{% import ( "fmt" "github.com/VictoriaMetrics/metricsql" ) %} {% stripspace %} // ExpandWithExprsResponse returns a webpage, which expands with templates in q MetricsQL. {% func ExpandWithExprsResponse(q string) %} <html> <head> <title>Expand WITH expressions</title> <style> p { font-weight: bold } textarea { margin: 1em } </style> </head> <body> <div> <form method="get"> <div> <p> <a href="https://docs.victoriametrics.com/metricsql/">MetricsQL</a> query with optional WITH expressions: </p> <textarea name="query" style="height: 15em; width: 90%">{%s q %}</textarea><br/> <input type="submit" value="Expand" /> <p> <a href="https://docs.victoriametrics.com/metricsql/">MetricsQL</a> query after expanding WITH expressions and applying other optimizations: </p> <textarea style="height: 5em; width: 90%" readonly="readonly">{%= expandWithExprs(q) %}</textarea> </div> </form> </div> <div>{%= withExprsTutorial() %}</div> </body> </html> {% endfunc %} {% func expandWithExprs(q string) %} {% if len(q) == 0 %} {% return %} {% endif %} {% code expr, err := metricsql.Parse(q) %} {% if err != nil %} Cannot parse query: {%v err %} {% else %} {% code expr = metricsql.Optimize(expr) %} {%z expr.AppendString(nil) %} {% endif %} {% endfunc %} {% func ExpandWithExprsJSONResponse(q string) %} {% if len(q) == 0 %} { "status": "error", "error": "query string cannot be empty" } {% return %} {% endif %} { {% code expr, err := metricsql.Parse(q) %} {% if err != nil %} "status": "error", "error": {%q= fmt.Sprintf("Cannot parse query: %s", err) %} {% else %} {% code expr = metricsql.Optimize(expr) %} "status": "success", "expr": {%qz= expr.AppendString(nil) %} {% endif %} } {% endfunc %} {% endstripspace %} {% func withExprsTutorial() %} <h3>Tutorial for WITH expressions in <a href="https://docs.victoriametrics.com/metricsql/">MetricsQL</a></h3> <p> Let's look at the following real query from <a href="https://grafana.com/grafana/dashboards/1860">Node Exporter Full</a> dashboard: </p> <pre> ( ( node_memory_MemTotal_bytes{instance=~"$node:$port", job=~"$job"} - node_memory_MemFree_bytes{instance=~"$node:$port", job=~"$job"} ) / node_memory_MemTotal_bytes{instance=~"$node:$port", job=~"$job"} ) * 100 </pre> <p> It is clear the query calculates the percentage of used memory for the given $node, $port and $job. Isn't it? :) </p> <p> What's wrong with this query? Copy-pasted label filters for distinct timeseries which makes it easy to mistype these filters during modification. Let's simplify the query with WITH expressions: </p> <pre> WITH ( commonFilters = {instance=~"$node:$port",job=~"$job"} ) ( node_memory_MemTotal_bytes{commonFilters} - node_memory_MemFree_bytes{commonFilters} ) / node_memory_MemTotal_bytes{commonFilters} * 100 </pre> <p> Now label filters are located in a single place instead of three distinct places. The query mentions node_memory_MemTotal_bytes metric twice and {commonFilters} three times. WITH expressions may improve this: </p> <pre> WITH ( my_resource_utilization(free, limit, filters) = (limit{filters} - free{filters}) / limit{filters} * 100 ) my_resource_utilization( node_memory_MemFree_bytes, node_memory_MemTotal_bytes, {instance=~"$node:$port",job=~"$job"}, ) </pre> <p> Now the template function my_resource_utilization() may be used for monitoring arbitrary resources - memory, CPU, network, storage, you name it. </p> <p> Let's take another nice query from <a href="https://grafana.com/grafana/dashboards/1860">Node Exporter Full</a> dashboard: </p> <pre> ( ( ( count( count(node_cpu_seconds_total{instance=~"$node:$port",job=~"$job"}) by (cpu) ) ) - avg( sum by (mode) (rate(node_cpu_seconds_total{mode='idle',instance=~"$node:$port",job=~"$job"}[5m])) ) ) * 100 ) / count( count(node_cpu_seconds_total{instance=~"$node:$port",job=~"$job"}) by (cpu) ) </pre> <p> Do you understand what does this mess do? Is it manageable? :) WITH expressions are happy to help in a few iterations. <br/> <br/> 1. Extract common filters used in multiple places into a commonFilters variable: </p> <pre> WITH ( commonFilters = {instance=~"$node:$port",job=~"$job"} ) ( ( ( count( count(node_cpu_seconds_total{commonFilters}) by (cpu) ) ) - avg( sum by (mode) (rate(node_cpu_seconds_total{mode='idle',commonFilters}[5m])) ) ) * 100 ) / count( count(node_cpu_seconds_total{commonFilters}) by (cpu) ) </pre> <p> 2. Extract "count(count(...) by (cpu))" into cpuCount variable: </p> <pre> WITH ( commonFilters = {instance=~"$node:$port",job=~"$job"}, cpuCount = count(count(node_cpu_seconds_total{commonFilters}) by (cpu)) ) ( ( cpuCount - avg( sum by (mode) (rate(node_cpu_seconds_total{mode='idle',commonFilters}[5m])) ) ) * 100 ) / cpuCount </pre> <p> 3. Extract rate(...) part into cpuIdle variable, since it is clear now that this part calculates the number of idle CPUs: </p> <pre> WITH ( commonFilters = {instance=~"$node:$port",job=~"$job"}, cpuCount = count(count(node_cpu_seconds_total{commonFilters}) by (cpu)), cpuIdle = sum(rate(node_cpu_seconds_total{mode='idle',commonFilters}[5m])) ) ((cpuCount - cpuIdle) * 100) / cpuCount </pre> <p> 4. Put node_cpu_seconds_total{commonFilters} into its own varialbe with the name cpuSeconds: </p> <pre> WITH ( cpuSeconds = node_cpu_seconds_total{instance=~"$node:$port",job=~"$job"}, cpuCount = count(count(cpuSeconds) by (cpu)), cpuIdle = sum(rate(cpuSeconds{mode='idle'}[5m])) ) ((cpuCount - cpuIdle) * 100) / cpuCount </pre> <p> Now the query became more clear comparing to the initial query. </p> <p> WITH expressions may be nested and may be put anywhere. Try expanding the following query: </p> <pre> WITH ( f(a, b) = WITH ( f1(x) = b-x, f2(x) = x+x ) f1(a)*f2(b) ) f(foo, with(x=bar) x) </pre> {% endfunc %}