### Describe Your Changes
Currently it the metricID list is empty it won't be mashalled and as the
result won't be put into the tagFiltersToMetricIDsCache which causes the
cache misses for the corresponding tagFilters. In some setups this
causes severe search speed detradation (see #7009).
The empty metric IDs was covered before but then was accidentally
removed in 6c21439.
This PR restores the coverage of this case.
A new unit test can be used as a proof that empty metricID lists are not
added to the cache (just remove the fix in index_db.go and run the test
to see the result)
Also a benchmark has been added to see the implications of the
compression.
```
user@laptop:~/p/github.com/rtm0/VictoriaMetrics/01/src$ go test ./lib/storage/ -run=NONE -bench BenchmarkMarshalUnmarshalMetricIDs --loggerLevel=ERROR
goos: linux
goarch: amd64
pkg: github.com/VictoriaMetrics/VictoriaMetrics/lib/storage
cpu: 13th Gen Intel(R) Core(TM) i7-1355U
BenchmarkMarshalUnmarshalMetricIDs/numMetricIDs-0-12 3237240 363.5 ns/op 0 compression-rate
BenchmarkMarshalUnmarshalMetricIDs/numMetricIDs-1-12 2831049 451.8 ns/op 0.4706 compression-rate
BenchmarkMarshalUnmarshalMetricIDs/numMetricIDs-10-12 1152764 1009 ns/op 1.667 compression-rate
BenchmarkMarshalUnmarshalMetricIDs/numMetricIDs-100-12 297055 3998 ns/op 5.755 compression-rate
BenchmarkMarshalUnmarshalMetricIDs/numMetricIDs-1000-12 31172 34566 ns/op 8.484 compression-rate
BenchmarkMarshalUnmarshalMetricIDs/numMetricIDs-10000-12 4900 289659 ns/op 9.416 compression-rate
BenchmarkMarshalUnmarshalMetricIDs/numMetricIDs-100000-12 447 2341173 ns/op 9.456 compression-rate
BenchmarkMarshalUnmarshalMetricIDs/numMetricIDs-1000000-12 42 24926928 ns/op 9.468 compression-rate
BenchmarkMarshalUnmarshalMetricIDs/numMetricIDs-10000000-12 5 204098872 ns/op 9.467 compression-rate
PASS
ok github.com/VictoriaMetrics/VictoriaMetrics/lib/storage 15.018s
```
### Checklist
The following checks are **mandatory**:
- [x] My change adheres [VictoriaMetrics contributing
guidelines](https://docs.victoriametrics.com/contributing/).
---------
Signed-off-by: Artem Fetishev <wwctrsrx@gmail.com>
Co-authored-by: Aliaksandr Valialkin <valyala@victoriametrics.com>
- Sort MetricName tags only once before the benchmark loop.
- Obtain indexSearch per each benchmark loop in order to give a chance for background merge
for the recently created parts
Previously all the newly ingested time series were registered in global `MetricName -> TSID` index.
This index was used during data ingestion for locating the TSID (internal series id)
for the given canonical metric name (the canonical metric name consists of metric name plus all its labels sorted by label names).
The `MetricName -> TSID` index is stored on disk in order to make sure that the data
isn't lost on VictoriaMetrics restart or unclean shutdown.
The lookup in this index is relatively slow, since VictoriaMetrics needs to read the corresponding
data block from disk, unpack it, put the unpacked block into `indexdb/dataBlocks` cache,
and then search for the given `MetricName -> TSID` entry there. So VictoriaMetrics
uses in-memory cache for speeding up the lookup for active time series.
This cache is named `storage/tsid`. If this cache capacity is enough for all the currently ingested
active time series, then VictoriaMetrics works fast, since it doesn't need to read the data from disk.
VictoriaMetrics starts reading data from `MetricName -> TSID` on-disk index in the following cases:
- If `storage/tsid` cache capacity isn't enough for active time series.
Then just increase available memory for VictoriaMetrics or reduce the number of active time series
ingested into VictoriaMetrics.
- If new time series is ingested into VictoriaMetrics. In this case it cannot find
the needed entry in the `storage/tsid` cache, so it needs to consult on-disk `MetricName -> TSID` index,
since it doesn't know that the index has no the corresponding entry too.
This is a typical event under high churn rate, when old time series are constantly substituted
with new time series.
Reading the data from `MetricName -> TSID` index is slow, so inserts, which lead to reading this index,
are counted as slow inserts, and they can be monitored via `vm_slow_row_inserts_total` metric exposed by VictoriaMetrics.
Prior to this commit the `MetricName -> TSID` index was global, e.g. it contained entries sorted by `MetricName`
for all the time series ever ingested into VictoriaMetrics during the configured -retentionPeriod.
This index can become very large under high churn rate and long retention. VictoriaMetrics
caches data from this index in `indexdb/dataBlocks` in-memory cache for speeding up index lookups.
The `indexdb/dataBlocks` cache may occupy significant share of available memory for storing
recently accessed blocks at `MetricName -> TSID` index when searching for newly ingested time series.
This commit switches from global `MetricName -> TSID` index to per-day index. This allows significantly
reducing the amounts of data, which needs to be cached in `indexdb/dataBlocks`, since now VictoriaMetrics
consults only the index for the current day when new time series is ingested into it.
The downside of this change is increased indexdb size on disk for workloads without high churn rate,
e.g. with static time series, which do no change over time, since now VictoriaMetrics needs to store
identical `MetricName -> TSID` entries for static time series for every day.
This change removes an optimization for reducing CPU and disk IO spikes at indexdb rotation,
since it didn't work correctly - see https://github.com/VictoriaMetrics/VictoriaMetrics/issues/1401 .
At the same time the change fixes the issue, which could result in lost access to time series,
which stop receving new samples during the first hour after indexdb rotation - see https://github.com/VictoriaMetrics/VictoriaMetrics/issues/2698
The issue with the increased CPU and disk IO usage during indexdb rotation will be addressed
in a separate commit according to https://github.com/VictoriaMetrics/VictoriaMetrics/issues/1401#issuecomment-1553488685
This is a follow-up for 1f28b46ae9
This reverts the following commits:
- e0e16a2d36
- 2ce02a7fe6
The reason for revert: the updated logic breaks assumptions made
when fixing https://github.com/VictoriaMetrics/VictoriaMetrics/issues/2698 .
For example, if a time series stop receiving new samples during the first
day after the indexdb rotation, there are chances that the time series
won't be registered in the new indexdb. This is OK until the next indexdb
rotation, since the time series is registered in the previous indexdb,
so it can be found during queries. But the time series will become invisible
for search after the next indexdb rotation, while its data is still there.
There is also incompletely solved issue with the increased CPU and disk IO resource
usage just after the indexdb rotation. There was an attempt to fix it, but it didn't fix
it in full, while introducing the issue mentioned above. See https://github.com/VictoriaMetrics/VictoriaMetrics/issues/1401
TODO: to find out the solution, which simultaneously solves the following issues:
- increased memory usage for setups high churn rate and long retention (e.g. what the reverted commit does)
- increased CPU and disk IO usage during indexdb rotation ( https://github.com/VictoriaMetrics/VictoriaMetrics/issues/1401 )
- https://github.com/VictoriaMetrics/VictoriaMetrics/issues/2698
Possible solution - to create the new indexdb in one hour before the indexdb rotation
and to gradually pre-populate it with the needed index data during the last hour before indexdb rotation.
Then the new indexdb will contain all the needed data just after the rotation,
so it won't trigger increased CPU and disk IO.
- Document the change at docs/CHANGELOG.md
- Clarify comments for non-trivial code touched by the commit
- Improve the logic behind maybeCreateIndexes():
- Correctly create per-day indexes if the indexdb rotation is performed during
the first hour or the last hour of the day by UTC.
Previously there was a possibility of missing index entries on that day.
- Increase the duration for creating new indexes in the current indexdb for up to 22 hours
after indexdb rotation. This should reduce the increased resource usage
after indexdb rotation.
It is safe to postpone index creation for the current day until the last hour
of the current day after indexdb rotation by UTC, since the corresponding (date, ...)
entries exist in the previous indexdb.
- Search for TSID by (date, MetricName) in both the current and the previous indexdb.
Previously the search was performed only in the current indexdb. This could lead
to excess creation of per-day indexes for the current day just after indexdb rotation.
- Search for (date, metricID) entries in both the current and the previous indexdb.
Previously the search was performed only in the current indexdb. This could lead
to excess creation of per-day indexes for the current day just after indexdb rotation.
Use fs.MustReadDir() instead of os.ReadDir() across the code in order to reduce the code verbosity.
The fs.MustReadDir() logs the error with the directory name and the call stack on error
before exit. This information should be enough for debugging the cause of the error.
The commit 5fb45173ae takes into account only newly registered series
when applying cardinality limits. This means that the cardinality limit could be exceeded with already registered series.
This commit returns back accounting for already registered series when applying cardinality limits.
Previously the creation of per-day indexes and global indexes
for the newly registered time series was decoupled.
Now global indexes and per-day indexes for the current day are created toghether for new time series.
This should speed up registering new time series a bit.
* lib/index: reduce read/write load after indexDB rotation
IndexDB in VM is responsible for storing TSID - ID's used for identifying
time series. The index is stored on disk and used by both ingestion and read path.
IndexDB is stored separately to data parts and is global for all stored data.
It can't be deleted partially as VM deletes data parts. Instead, indexDB is
rotated once in `retention` interval.
The rotation procedure means that `current` indexDB becomes `previous`,
and new freshly created indexDB struct becomes `current`. So in any time,
VM holds indexDB for current and previous retention periods.
When time series is ingested or queried, VM checks if its TSID is present
in `current` indexDB. If it is missing, it checks the `previous` indexDB.
If TSID was found, it gets copied to the `current` indexDB. In this way
`current` indexDB stores only series which were active during the retention
period.
To improve indexDB lookups, VM uses a cache layer called `tsidCache`. Both
write and read path consult `tsidCache` and on miss the relad lookup happens.
When rotation happens, VM resets the `tsidCache`. This is needed for ingestion
path to trigger `current` indexDB re-population. Since index re-population
requires additional resources, every index rotation event may cause some extra
load on CPU and disk. While it may be unnoticeable for most of the cases,
for systems with very high number of unique series each rotation may lead
to performance degradation for some period of time.
This PR makes an attempt to smooth out resource usage after the rotation.
The changes are following:
1. `tsidCache` is no longer reset after the rotation;
2. Instead, each entry in `tsidCache` gains a notion of indexDB to which
they belong;
3. On ingestion path after the rotation we check if requested TSID was
found in `tsidCache`. Then we have 3 branches:
3.1 Fast path. It was found, and belongs to the `current` indexDB. Return TSID.
3.2 Slow path. It wasn't found, so we generate it from scratch,
add to `current` indexDB, add it to `tsidCache`.
3.3 Smooth path. It was found but does not belong to the `current` indexDB.
In this case, we add it to the `current` indexDB with some probability.
The probability is based on time passed since the last rotation with some threshold.
The more time has passed since rotation the higher is chance to re-populate `current` indexDB.
The default re-population interval in this PR is set to `1h`, during which entries from
`previous` index supposed to slowly re-populate `current` index.
The new metric `vm_timeseries_repopulated_total` was added to identify how many TSIDs
were moved from `previous` indexDB to the `current` indexDB. This metric supposed to
grow only during the first `1h` after the last rotation.
https://github.com/VictoriaMetrics/VictoriaMetrics/issues/1401
Signed-off-by: hagen1778 <roman@victoriametrics.com>
* wip
* wip
Co-authored-by: Aliaksandr Valialkin <valyala@victoriametrics.com>
Remove the code that uses metricIDs caches for the current and the previous hour during metricIDs search,
since this code became unused after implementing per-day inverted index almost a year ago.
While at it, fix a bug, which could prevent from finding time series with names containing dots (aka Graphite-like names
such as `foo.bar.baz`).
Previously the time spent on inverted index search could exceed the configured `-search.maxQueryDuration`.
This commit stops searching in inverted index on query timeout.
This is a follow-up commit after 12b16077c4 ,
which didn't reset the `tsidCache` in all the required places.
This could result in indefinite errors like:
missing metricName by metricID ...; this could be the case after unclean shutdown; deleting the metricID, so it could be re-created next time
Fix this by resetting the cache inside deleteMetricIDs function.
See the corresponding benchmark in Prometheus - 23c0299d85/tsdb/head_bench_test.go (L52)
The benchmark allows performing apples-to-apples comparison of time series search
in Prometheus and VictoriaMetrics. The following article - https://www.robustperception.io/evaluating-performance-and-correctness -
contains incorrect numbers for VictoriaMetrics, since there wasn't this benchmark yet. Fix this.
Benchmarks can be repeated with the following commands from Prometheus and VictoriaMetrics source code roots:
- Prometheus: GOMAXPROCS=1 go test ./tsdb/ -run=111 -bench=BenchmarkHeadPostingForMatchers
- VictoriaMetrics: GOMAXPROCS=1 go test ./lib/storage/ -run=111 -bench=BenchmarkHeadPostingForMatchers
Benchmark results:
benchmark old ns/op new ns/op delta
BenchmarkHeadPostingForMatchers/n="1" 272756688 364977 -99.87%
BenchmarkHeadPostingForMatchers/n="1",j="foo" 138132923 1181636 -99.14%
BenchmarkHeadPostingForMatchers/j="foo",n="1" 134723762 1141578 -99.15%
BenchmarkHeadPostingForMatchers/n="1",j!="foo" 195823953 1148056 -99.41%
BenchmarkHeadPostingForMatchers/i=~".*" 7962582919 8716755 -99.89%
BenchmarkHeadPostingForMatchers/i=~".+" 7589543864 12096587 -99.84%
BenchmarkHeadPostingForMatchers/i=~"" 1142371741 16164560 -98.59%
BenchmarkHeadPostingForMatchers/i!="" 9964150263 12230021 -99.88%
BenchmarkHeadPostingForMatchers/n="1",i=~".*",j="foo" 216995884 1173476 -99.46%
BenchmarkHeadPostingForMatchers/n="1",i=~".*",i!="2",j="foo" 202541348 1299743 -99.36%
BenchmarkHeadPostingForMatchers/n="1",i!="" 486285711 11555193 -97.62%
BenchmarkHeadPostingForMatchers/n="1",i!="",j="foo" 350776931 5607506 -98.40%
BenchmarkHeadPostingForMatchers/n="1",i=~".+",j="foo" 380888565 6380335 -98.32%
BenchmarkHeadPostingForMatchers/n="1",i=~"1.+",j="foo" 89500296 2078970 -97.68%
BenchmarkHeadPostingForMatchers/n="1",i=~".+",i!="2",j="foo" 379529654 6561368 -98.27%
BenchmarkHeadPostingForMatchers/n="1",i=~".+",i!~"2.*",j="foo" 424563825 6757132 -98.41%
The first column (old) is for Prometheus, the second column (new) is for VictoriaMetrics.
As you can see, VictoriaMetrics outperforms Prometheus by more than 100x in almost all the test cases of this benchmark.
Prometheus was using 3.5GB of RAM during the benchmark, while VictoriaMetrics was using 400MB of RAM.
This should reduce the amount of RAM required for processing time series
with non-zero churn rate.
The previous cache behavior can be restored with `-cache.oldBehavior` command-line flag.