(q, resultExpected)
|
||||
})
|
||||
t.Run(`histogram_quantile(single-value-valid-le)`, func(t *testing.T) {
|
||||
t.Parallel()
|
||||
q := `histogram_quantile(0.6, label_set(100, "le", "200"))`
|
||||
@ -2331,6 +2349,39 @@ func TestExecSuccess(t *testing.T) {
|
||||
resultExpected := []netstorage.Result{r}
|
||||
f(q, resultExpected)
|
||||
})
|
||||
t.Run(`histogram_share(single-value-valid-le)`, func(t *testing.T) {
|
||||
t.Parallel()
|
||||
q := `histogram_share(80, label_set(100, "le", "200"))`
|
||||
r := netstorage.Result{
|
||||
MetricName: metricNameExpected,
|
||||
Values: []float64{0.4, 0.4, 0.4, 0.4, 0.4, 0.4},
|
||||
Timestamps: timestampsExpected,
|
||||
}
|
||||
resultExpected := []netstorage.Result{r}
|
||||
f(q, resultExpected)
|
||||
})
|
||||
t.Run(`histogram_share(single-value-valid-le)`, func(t *testing.T) {
|
||||
t.Parallel()
|
||||
q := `histogram_share(200, label_set(100, "le", "200"))`
|
||||
r := netstorage.Result{
|
||||
MetricName: metricNameExpected,
|
||||
Values: []float64{1, 1, 1, 1, 1, 1},
|
||||
Timestamps: timestampsExpected,
|
||||
}
|
||||
resultExpected := []netstorage.Result{r}
|
||||
f(q, resultExpected)
|
||||
})
|
||||
t.Run(`histogram_share(single-value-valid-le)`, func(t *testing.T) {
|
||||
t.Parallel()
|
||||
q := `histogram_share(300, label_set(100, "le", "200"))`
|
||||
r := netstorage.Result{
|
||||
MetricName: metricNameExpected,
|
||||
Values: []float64{1, 1, 1, 1, 1, 1},
|
||||
Timestamps: timestampsExpected,
|
||||
}
|
||||
resultExpected := []netstorage.Result{r}
|
||||
f(q, resultExpected)
|
||||
})
|
||||
t.Run(`histogram_quantile(single-value-valid-le, boundsLabel)`, func(t *testing.T) {
|
||||
t.Parallel()
|
||||
q := `sort(histogram_quantile(0.6, label_set(100, "le", "200"), "foobar"))`
|
||||
@ -2349,7 +2400,6 @@ func TestExecSuccess(t *testing.T) {
|
||||
Timestamps: timestampsExpected,
|
||||
}
|
||||
r3 := netstorage.Result{
|
||||
MetricName: metricNameExpected,
|
||||
Values: []float64{200, 200, 200, 200, 200, 200},
|
||||
Timestamps: timestampsExpected,
|
||||
}
|
||||
@ -2360,6 +2410,34 @@ func TestExecSuccess(t *testing.T) {
|
||||
resultExpected := []netstorage.Result{r1, r2, r3}
|
||||
f(q, resultExpected)
|
||||
})
|
||||
t.Run(`histogram_quantile(single-value-valid-le, boundsLabel)`, func(t *testing.T) {
|
||||
t.Parallel()
|
||||
q := `sort(histogram_share(120, label_set(100, "le", "200"), "foobar"))`
|
||||
r1 := netstorage.Result{
|
||||
MetricName: metricNameExpected,
|
||||
Values: []float64{0, 0, 0, 0, 0, 0},
|
||||
Timestamps: timestampsExpected,
|
||||
}
|
||||
r1.MetricName.Tags = []storage.Tag{{
|
||||
Key: []byte("foobar"),
|
||||
Value: []byte("lower"),
|
||||
}}
|
||||
r2 := netstorage.Result{
|
||||
MetricName: metricNameExpected,
|
||||
Values: []float64{0.6, 0.6, 0.6, 0.6, 0.6, 0.6},
|
||||
Timestamps: timestampsExpected,
|
||||
}
|
||||
r3 := netstorage.Result{
|
||||
Values: []float64{1, 1, 1, 1, 1, 1},
|
||||
Timestamps: timestampsExpected,
|
||||
}
|
||||
r3.MetricName.Tags = []storage.Tag{{
|
||||
Key: []byte("foobar"),
|
||||
Value: []byte("upper"),
|
||||
}}
|
||||
resultExpected := []netstorage.Result{r1, r2, r3}
|
||||
f(q, resultExpected)
|
||||
})
|
||||
t.Run(`histogram_quantile(single-value-valid-le-max-phi)`, func(t *testing.T) {
|
||||
t.Parallel()
|
||||
q := `histogram_quantile(1, (
|
||||
@ -2374,6 +2452,20 @@ func TestExecSuccess(t *testing.T) {
|
||||
resultExpected := []netstorage.Result{r}
|
||||
f(q, resultExpected)
|
||||
})
|
||||
t.Run(`histogram_share(single-value-valid-le-max-le)`, func(t *testing.T) {
|
||||
t.Parallel()
|
||||
q := `histogram_share(200, (
|
||||
label_set(100, "le", "200"),
|
||||
label_set(0, "le", "55"),
|
||||
))`
|
||||
r := netstorage.Result{
|
||||
MetricName: metricNameExpected,
|
||||
Values: []float64{1, 1, 1, 1, 1, 1},
|
||||
Timestamps: timestampsExpected,
|
||||
}
|
||||
resultExpected := []netstorage.Result{r}
|
||||
f(q, resultExpected)
|
||||
})
|
||||
t.Run(`histogram_quantile(single-value-valid-le-min-phi)`, func(t *testing.T) {
|
||||
t.Parallel()
|
||||
q := `histogram_quantile(0, (
|
||||
@ -2388,6 +2480,48 @@ func TestExecSuccess(t *testing.T) {
|
||||
resultExpected := []netstorage.Result{r}
|
||||
f(q, resultExpected)
|
||||
})
|
||||
t.Run(`histogram_share(single-value-valid-le-min-le)`, func(t *testing.T) {
|
||||
t.Parallel()
|
||||
q := `histogram_share(0, (
|
||||
label_set(100, "le", "200"),
|
||||
label_set(0, "le", "55"),
|
||||
))`
|
||||
r := netstorage.Result{
|
||||
MetricName: metricNameExpected,
|
||||
Values: []float64{0, 0, 0, 0, 0, 0},
|
||||
Timestamps: timestampsExpected,
|
||||
}
|
||||
resultExpected := []netstorage.Result{r}
|
||||
f(q, resultExpected)
|
||||
})
|
||||
t.Run(`histogram_share(single-value-valid-le-low-le)`, func(t *testing.T) {
|
||||
t.Parallel()
|
||||
q := `histogram_share(55, (
|
||||
label_set(100, "le", "200"),
|
||||
label_set(0, "le", "55"),
|
||||
))`
|
||||
r := netstorage.Result{
|
||||
MetricName: metricNameExpected,
|
||||
Values: []float64{0, 0, 0, 0, 0, 0},
|
||||
Timestamps: timestampsExpected,
|
||||
}
|
||||
resultExpected := []netstorage.Result{r}
|
||||
f(q, resultExpected)
|
||||
})
|
||||
t.Run(`histogram_share(single-value-valid-le-mid-le)`, func(t *testing.T) {
|
||||
t.Parallel()
|
||||
q := `histogram_share(105, (
|
||||
label_set(100, "le", "200"),
|
||||
label_set(0, "le", "55"),
|
||||
))`
|
||||
r := netstorage.Result{
|
||||
MetricName: metricNameExpected,
|
||||
Values: []float64{0.3448275862068966, 0.3448275862068966, 0.3448275862068966, 0.3448275862068966, 0.3448275862068966, 0.3448275862068966},
|
||||
Timestamps: timestampsExpected,
|
||||
}
|
||||
resultExpected := []netstorage.Result{r}
|
||||
f(q, resultExpected)
|
||||
})
|
||||
t.Run(`histogram_quantile(single-value-valid-le-min-phi-no-zero-bucket)`, func(t *testing.T) {
|
||||
t.Parallel()
|
||||
q := `histogram_quantile(0, label_set(100, "le", "200"))`
|
||||
@ -2410,6 +2544,17 @@ func TestExecSuccess(t *testing.T) {
|
||||
resultExpected := []netstorage.Result{r}
|
||||
f(q, resultExpected)
|
||||
})
|
||||
t.Run(`histogram_share(scalar-phi)`, func(t *testing.T) {
|
||||
t.Parallel()
|
||||
q := `histogram_share(time() / 8, label_set(100, "le", "200"))`
|
||||
r := netstorage.Result{
|
||||
MetricName: metricNameExpected,
|
||||
Values: []float64{0.625, 0.75, 0.875, 1, 1, 1},
|
||||
Timestamps: timestampsExpected,
|
||||
}
|
||||
resultExpected := []netstorage.Result{r}
|
||||
f(q, resultExpected)
|
||||
})
|
||||
t.Run(`histogram_quantile(valid)`, func(t *testing.T) {
|
||||
t.Parallel()
|
||||
q := `sort(histogram_quantile(0.6,
|
||||
@ -2440,6 +2585,36 @@ func TestExecSuccess(t *testing.T) {
|
||||
resultExpected := []netstorage.Result{r1, r2}
|
||||
f(q, resultExpected)
|
||||
})
|
||||
t.Run(`histogram_share(valid)`, func(t *testing.T) {
|
||||
t.Parallel()
|
||||
q := `sort(histogram_share(25,
|
||||
label_set(90, "foo", "bar", "le", "10")
|
||||
or label_set(100, "foo", "bar", "le", "30")
|
||||
or label_set(300, "foo", "bar", "le", "+Inf")
|
||||
or label_set(200, "tag", "xx", "le", "10")
|
||||
or label_set(300, "tag", "xx", "le", "30")
|
||||
))`
|
||||
r1 := netstorage.Result{
|
||||
MetricName: metricNameExpected,
|
||||
Values: []float64{0.325, 0.325, 0.325, 0.325, 0.325, 0.325},
|
||||
Timestamps: timestampsExpected,
|
||||
}
|
||||
r1.MetricName.Tags = []storage.Tag{{
|
||||
Key: []byte("foo"),
|
||||
Value: []byte("bar"),
|
||||
}}
|
||||
r2 := netstorage.Result{
|
||||
MetricName: metricNameExpected,
|
||||
Values: []float64{0.9166666666666666, 0.9166666666666666, 0.9166666666666666, 0.9166666666666666, 0.9166666666666666, 0.9166666666666666},
|
||||
Timestamps: timestampsExpected,
|
||||
}
|
||||
r2.MetricName.Tags = []storage.Tag{{
|
||||
Key: []byte("tag"),
|
||||
Value: []byte("xx"),
|
||||
}}
|
||||
resultExpected := []netstorage.Result{r1, r2}
|
||||
f(q, resultExpected)
|
||||
})
|
||||
t.Run(`histogram_quantile(negative-bucket-count)`, func(t *testing.T) {
|
||||
t.Parallel()
|
||||
q := `histogram_quantile(0.6,
|
||||
@ -2468,7 +2643,7 @@ func TestExecSuccess(t *testing.T) {
|
||||
)`
|
||||
r := netstorage.Result{
|
||||
MetricName: metricNameExpected,
|
||||
Values: []float64{10, 10, 10, 10, 10, 10},
|
||||
Values: []float64{30, 30, 30, 30, 30, 30},
|
||||
Timestamps: timestampsExpected,
|
||||
}
|
||||
r.MetricName.Tags = []storage.Tag{{
|
||||
@ -2497,6 +2672,25 @@ func TestExecSuccess(t *testing.T) {
|
||||
resultExpected := []netstorage.Result{r}
|
||||
f(q, resultExpected)
|
||||
})
|
||||
t.Run(`histogram_share(normal-bucket-count)`, func(t *testing.T) {
|
||||
t.Parallel()
|
||||
q := `histogram_share(22,
|
||||
label_set(0, "foo", "bar", "le", "10")
|
||||
or label_set(100, "foo", "bar", "le", "30")
|
||||
or label_set(300, "foo", "bar", "le", "+Inf")
|
||||
)`
|
||||
r := netstorage.Result{
|
||||
MetricName: metricNameExpected,
|
||||
Values: []float64{0.2, 0.2, 0.2, 0.2, 0.2, 0.2},
|
||||
Timestamps: timestampsExpected,
|
||||
}
|
||||
r.MetricName.Tags = []storage.Tag{{
|
||||
Key: []byte("foo"),
|
||||
Value: []byte("bar"),
|
||||
}}
|
||||
resultExpected := []netstorage.Result{r}
|
||||
f(q, resultExpected)
|
||||
})
|
||||
t.Run(`histogram_quantile(normal-bucket-count, boundsLabel)`, func(t *testing.T) {
|
||||
t.Parallel()
|
||||
q := `sort(histogram_quantile(0.2,
|
||||
@ -2547,6 +2741,56 @@ func TestExecSuccess(t *testing.T) {
|
||||
resultExpected := []netstorage.Result{r1, r2, r3}
|
||||
f(q, resultExpected)
|
||||
})
|
||||
t.Run(`histogram_share(normal-bucket-count, boundsLabel)`, func(t *testing.T) {
|
||||
t.Parallel()
|
||||
q := `sort(histogram_share(22,
|
||||
label_set(0, "foo", "bar", "le", "10")
|
||||
or label_set(100, "foo", "bar", "le", "30")
|
||||
or label_set(300, "foo", "bar", "le", "+Inf"),
|
||||
"xxx"
|
||||
))`
|
||||
r1 := netstorage.Result{
|
||||
MetricName: metricNameExpected,
|
||||
Values: []float64{0, 0, 0, 0, 0, 0},
|
||||
Timestamps: timestampsExpected,
|
||||
}
|
||||
r1.MetricName.Tags = []storage.Tag{
|
||||
{
|
||||
Key: []byte("foo"),
|
||||
Value: []byte("bar"),
|
||||
},
|
||||
{
|
||||
Key: []byte("xxx"),
|
||||
Value: []byte("lower"),
|
||||
},
|
||||
}
|
||||
r2 := netstorage.Result{
|
||||
MetricName: metricNameExpected,
|
||||
Values: []float64{0.2, 0.2, 0.2, 0.2, 0.2, 0.2},
|
||||
Timestamps: timestampsExpected,
|
||||
}
|
||||
r2.MetricName.Tags = []storage.Tag{{
|
||||
Key: []byte("foo"),
|
||||
Value: []byte("bar"),
|
||||
}}
|
||||
r3 := netstorage.Result{
|
||||
MetricName: metricNameExpected,
|
||||
Values: []float64{0.3333333333333333, 0.3333333333333333, 0.3333333333333333, 0.3333333333333333, 0.3333333333333333, 0.3333333333333333},
|
||||
Timestamps: timestampsExpected,
|
||||
}
|
||||
r3.MetricName.Tags = []storage.Tag{
|
||||
{
|
||||
Key: []byte("foo"),
|
||||
Value: []byte("bar"),
|
||||
},
|
||||
{
|
||||
Key: []byte("xxx"),
|
||||
Value: []byte("upper"),
|
||||
},
|
||||
}
|
||||
resultExpected := []netstorage.Result{r1, r2, r3}
|
||||
f(q, resultExpected)
|
||||
})
|
||||
t.Run(`histogram_quantile(zero-bucket-count)`, func(t *testing.T) {
|
||||
t.Parallel()
|
||||
q := `histogram_quantile(0.6,
|
||||
|
@ -93,6 +93,7 @@ var transformFuncs = map[string]transformFunc{
|
||||
"asin": newTransformFuncOneArg(transformAsin),
|
||||
"acos": newTransformFuncOneArg(transformAcos),
|
||||
"prometheus_buckets": transformPrometheusBuckets,
|
||||
"histogram_share": transformHistogramShare,
|
||||
}
|
||||
|
||||
func getTransformFunc(s string) transformFunc {
|
||||
@ -399,6 +400,104 @@ func vmrangeBucketsToLE(tss []*timeseries) []*timeseries {
|
||||
return rvs
|
||||
}
|
||||
|
||||
func transformHistogramShare(tfa *transformFuncArg) ([]*timeseries, error) {
|
||||
args := tfa.args
|
||||
if len(args) < 2 || len(args) > 3 {
|
||||
return nil, fmt.Errorf("unexpected number of args; got %d; want 2...3", len(args))
|
||||
}
|
||||
les, err := getScalar(args[0], 0)
|
||||
if err != nil {
|
||||
return nil, fmt.Errorf("cannot parse le: %s", err)
|
||||
}
|
||||
|
||||
// Convert buckets with `vmrange` labels to buckets with `le` labels.
|
||||
tss := vmrangeBucketsToLE(args[1])
|
||||
|
||||
// Parse boundsLabel. See https://github.com/prometheus/prometheus/issues/5706 for details.
|
||||
var boundsLabel string
|
||||
if len(args) > 2 {
|
||||
s, err := getString(args[2], 2)
|
||||
if err != nil {
|
||||
return nil, fmt.Errorf("cannot parse boundsLabel (arg #3): %s", err)
|
||||
}
|
||||
boundsLabel = s
|
||||
}
|
||||
|
||||
// Group metrics by all tags excluding "le"
|
||||
m := groupLeTimeseries(tss)
|
||||
|
||||
// Calculate share for les
|
||||
|
||||
share := func(i int, les []float64, xss []leTimeseries) (q, lower, upper float64) {
|
||||
leReq := les[i]
|
||||
if math.IsNaN(leReq) || len(xss) == 0 {
|
||||
return nan, nan, nan
|
||||
}
|
||||
fixBrokenBuckets(i, xss)
|
||||
if leReq < 0 {
|
||||
return 0, 0, 0
|
||||
}
|
||||
if math.IsInf(leReq, 1) {
|
||||
return 1, 1, 1
|
||||
}
|
||||
for j, xs := range xss {
|
||||
v := xs.ts.Values[i]
|
||||
le := xs.le
|
||||
if leReq < le {
|
||||
continue
|
||||
}
|
||||
// precondition: leReq >= le
|
||||
if j+1 >= len(xss) {
|
||||
return 1, 1, 1
|
||||
}
|
||||
vNext := xss[j+1].ts.Values[i]
|
||||
leNext := xss[j+1].le
|
||||
if math.IsInf(leNext, 1) {
|
||||
return v / vNext, v / vNext, 1
|
||||
}
|
||||
vLast := xss[len(xss)-1].ts.Values[i]
|
||||
lower = v / vLast
|
||||
upper = vNext / vLast
|
||||
q = lower + (vNext-v)/vLast*(leReq-le)/(leNext-le)
|
||||
return q, lower, upper
|
||||
}
|
||||
leLast := xss[len(xss)-1].le
|
||||
return leReq / leLast, 0, 1
|
||||
}
|
||||
rvs := make([]*timeseries, 0, len(m))
|
||||
for _, xss := range m {
|
||||
sort.Slice(xss, func(i, j int) bool {
|
||||
return xss[i].le < xss[j].le
|
||||
})
|
||||
dst := xss[0].ts
|
||||
var tsLower, tsUpper *timeseries
|
||||
if len(boundsLabel) > 0 {
|
||||
tsLower = ×eries{}
|
||||
tsLower.CopyFromShallowTimestamps(dst)
|
||||
tsLower.MetricName.RemoveTag(boundsLabel)
|
||||
tsLower.MetricName.AddTag(boundsLabel, "lower")
|
||||
tsUpper = ×eries{}
|
||||
tsUpper.CopyFromShallowTimestamps(dst)
|
||||
tsUpper.MetricName.RemoveTag(boundsLabel)
|
||||
tsUpper.MetricName.AddTag(boundsLabel, "upper")
|
||||
}
|
||||
for i := range dst.Values {
|
||||
q, lower, upper := share(i, les, xss)
|
||||
dst.Values[i] = q
|
||||
if len(boundsLabel) > 0 {
|
||||
tsLower.Values[i] = lower
|
||||
tsUpper.Values[i] = upper
|
||||
}
|
||||
}
|
||||
rvs = append(rvs, dst)
|
||||
if len(boundsLabel) > 0 {
|
||||
rvs = append(rvs, tsLower)
|
||||
rvs = append(rvs, tsUpper)
|
||||
}
|
||||
}
|
||||
return rvs, nil
|
||||
}
|
||||
|
||||
func transformHistogramQuantile(tfa *transformFuncArg) ([]*timeseries, error) {
|
||||
args := tfa.args
|
||||
if len(args) < 2 || len(args) > 3 {
|
||||
@ -423,73 +522,35 @@ func transformHistogramQuantile(tfa *transformFuncArg) ([]*timeseries, error) {
|
||||
}
|
||||
|
||||
// Group metrics by all tags excluding "le"
|
||||
type x struct {
|
||||
le float64
|
||||
ts *timeseries
|
||||
}
|
||||
m := make(map[string][]x)
|
||||
bb := bbPool.Get()
|
||||
for _, ts := range tss {
|
||||
tagValue := ts.MetricName.GetTagValue("le")
|
||||
if len(tagValue) == 0 {
|
||||
continue
|
||||
}
|
||||
le, err := strconv.ParseFloat(bytesutil.ToUnsafeString(tagValue), 64)
|
||||
if err != nil {
|
||||
continue
|
||||
}
|
||||
ts.MetricName.ResetMetricGroup()
|
||||
ts.MetricName.RemoveTag("le")
|
||||
bb.B = marshalMetricTagsSorted(bb.B[:0], &ts.MetricName)
|
||||
m[string(bb.B)] = append(m[string(bb.B)], x{
|
||||
le: le,
|
||||
ts: ts,
|
||||
})
|
||||
}
|
||||
bbPool.Put(bb)
|
||||
m := groupLeTimeseries(tss)
|
||||
|
||||
// Calculate quantile for each group in m
|
||||
|
||||
lastNonInf := func(i int, xss []x) float64 {
|
||||
lastNonInf := func(i int, xss []leTimeseries) float64 {
|
||||
for len(xss) > 0 {
|
||||
xsLast := xss[len(xss)-1]
|
||||
v := xsLast.ts.Values[i]
|
||||
if v == 0 {
|
||||
return nan
|
||||
}
|
||||
if !math.IsNaN(v) && !math.IsInf(xsLast.le, 0) {
|
||||
if !math.IsInf(xsLast.le, 0) {
|
||||
return xsLast.le
|
||||
}
|
||||
xss = xss[:len(xss)-1]
|
||||
}
|
||||
return nan
|
||||
}
|
||||
quantile := func(i int, phis []float64, xss []x) (q, lower, upper float64) {
|
||||
quantile := func(i int, phis []float64, xss []leTimeseries) (q, lower, upper float64) {
|
||||
phi := phis[i]
|
||||
if math.IsNaN(phi) {
|
||||
return nan, nan, nan
|
||||
}
|
||||
// Fix broken buckets.
|
||||
// They are already sorted by le, so their values must be in ascending order,
|
||||
// since the next bucket value includes all the previous buckets.
|
||||
vPrev := float64(0)
|
||||
for _, xs := range xss {
|
||||
v := xs.ts.Values[i]
|
||||
if v < vPrev {
|
||||
xs.ts.Values[i] = vPrev
|
||||
} else if !math.IsNaN(v) {
|
||||
vPrev = v
|
||||
}
|
||||
}
|
||||
vLast := nan
|
||||
for len(xss) > 0 {
|
||||
fixBrokenBuckets(i, xss)
|
||||
vLast := float64(0)
|
||||
if len(xss) > 0 {
|
||||
vLast = xss[len(xss)-1].ts.Values[i]
|
||||
if !math.IsNaN(vLast) {
|
||||
break
|
||||
}
|
||||
xss = xss[:len(xss)-1]
|
||||
}
|
||||
if vLast == 0 || math.IsNaN(vLast) {
|
||||
if vLast == 0 {
|
||||
return nan, nan, nan
|
||||
}
|
||||
if phi < 0 {
|
||||
@ -499,15 +560,10 @@ func transformHistogramQuantile(tfa *transformFuncArg) ([]*timeseries, error) {
|
||||
return inf, vLast, inf
|
||||
}
|
||||
vReq := vLast * phi
|
||||
vPrev = 0
|
||||
vPrev := float64(0)
|
||||
lePrev := float64(0)
|
||||
for _, xs := range xss {
|
||||
v := xs.ts.Values[i]
|
||||
if math.IsNaN(v) {
|
||||
// Skip NaNs - they may appear if the selected time range
|
||||
// contains multiple different bucket sets.
|
||||
continue
|
||||
}
|
||||
le := xs.le
|
||||
if v <= 0 {
|
||||
// Skip zero buckets.
|
||||
@ -566,6 +622,50 @@ func transformHistogramQuantile(tfa *transformFuncArg) ([]*timeseries, error) {
|
||||
return rvs, nil
|
||||
}
|
||||
|
||||
type leTimeseries struct {
|
||||
le float64
|
||||
ts *timeseries
|
||||
}
|
||||
|
||||
func groupLeTimeseries(tss []*timeseries) map[string][]leTimeseries {
|
||||
m := make(map[string][]leTimeseries)
|
||||
bb := bbPool.Get()
|
||||
for _, ts := range tss {
|
||||
tagValue := ts.MetricName.GetTagValue("le")
|
||||
if len(tagValue) == 0 {
|
||||
continue
|
||||
}
|
||||
le, err := strconv.ParseFloat(bytesutil.ToUnsafeString(tagValue), 64)
|
||||
if err != nil {
|
||||
continue
|
||||
}
|
||||
ts.MetricName.ResetMetricGroup()
|
||||
ts.MetricName.RemoveTag("le")
|
||||
bb.B = marshalMetricTagsSorted(bb.B[:0], &ts.MetricName)
|
||||
m[string(bb.B)] = append(m[string(bb.B)], leTimeseries{
|
||||
le: le,
|
||||
ts: ts,
|
||||
})
|
||||
}
|
||||
bbPool.Put(bb)
|
||||
return m
|
||||
}
|
||||
|
||||
func fixBrokenBuckets(i int, xss []leTimeseries) {
|
||||
// Fix broken buckets.
|
||||
// They are already sorted by le, so their values must be in ascending order,
|
||||
// since the next bucket includes all the previous buckets.
|
||||
vPrev := float64(0)
|
||||
for _, xs := range xss {
|
||||
v := xs.ts.Values[i]
|
||||
if v < vPrev || math.IsNaN(v) {
|
||||
xs.ts.Values[i] = vPrev
|
||||
} else {
|
||||
vPrev = v
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
func transformHour(t time.Time) int {
|
||||
return t.Hour()
|
||||
}
|
||||
|
@ -82,6 +82,8 @@ This functionality can be tried at [an editable Grafana dashboard](http://play-g
|
||||
- `histogram_over_time(m[d])` - calculates [VictoriaMetrics histogram](https://godoc.org/github.com/VictoriaMetrics/metrics#Histogram) for `m` over `d`.
|
||||
For example, the following query calculates median temperature by country over the last 24 hours:
|
||||
`histogram_quantile(0.5, sum(histogram_over_time(temperature[24h])) by (vmbucket, country))`.
|
||||
- `histogram_share(le, buckets)` - returns share (in the range 0..1) for `buckets`. Useful for calculating SLI and SLO.
|
||||
For instance, the following query returns the share of requests which are performed under 1.5 seconds: `histogram_share(1.5, sum(request_duration_seconds_bucket) by (le))`.
|
||||
- `topk_*` and `bottomk_*` aggregate functions, which return up to K time series. Note that the standard `topk` function may return more than K time series -
|
||||
see [this article](https://www.robustperception.io/graph-top-n-time-series-in-grafana) for details.
|
||||
- `topk_min(k, q)` - returns top K time series with the max minimums on the given time range
|
||||
|
@ -72,6 +72,7 @@ var transformFuncs = map[string]bool{
|
||||
"asin": true,
|
||||
"acos": true,
|
||||
"prometheus_buckets": true,
|
||||
"histogram_share": true,
|
||||
}
|
||||
|
||||
func isTransformFunc(s string) bool {
|
||||
|
Loading…
Reference in New Issue
Block a user