// Copyright 2009 The Go Authors. All rights reserved. // Copyright (c) 2015 Klaus Post // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. package flate import ( "encoding/binary" "fmt" "io" "math" ) const ( NoCompression = 0 BestSpeed = 1 BestCompression = 9 DefaultCompression = -1 // HuffmanOnly disables Lempel-Ziv match searching and only performs Huffman // entropy encoding. This mode is useful in compressing data that has // already been compressed with an LZ style algorithm (e.g. Snappy or LZ4) // that lacks an entropy encoder. Compression gains are achieved when // certain bytes in the input stream occur more frequently than others. // // Note that HuffmanOnly produces a compressed output that is // RFC 1951 compliant. That is, any valid DEFLATE decompressor will // continue to be able to decompress this output. HuffmanOnly = -2 ConstantCompression = HuffmanOnly // compatibility alias. logWindowSize = 15 windowSize = 1 << logWindowSize windowMask = windowSize - 1 logMaxOffsetSize = 15 // Standard DEFLATE minMatchLength = 4 // The smallest match that the compressor looks for maxMatchLength = 258 // The longest match for the compressor minOffsetSize = 1 // The shortest offset that makes any sense // The maximum number of tokens we will encode at the time. // Smaller sizes usually creates less optimal blocks. // Bigger can make context switching slow. // We use this for levels 7-9, so we make it big. maxFlateBlockTokens = 1 << 15 maxStoreBlockSize = 65535 hashBits = 17 // After 17 performance degrades hashSize = 1 << hashBits hashMask = (1 << hashBits) - 1 hashShift = (hashBits + minMatchLength - 1) / minMatchLength maxHashOffset = 1 << 28 skipNever = math.MaxInt32 debugDeflate = false ) type compressionLevel struct { good, lazy, nice, chain, fastSkipHashing, level int } // Compression levels have been rebalanced from zlib deflate defaults // to give a bigger spread in speed and compression. // See https://blog.klauspost.com/rebalancing-deflate-compression-levels/ var levels = []compressionLevel{ {}, // 0 // Level 1-6 uses specialized algorithm - values not used {0, 0, 0, 0, 0, 1}, {0, 0, 0, 0, 0, 2}, {0, 0, 0, 0, 0, 3}, {0, 0, 0, 0, 0, 4}, {0, 0, 0, 0, 0, 5}, {0, 0, 0, 0, 0, 6}, // Levels 7-9 use increasingly more lazy matching // and increasingly stringent conditions for "good enough". {8, 12, 16, 24, skipNever, 7}, {16, 30, 40, 64, skipNever, 8}, {32, 258, 258, 1024, skipNever, 9}, } // advancedState contains state for the advanced levels, with bigger hash tables, etc. type advancedState struct { // deflate state length int offset int maxInsertIndex int chainHead int hashOffset int ii uint16 // position of last match, intended to overflow to reset. // input window: unprocessed data is window[index:windowEnd] index int estBitsPerByte int hashMatch [maxMatchLength + minMatchLength]uint32 // Input hash chains // hashHead[hashValue] contains the largest inputIndex with the specified hash value // If hashHead[hashValue] is within the current window, then // hashPrev[hashHead[hashValue] & windowMask] contains the previous index // with the same hash value. hashHead [hashSize]uint32 hashPrev [windowSize]uint32 } type compressor struct { compressionLevel h *huffmanEncoder w *huffmanBitWriter // compression algorithm fill func(*compressor, []byte) int // copy data to window step func(*compressor) // process window window []byte windowEnd int blockStart int // window index where current tokens start err error // queued output tokens tokens tokens fast fastEnc state *advancedState sync bool // requesting flush byteAvailable bool // if true, still need to process window[index-1]. } func (d *compressor) fillDeflate(b []byte) int { s := d.state if s.index >= 2*windowSize-(minMatchLength+maxMatchLength) { // shift the window by windowSize //copy(d.window[:], d.window[windowSize:2*windowSize]) *(*[windowSize]byte)(d.window) = *(*[windowSize]byte)(d.window[windowSize:]) s.index -= windowSize d.windowEnd -= windowSize if d.blockStart >= windowSize { d.blockStart -= windowSize } else { d.blockStart = math.MaxInt32 } s.hashOffset += windowSize if s.hashOffset > maxHashOffset { delta := s.hashOffset - 1 s.hashOffset -= delta s.chainHead -= delta // Iterate over slices instead of arrays to avoid copying // the entire table onto the stack (Issue #18625). for i, v := range s.hashPrev[:] { if int(v) > delta { s.hashPrev[i] = uint32(int(v) - delta) } else { s.hashPrev[i] = 0 } } for i, v := range s.hashHead[:] { if int(v) > delta { s.hashHead[i] = uint32(int(v) - delta) } else { s.hashHead[i] = 0 } } } } n := copy(d.window[d.windowEnd:], b) d.windowEnd += n return n } func (d *compressor) writeBlock(tok *tokens, index int, eof bool) error { if index > 0 || eof { var window []byte if d.blockStart <= index { window = d.window[d.blockStart:index] } d.blockStart = index //d.w.writeBlock(tok, eof, window) d.w.writeBlockDynamic(tok, eof, window, d.sync) return d.w.err } return nil } // writeBlockSkip writes the current block and uses the number of tokens // to determine if the block should be stored on no matches, or // only huffman encoded. func (d *compressor) writeBlockSkip(tok *tokens, index int, eof bool) error { if index > 0 || eof { if d.blockStart <= index { window := d.window[d.blockStart:index] // If we removed less than a 64th of all literals // we huffman compress the block. if int(tok.n) > len(window)-int(tok.n>>6) { d.w.writeBlockHuff(eof, window, d.sync) } else { // Write a dynamic huffman block. d.w.writeBlockDynamic(tok, eof, window, d.sync) } } else { d.w.writeBlock(tok, eof, nil) } d.blockStart = index return d.w.err } return nil } // fillWindow will fill the current window with the supplied // dictionary and calculate all hashes. // This is much faster than doing a full encode. // Should only be used after a start/reset. func (d *compressor) fillWindow(b []byte) { // Do not fill window if we are in store-only or huffman mode. if d.level <= 0 { return } if d.fast != nil { // encode the last data, but discard the result if len(b) > maxMatchOffset { b = b[len(b)-maxMatchOffset:] } d.fast.Encode(&d.tokens, b) d.tokens.Reset() return } s := d.state // If we are given too much, cut it. if len(b) > windowSize { b = b[len(b)-windowSize:] } // Add all to window. n := copy(d.window[d.windowEnd:], b) // Calculate 256 hashes at the time (more L1 cache hits) loops := (n + 256 - minMatchLength) / 256 for j := 0; j < loops; j++ { startindex := j * 256 end := startindex + 256 + minMatchLength - 1 if end > n { end = n } tocheck := d.window[startindex:end] dstSize := len(tocheck) - minMatchLength + 1 if dstSize <= 0 { continue } dst := s.hashMatch[:dstSize] bulkHash4(tocheck, dst) var newH uint32 for i, val := range dst { di := i + startindex newH = val & hashMask // Get previous value with the same hash. // Our chain should point to the previous value. s.hashPrev[di&windowMask] = s.hashHead[newH] // Set the head of the hash chain to us. s.hashHead[newH] = uint32(di + s.hashOffset) } } // Update window information. d.windowEnd += n s.index = n } // Try to find a match starting at index whose length is greater than prevSize. // We only look at chainCount possibilities before giving up. // pos = s.index, prevHead = s.chainHead-s.hashOffset, prevLength=minMatchLength-1, lookahead func (d *compressor) findMatch(pos int, prevHead int, lookahead int) (length, offset int, ok bool) { minMatchLook := maxMatchLength if lookahead < minMatchLook { minMatchLook = lookahead } win := d.window[0 : pos+minMatchLook] // We quit when we get a match that's at least nice long nice := len(win) - pos if d.nice < nice { nice = d.nice } // If we've got a match that's good enough, only look in 1/4 the chain. tries := d.chain length = minMatchLength - 1 wEnd := win[pos+length] wPos := win[pos:] minIndex := pos - windowSize if minIndex < 0 { minIndex = 0 } offset = 0 cGain := 0 if d.chain < 100 { for i := prevHead; tries > 0; tries-- { if wEnd == win[i+length] { n := matchLen(win[i:i+minMatchLook], wPos) if n > length { length = n offset = pos - i ok = true if n >= nice { // The match is good enough that we don't try to find a better one. break } wEnd = win[pos+n] } } if i <= minIndex { // hashPrev[i & windowMask] has already been overwritten, so stop now. break } i = int(d.state.hashPrev[i&windowMask]) - d.state.hashOffset if i < minIndex { break } } return } // Some like it higher (CSV), some like it lower (JSON) const baseCost = 6 // Base is 4 bytes at with an additional cost. // Matches must be better than this. for i := prevHead; tries > 0; tries-- { if wEnd == win[i+length] { n := matchLen(win[i:i+minMatchLook], wPos) if n > length { // Calculate gain. Estimate newGain := d.h.bitLengthRaw(wPos[:n]) - int(offsetExtraBits[offsetCode(uint32(pos-i))]) - baseCost - int(lengthExtraBits[lengthCodes[(n-3)&255]]) //fmt.Println(n, "gain:", newGain, "prev:", cGain, "raw:", d.h.bitLengthRaw(wPos[:n])) if newGain > cGain { length = n offset = pos - i cGain = newGain ok = true if n >= nice { // The match is good enough that we don't try to find a better one. break } wEnd = win[pos+n] } } } if i <= minIndex { // hashPrev[i & windowMask] has already been overwritten, so stop now. break } i = int(d.state.hashPrev[i&windowMask]) - d.state.hashOffset if i < minIndex { break } } return } func (d *compressor) writeStoredBlock(buf []byte) error { if d.w.writeStoredHeader(len(buf), false); d.w.err != nil { return d.w.err } d.w.writeBytes(buf) return d.w.err } // hash4 returns a hash representation of the first 4 bytes // of the supplied slice. // The caller must ensure that len(b) >= 4. func hash4(b []byte) uint32 { return hash4u(binary.LittleEndian.Uint32(b), hashBits) } // bulkHash4 will compute hashes using the same // algorithm as hash4 func bulkHash4(b []byte, dst []uint32) { if len(b) < 4 { return } hb := binary.LittleEndian.Uint32(b) dst[0] = hash4u(hb, hashBits) end := len(b) - 4 + 1 for i := 1; i < end; i++ { hb = (hb >> 8) | uint32(b[i+3])<<24 dst[i] = hash4u(hb, hashBits) } } func (d *compressor) initDeflate() { d.window = make([]byte, 2*windowSize) d.byteAvailable = false d.err = nil if d.state == nil { return } s := d.state s.index = 0 s.hashOffset = 1 s.length = minMatchLength - 1 s.offset = 0 s.chainHead = -1 } // deflateLazy is the same as deflate, but with d.fastSkipHashing == skipNever, // meaning it always has lazy matching on. func (d *compressor) deflateLazy() { s := d.state // Sanity enables additional runtime tests. // It's intended to be used during development // to supplement the currently ad-hoc unit tests. const sanity = debugDeflate if d.windowEnd-s.index < minMatchLength+maxMatchLength && !d.sync { return } if d.windowEnd != s.index && d.chain > 100 { // Get literal huffman coder. if d.h == nil { d.h = newHuffmanEncoder(maxFlateBlockTokens) } var tmp [256]uint16 for _, v := range d.window[s.index:d.windowEnd] { tmp[v]++ } d.h.generate(tmp[:], 15) } s.maxInsertIndex = d.windowEnd - (minMatchLength - 1) for { if sanity && s.index > d.windowEnd { panic("index > windowEnd") } lookahead := d.windowEnd - s.index if lookahead < minMatchLength+maxMatchLength { if !d.sync { return } if sanity && s.index > d.windowEnd { panic("index > windowEnd") } if lookahead == 0 { // Flush current output block if any. if d.byteAvailable { // There is still one pending token that needs to be flushed d.tokens.AddLiteral(d.window[s.index-1]) d.byteAvailable = false } if d.tokens.n > 0 { if d.err = d.writeBlock(&d.tokens, s.index, false); d.err != nil { return } d.tokens.Reset() } return } } if s.index < s.maxInsertIndex { // Update the hash hash := hash4(d.window[s.index:]) ch := s.hashHead[hash] s.chainHead = int(ch) s.hashPrev[s.index&windowMask] = ch s.hashHead[hash] = uint32(s.index + s.hashOffset) } prevLength := s.length prevOffset := s.offset s.length = minMatchLength - 1 s.offset = 0 minIndex := s.index - windowSize if minIndex < 0 { minIndex = 0 } if s.chainHead-s.hashOffset >= minIndex && lookahead > prevLength && prevLength < d.lazy { if newLength, newOffset, ok := d.findMatch(s.index, s.chainHead-s.hashOffset, lookahead); ok { s.length = newLength s.offset = newOffset } } if prevLength >= minMatchLength && s.length <= prevLength { // Check for better match at end... // // checkOff must be >=2 since we otherwise risk checking s.index // Offset of 2 seems to yield best results. const checkOff = 2 prevIndex := s.index - 1 if prevIndex+prevLength+checkOff < s.maxInsertIndex { end := lookahead if lookahead > maxMatchLength { end = maxMatchLength } end += prevIndex idx := prevIndex + prevLength - (4 - checkOff) h := hash4(d.window[idx:]) ch2 := int(s.hashHead[h]) - s.hashOffset - prevLength + (4 - checkOff) if ch2 > minIndex { length := matchLen(d.window[prevIndex:end], d.window[ch2:]) // It seems like a pure length metric is best. if length > prevLength { prevLength = length prevOffset = prevIndex - ch2 } } } // There was a match at the previous step, and the current match is // not better. Output the previous match. d.tokens.AddMatch(uint32(prevLength-3), uint32(prevOffset-minOffsetSize)) // Insert in the hash table all strings up to the end of the match. // index and index-1 are already inserted. If there is not enough // lookahead, the last two strings are not inserted into the hash // table. newIndex := s.index + prevLength - 1 // Calculate missing hashes end := newIndex if end > s.maxInsertIndex { end = s.maxInsertIndex } end += minMatchLength - 1 startindex := s.index + 1 if startindex > s.maxInsertIndex { startindex = s.maxInsertIndex } tocheck := d.window[startindex:end] dstSize := len(tocheck) - minMatchLength + 1 if dstSize > 0 { dst := s.hashMatch[:dstSize] bulkHash4(tocheck, dst) var newH uint32 for i, val := range dst { di := i + startindex newH = val & hashMask // Get previous value with the same hash. // Our chain should point to the previous value. s.hashPrev[di&windowMask] = s.hashHead[newH] // Set the head of the hash chain to us. s.hashHead[newH] = uint32(di + s.hashOffset) } } s.index = newIndex d.byteAvailable = false s.length = minMatchLength - 1 if d.tokens.n == maxFlateBlockTokens { // The block includes the current character if d.err = d.writeBlock(&d.tokens, s.index, false); d.err != nil { return } d.tokens.Reset() } s.ii = 0 } else { // Reset, if we got a match this run. if s.length >= minMatchLength { s.ii = 0 } // We have a byte waiting. Emit it. if d.byteAvailable { s.ii++ d.tokens.AddLiteral(d.window[s.index-1]) if d.tokens.n == maxFlateBlockTokens { if d.err = d.writeBlock(&d.tokens, s.index, false); d.err != nil { return } d.tokens.Reset() } s.index++ // If we have a long run of no matches, skip additional bytes // Resets when s.ii overflows after 64KB. if n := int(s.ii) - d.chain; n > 0 { n = 1 + int(n>>6) for j := 0; j < n; j++ { if s.index >= d.windowEnd-1 { break } d.tokens.AddLiteral(d.window[s.index-1]) if d.tokens.n == maxFlateBlockTokens { if d.err = d.writeBlock(&d.tokens, s.index, false); d.err != nil { return } d.tokens.Reset() } // Index... if s.index < s.maxInsertIndex { h := hash4(d.window[s.index:]) ch := s.hashHead[h] s.chainHead = int(ch) s.hashPrev[s.index&windowMask] = ch s.hashHead[h] = uint32(s.index + s.hashOffset) } s.index++ } // Flush last byte d.tokens.AddLiteral(d.window[s.index-1]) d.byteAvailable = false // s.length = minMatchLength - 1 // not needed, since s.ii is reset above, so it should never be > minMatchLength if d.tokens.n == maxFlateBlockTokens { if d.err = d.writeBlock(&d.tokens, s.index, false); d.err != nil { return } d.tokens.Reset() } } } else { s.index++ d.byteAvailable = true } } } } func (d *compressor) store() { if d.windowEnd > 0 && (d.windowEnd == maxStoreBlockSize || d.sync) { d.err = d.writeStoredBlock(d.window[:d.windowEnd]) d.windowEnd = 0 } } // fillWindow will fill the buffer with data for huffman-only compression. // The number of bytes copied is returned. func (d *compressor) fillBlock(b []byte) int { n := copy(d.window[d.windowEnd:], b) d.windowEnd += n return n } // storeHuff will compress and store the currently added data, // if enough has been accumulated or we at the end of the stream. // Any error that occurred will be in d.err func (d *compressor) storeHuff() { if d.windowEnd < len(d.window) && !d.sync || d.windowEnd == 0 { return } d.w.writeBlockHuff(false, d.window[:d.windowEnd], d.sync) d.err = d.w.err d.windowEnd = 0 } // storeFast will compress and store the currently added data, // if enough has been accumulated or we at the end of the stream. // Any error that occurred will be in d.err func (d *compressor) storeFast() { // We only compress if we have maxStoreBlockSize. if d.windowEnd < len(d.window) { if !d.sync { return } // Handle extremely small sizes. if d.windowEnd < 128 { if d.windowEnd == 0 { return } if d.windowEnd <= 32 { d.err = d.writeStoredBlock(d.window[:d.windowEnd]) } else { d.w.writeBlockHuff(false, d.window[:d.windowEnd], true) d.err = d.w.err } d.tokens.Reset() d.windowEnd = 0 d.fast.Reset() return } } d.fast.Encode(&d.tokens, d.window[:d.windowEnd]) // If we made zero matches, store the block as is. if d.tokens.n == 0 { d.err = d.writeStoredBlock(d.window[:d.windowEnd]) // If we removed less than 1/16th, huffman compress the block. } else if int(d.tokens.n) > d.windowEnd-(d.windowEnd>>4) { d.w.writeBlockHuff(false, d.window[:d.windowEnd], d.sync) d.err = d.w.err } else { d.w.writeBlockDynamic(&d.tokens, false, d.window[:d.windowEnd], d.sync) d.err = d.w.err } d.tokens.Reset() d.windowEnd = 0 } // write will add input byte to the stream. // Unless an error occurs all bytes will be consumed. func (d *compressor) write(b []byte) (n int, err error) { if d.err != nil { return 0, d.err } n = len(b) for len(b) > 0 { if d.windowEnd == len(d.window) || d.sync { d.step(d) } b = b[d.fill(d, b):] if d.err != nil { return 0, d.err } } return n, d.err } func (d *compressor) syncFlush() error { d.sync = true if d.err != nil { return d.err } d.step(d) if d.err == nil { d.w.writeStoredHeader(0, false) d.w.flush() d.err = d.w.err } d.sync = false return d.err } func (d *compressor) init(w io.Writer, level int) (err error) { d.w = newHuffmanBitWriter(w) switch { case level == NoCompression: d.window = make([]byte, maxStoreBlockSize) d.fill = (*compressor).fillBlock d.step = (*compressor).store case level == ConstantCompression: d.w.logNewTablePenalty = 10 d.window = make([]byte, 32<<10) d.fill = (*compressor).fillBlock d.step = (*compressor).storeHuff case level == DefaultCompression: level = 5 fallthrough case level >= 1 && level <= 6: d.w.logNewTablePenalty = 7 d.fast = newFastEnc(level) d.window = make([]byte, maxStoreBlockSize) d.fill = (*compressor).fillBlock d.step = (*compressor).storeFast case 7 <= level && level <= 9: d.w.logNewTablePenalty = 8 d.state = &advancedState{} d.compressionLevel = levels[level] d.initDeflate() d.fill = (*compressor).fillDeflate d.step = (*compressor).deflateLazy default: return fmt.Errorf("flate: invalid compression level %d: want value in range [-2, 9]", level) } d.level = level return nil } // reset the state of the compressor. func (d *compressor) reset(w io.Writer) { d.w.reset(w) d.sync = false d.err = nil // We only need to reset a few things for Snappy. if d.fast != nil { d.fast.Reset() d.windowEnd = 0 d.tokens.Reset() return } switch d.compressionLevel.chain { case 0: // level was NoCompression or ConstantCompresssion. d.windowEnd = 0 default: s := d.state s.chainHead = -1 for i := range s.hashHead { s.hashHead[i] = 0 } for i := range s.hashPrev { s.hashPrev[i] = 0 } s.hashOffset = 1 s.index, d.windowEnd = 0, 0 d.blockStart, d.byteAvailable = 0, false d.tokens.Reset() s.length = minMatchLength - 1 s.offset = 0 s.ii = 0 s.maxInsertIndex = 0 } } func (d *compressor) close() error { if d.err != nil { return d.err } d.sync = true d.step(d) if d.err != nil { return d.err } if d.w.writeStoredHeader(0, true); d.w.err != nil { return d.w.err } d.w.flush() d.w.reset(nil) return d.w.err } // NewWriter returns a new Writer compressing data at the given level. // Following zlib, levels range from 1 (BestSpeed) to 9 (BestCompression); // higher levels typically run slower but compress more. // Level 0 (NoCompression) does not attempt any compression; it only adds the // necessary DEFLATE framing. // Level -1 (DefaultCompression) uses the default compression level. // Level -2 (ConstantCompression) will use Huffman compression only, giving // a very fast compression for all types of input, but sacrificing considerable // compression efficiency. // // If level is in the range [-2, 9] then the error returned will be nil. // Otherwise the error returned will be non-nil. func NewWriter(w io.Writer, level int) (*Writer, error) { var dw Writer if err := dw.d.init(w, level); err != nil { return nil, err } return &dw, nil } // NewWriterDict is like NewWriter but initializes the new // Writer with a preset dictionary. The returned Writer behaves // as if the dictionary had been written to it without producing // any compressed output. The compressed data written to w // can only be decompressed by a Reader initialized with the // same dictionary. func NewWriterDict(w io.Writer, level int, dict []byte) (*Writer, error) { zw, err := NewWriter(w, level) if err != nil { return nil, err } zw.d.fillWindow(dict) zw.dict = append(zw.dict, dict...) // duplicate dictionary for Reset method. return zw, err } // A Writer takes data written to it and writes the compressed // form of that data to an underlying writer (see NewWriter). type Writer struct { d compressor dict []byte } // Write writes data to w, which will eventually write the // compressed form of data to its underlying writer. func (w *Writer) Write(data []byte) (n int, err error) { return w.d.write(data) } // Flush flushes any pending data to the underlying writer. // It is useful mainly in compressed network protocols, to ensure that // a remote reader has enough data to reconstruct a packet. // Flush does not return until the data has been written. // Calling Flush when there is no pending data still causes the Writer // to emit a sync marker of at least 4 bytes. // If the underlying writer returns an error, Flush returns that error. // // In the terminology of the zlib library, Flush is equivalent to Z_SYNC_FLUSH. func (w *Writer) Flush() error { // For more about flushing: // http://www.bolet.org/~pornin/deflate-flush.html return w.d.syncFlush() } // Close flushes and closes the writer. func (w *Writer) Close() error { return w.d.close() } // Reset discards the writer's state and makes it equivalent to // the result of NewWriter or NewWriterDict called with dst // and w's level and dictionary. func (w *Writer) Reset(dst io.Writer) { if len(w.dict) > 0 { // w was created with NewWriterDict w.d.reset(dst) if dst != nil { w.d.fillWindow(w.dict) } } else { // w was created with NewWriter w.d.reset(dst) } } // ResetDict discards the writer's state and makes it equivalent to // the result of NewWriter or NewWriterDict called with dst // and w's level, but sets a specific dictionary. func (w *Writer) ResetDict(dst io.Writer, dict []byte) { w.dict = dict w.d.reset(dst) w.d.fillWindow(w.dict) }