When WriteFileAndSync fails, then the caller eventually logs the error message
and exits. The error message returned by WriteFileAndSync already contains the path
to the file, which couldn't be created. This information alongside the call stack
is enough for debugging the issue. So just use log.Panicf("FATAL: ...") inside MustWriteAndSync().
This simplifies error handling at caller side a bit.
This is a follow-up after 42bba64aa7
Previously the part directory listing was fsync'ed implicitly inside partHeader.WriteMetadata()
by calling fs.WriteFileAtomically(). Now it must be fsync'ed explicitly.
There is no need in fsync'ing the parent directory, since it is fsync'ed by the caller
when updating parts.json file.
The main purpose of this command-line flag is to increase the lifetime of low-end flash storage
with the limited number of write operations it can perform. Such flash storage is usually
installed on Raspberry PI or similar appliances.
For example, `-inmemoryDataFlushInterval=1h` reduces the frequency of disk write operations
to up to once per hour if the ingested one-hour worth of data fits the limit for in-memory data.
The in-memory data is searchable in the same way as the data stored on disk.
VictoriaMetrics automatically flushes the in-memory data to disk on graceful shutdown via SIGINT signal.
The in-memory data is lost on unclean shutdown (hardware power loss, OOM crash, SIGKILL).
Updates https://github.com/VictoriaMetrics/VictoriaMetrics/issues/3337
The lifetime of storageBlock is much shorter comparing to the lifetime of inmemoryPart,
so sync.Pool usage should reduce overall memory usage and improve performance
because of better locality of reference when marshaling inmemoryBlock to inmemoryPart.
https://github.com/VictoriaMetrics/VictoriaMetrics/issues/2247
This should reduce memory usage on systems with big number of CPU cores,
since every inmemoryPart object occupies at least 64KB of memory and sync.Pool maintains
a separate pool inmemoryPart objects per each CPU core.
Though the new scheme for the pool worsens per-cpu cache locality, this should be amortized
by big sizes of inmemoryPart objects.