package promql import ( "fmt" "math" "sort" "strings" "sync" "github.com/VictoriaMetrics/VictoriaMetrics/lib/decimal" "github.com/VictoriaMetrics/VictoriaMetrics/lib/logger" "github.com/valyala/histogram" ) var rollupFuncs = map[string]newRollupFunc{ "default_rollup": newRollupFuncOneArg(rollupDefault), // default rollup func // Standard rollup funcs from PromQL. // See funcs accepting range-vector on https://prometheus.io/docs/prometheus/latest/querying/functions/ . "changes": newRollupFuncOneArg(rollupChanges), "delta": newRollupFuncOneArg(rollupDelta), "deriv": newRollupFuncOneArg(rollupDerivSlow), "holt_winters": newRollupHoltWinters, "idelta": newRollupFuncOneArg(rollupIdelta), "increase": newRollupFuncOneArg(rollupDelta), // + rollupFuncsRemoveCounterResets "irate": newRollupFuncOneArg(rollupIderiv), // + rollupFuncsRemoveCounterResets "predict_linear": newRollupPredictLinear, "rate": newRollupFuncOneArg(rollupDerivFast), // + rollupFuncsRemoveCounterResets "resets": newRollupFuncOneArg(rollupResets), "avg_over_time": newRollupFuncOneArg(rollupAvg), "min_over_time": newRollupFuncOneArg(rollupMin), "max_over_time": newRollupFuncOneArg(rollupMax), "sum_over_time": newRollupFuncOneArg(rollupSum), "count_over_time": newRollupFuncOneArg(rollupCount), "quantile_over_time": newRollupQuantile, "stddev_over_time": newRollupFuncOneArg(rollupStddev), "stdvar_over_time": newRollupFuncOneArg(rollupStdvar), // Additional rollup funcs. "first_over_time": newRollupFuncOneArg(rollupFirst), "last_over_time": newRollupFuncOneArg(rollupLast), "distinct_over_time": newRollupFuncOneArg(rollupDistinct), "integrate": newRollupFuncOneArg(rollupIntegrate), "ideriv": newRollupFuncOneArg(rollupIderiv), "rollup": newRollupFuncOneArg(rollupFake), "rollup_rate": newRollupFuncOneArg(rollupFake), // + rollupFuncsRemoveCounterResets "rollup_deriv": newRollupFuncOneArg(rollupFake), "rollup_delta": newRollupFuncOneArg(rollupFake), "rollup_increase": newRollupFuncOneArg(rollupFake), // + rollupFuncsRemoveCounterResets } var rollupFuncsRemoveCounterResets = map[string]bool{ "increase": true, "irate": true, "rate": true, "rollup_rate": true, "rollup_increase": true, } var rollupFuncsKeepMetricGroup = map[string]bool{ "default_rollup": true, "avg_over_time": true, "min_over_time": true, "max_over_time": true, "quantile_over_time": true, "rollup": true, } func getRollupArgIdx(funcName string) int { funcName = strings.ToLower(funcName) if rollupFuncs[funcName] == nil { logger.Panicf("BUG: getRollupArgIdx is called for non-rollup func %q", funcName) } if funcName == "quantile_over_time" { return 1 } return 0 } func getRollupFunc(funcName string) newRollupFunc { funcName = strings.ToLower(funcName) return rollupFuncs[funcName] } func isRollupFunc(funcName string) bool { return getRollupFunc(funcName) != nil } type rollupFuncArg struct { prevValue float64 prevTimestamp int64 values []float64 timestamps []int64 idx int step int64 } func (rfa *rollupFuncArg) reset() { rfa.prevValue = 0 rfa.prevTimestamp = 0 rfa.values = nil rfa.timestamps = nil rfa.idx = 0 rfa.step = 0 } // rollupFunc must return rollup value for the given rfa. // // prevValue may be nan, values and timestamps may be empty. type rollupFunc func(rfa *rollupFuncArg) float64 type rollupConfig struct { // This tag value must be added to "rollup" tag if non-empty. TagValue string Func rollupFunc Start int64 End int64 Step int64 Window int64 Timestamps []int64 } var ( nan = math.NaN() inf = math.Inf(1) ) // The maximum interval without previous rows. const maxSilenceInterval = 5 * 60 * 1000 // Do calculates rollups for the given timestamps and values, appends // them to dstValues and returns results. // // rc.Timestamps are used as timestamps for dstValues. // // timestamps must cover time range [rc.Start - rc.Window - maxSilenceInterval ... rc.End + rc.Step]. // // Cannot be called from concurrent goroutines. func (rc *rollupConfig) Do(dstValues []float64, values []float64, timestamps []int64) []float64 { // Sanity checks. if rc.Step <= 0 { logger.Panicf("BUG: Step must be bigger than 0; got %d", rc.Step) } if rc.Start > rc.End { logger.Panicf("BUG: Start cannot exceed End; got %d vs %d", rc.Start, rc.End) } if rc.Window < 0 { logger.Panicf("BUG: Window must be non-negative; got %d", rc.Window) } if err := ValidateMaxPointsPerTimeseries(rc.Start, rc.End, rc.Step); err != nil { logger.Panicf("BUG: %s; this must be validated before the call to rollupConfig.Do", err) } // Extend dstValues in order to remove mallocs below. dstValues = decimal.ExtendFloat64sCapacity(dstValues, len(rc.Timestamps)) maxPrevInterval := getMaxPrevInterval(timestamps) window := rc.Window if window <= 0 { window = rc.Step } if window < maxPrevInterval { window = maxPrevInterval } rfa := getRollupFuncArg() rfa.idx = 0 rfa.step = rc.Step i := 0 j := 0 for _, tEnd := range rc.Timestamps { tStart := tEnd - window n := sort.Search(len(timestamps)-i, func(n int) bool { return timestamps[i+n] > tStart }) i += n if j < i { j = i } n = sort.Search(len(timestamps)-j, func(n int) bool { return timestamps[j+n] > tEnd }) j += n rfa.prevValue = nan rfa.prevTimestamp = tStart - maxPrevInterval if i > 0 && timestamps[i-1] > rfa.prevTimestamp { rfa.prevValue = values[i-1] rfa.prevTimestamp = timestamps[i-1] } rfa.values = values[i:j] rfa.timestamps = timestamps[i:j] value := rc.Func(rfa) rfa.idx++ dstValues = append(dstValues, value) } putRollupFuncArg(rfa) return dstValues } func getMaxPrevInterval(timestamps []int64) int64 { if len(timestamps) < 2 { return int64(maxSilenceInterval) } d := (timestamps[len(timestamps)-1] - timestamps[0]) / int64(len(timestamps)-1) if d <= 0 { return 1 } // Slightly increase d in order to handle possible jitter in scrape interval. return d + (d / 16) } func removeCounterResets(values []float64) { // There is no need in handling NaNs here, since they are impossible // on values from vmstorage. if len(values) == 0 { return } var correction float64 prevValue := values[0] for i, v := range values { d := v - prevValue if d < 0 { if (-d * 8) < prevValue { // This is likely jitter from `Prometheus HA pairs`. // Just substitute v with prevValue. v = prevValue } else { correction += prevValue } } prevValue = v values[i] = v + correction } } func deltaValues(values []float64) { // There is no need in handling NaNs here, since they are impossible // on values from vmstorage. if len(values) == 0 { return } prevValue := values[0] for i, v := range values[1:] { values[i] = v - prevValue prevValue = v } values[len(values)-1] = nan } func derivValues(values []float64, timestamps []int64) { // There is no need in handling NaNs here, since they are impossible // on values from vmstorage. if len(values) == 0 { return } prevValue := values[0] prevTs := timestamps[0] for i, v := range values[1:] { ts := timestamps[i+1] dt := float64(ts-prevTs) * 1e-3 values[i] = (v - prevValue) / dt prevValue = v prevTs = ts } values[len(values)-1] = nan } type newRollupFunc func(args []interface{}) (rollupFunc, error) func newRollupFuncOneArg(rf rollupFunc) newRollupFunc { return func(args []interface{}) (rollupFunc, error) { if err := expectRollupArgsNum(args, 1); err != nil { return nil, err } return rf, nil } } func newRollupHoltWinters(args []interface{}) (rollupFunc, error) { if err := expectRollupArgsNum(args, 3); err != nil { return nil, err } sfs, err := getScalar(args[1], 1) if err != nil { return nil, err } tfs, err := getScalar(args[2], 2) if err != nil { return nil, err } rf := func(rfa *rollupFuncArg) float64 { // There is no need in handling NaNs here, since they must be cleanup up // before calling rollup funcs. values := rfa.values if len(values) == 0 { return nan } sf := sfs[rfa.idx] if sf <= 0 || sf >= 1 { return nan } tf := tfs[rfa.idx] if tf <= 0 || tf >= 1 { return nan } // See https://en.wikipedia.org/wiki/Exponential_smoothing#Double_exponential_smoothing . // TODO: determine whether this shit really works. s0 := rfa.prevValue if math.IsNaN(s0) { s0 = values[0] values = values[1:] if len(values) == 0 { return s0 } } b0 := values[0] - s0 for _, v := range values { s1 := sf*v + (1-sf)*(s0+b0) b1 := tf*(s1-s0) + (1-tf)*b0 s0 = s1 b0 = b1 } return s0 } return rf, nil } func newRollupPredictLinear(args []interface{}) (rollupFunc, error) { if err := expectRollupArgsNum(args, 2); err != nil { return nil, err } secs, err := getScalar(args[1], 1) if err != nil { return nil, err } rf := func(rfa *rollupFuncArg) float64 { v, k := linearRegression(rfa) if math.IsNaN(v) { return nan } sec := secs[rfa.idx] return v + k*sec } return rf, nil } func linearRegression(rfa *rollupFuncArg) (float64, float64) { // There is no need in handling NaNs here, since they must be cleanup up // before calling rollup funcs. values := rfa.values timestamps := rfa.timestamps if len(values) == 0 { return nan, nan } // See https://en.wikipedia.org/wiki/Simple_linear_regression#Numerical_example tFirst := rfa.prevTimestamp vSum := rfa.prevValue n := 1.0 if math.IsNaN(rfa.prevValue) { tFirst = timestamps[0] vSum = 0 n = 0 } tSum := float64(0) tvSum := float64(0) ttSum := float64(0) for i, v := range values { dt := float64(timestamps[i]-tFirst) * 1e-3 vSum += v tSum += dt tvSum += dt * v ttSum += dt * dt } n += float64(len(values)) if n == 1 { return vSum, 0 } k := (n*tvSum - tSum*vSum) / (n*ttSum - tSum*tSum) v := (vSum - k*tSum) / n return v, k } func newRollupQuantile(args []interface{}) (rollupFunc, error) { if err := expectRollupArgsNum(args, 2); err != nil { return nil, err } phis, err := getScalar(args[0], 0) if err != nil { return nil, err } rf := func(rfa *rollupFuncArg) float64 { // There is no need in handling NaNs here, since they must be cleanup up // before calling rollup funcs. values := rfa.values if len(values) == 0 { return nan } hf := histogram.GetFast() for _, v := range values { hf.Update(v) } phi := phis[rfa.idx] qv := hf.Quantile(phi) histogram.PutFast(hf) return qv } return rf, nil } func rollupAvg(rfa *rollupFuncArg) float64 { // Do not use `Rapid calculation methods` at https://en.wikipedia.org/wiki/Standard_deviation, // since it is slower and has no significant benefits in precision. // There is no need in handling NaNs here, since they must be cleanup up // before calling rollup funcs. values := rfa.values if len(values) == 0 { return nan } var sum float64 for _, v := range values { sum += v } return sum / float64(len(values)) } func rollupMin(rfa *rollupFuncArg) float64 { // There is no need in handling NaNs here, since they must be cleanup up // before calling rollup funcs. values := rfa.values if len(values) == 0 { return nan } minValue := values[0] for _, v := range values { if v < minValue { minValue = v } } return minValue } func rollupMax(rfa *rollupFuncArg) float64 { // There is no need in handling NaNs here, since they must be cleanup up // before calling rollup funcs. values := rfa.values if len(values) == 0 { return nan } maxValue := values[0] for _, v := range values { if v > maxValue { maxValue = v } } return maxValue } func rollupSum(rfa *rollupFuncArg) float64 { // There is no need in handling NaNs here, since they must be cleanup up // before calling rollup funcs. values := rfa.values if len(values) == 0 { return nan } var sum float64 for _, v := range values { sum += v } return sum } func rollupCount(rfa *rollupFuncArg) float64 { // There is no need in handling NaNs here, since they must be cleanup up // before calling rollup funcs. values := rfa.values if len(values) == 0 { return nan } return float64(len(values)) } func rollupStddev(rfa *rollupFuncArg) float64 { stdvar := rollupStdvar(rfa) return math.Sqrt(stdvar) } func rollupStdvar(rfa *rollupFuncArg) float64 { // See `Rapid calculation methods` at https://en.wikipedia.org/wiki/Standard_deviation // There is no need in handling NaNs here, since they must be cleanup up // before calling rollup funcs. values := rfa.values if len(values) == 0 { return nan } var avg float64 var count float64 var q float64 for _, v := range values { count++ avgNew := avg + (v-avg)/count q += (v - avg) * (v - avgNew) avg = avgNew } return q / count } func rollupDelta(rfa *rollupFuncArg) float64 { // There is no need in handling NaNs here, since they must be cleanup up // before calling rollup funcs. values := rfa.values prevValue := rfa.prevValue if math.IsNaN(prevValue) { if len(values) == 0 { return nan } prevValue = values[0] values = values[1:] } if len(values) == 0 { return nan } return values[len(values)-1] - prevValue } func rollupIdelta(rfa *rollupFuncArg) float64 { // There is no need in handling NaNs here, since they must be cleanup up // before calling rollup funcs. values := rfa.values if len(values) == 0 { return nan } lastValue := values[len(values)-1] values = values[:len(values)-1] if len(values) == 0 { prevValue := rfa.prevValue if math.IsNaN(prevValue) { return nan } return lastValue - prevValue } return lastValue - values[len(values)-1] } func rollupDerivSlow(rfa *rollupFuncArg) float64 { // Use linear regression like Prometheus does. // See https://github.com/VictoriaMetrics/VictoriaMetrics/issues/73 _, k := linearRegression(rfa) return k } func rollupDerivFast(rfa *rollupFuncArg) float64 { // There is no need in handling NaNs here, since they must be cleanup up // before calling rollup funcs. values := rfa.values timestamps := rfa.timestamps prevValue := rfa.prevValue prevTimestamp := rfa.prevTimestamp if math.IsNaN(prevValue) { if len(values) == 0 { return nan } prevValue = values[0] prevTimestamp = timestamps[0] values = values[1:] timestamps = timestamps[1:] } if len(values) == 0 { return nan } vEnd := values[len(values)-1] tEnd := timestamps[len(timestamps)-1] dv := vEnd - prevValue dt := float64(tEnd-prevTimestamp) * 1e-3 return dv / dt } func rollupIderiv(rfa *rollupFuncArg) float64 { // There is no need in handling NaNs here, since they must be cleanup up // before calling rollup funcs. values := rfa.values timestamps := rfa.timestamps if len(values) == 0 { return nan } vEnd := values[len(values)-1] tEnd := timestamps[len(timestamps)-1] values = values[:len(values)-1] timestamps = timestamps[:len(timestamps)-1] prevValue := rfa.prevValue prevTimestamp := rfa.prevTimestamp if len(values) == 0 { if math.IsNaN(prevValue) { return nan } } else { prevValue = values[len(values)-1] prevTimestamp = timestamps[len(timestamps)-1] } dv := vEnd - prevValue dt := tEnd - prevTimestamp return dv / (float64(dt) / 1000) } func rollupChanges(rfa *rollupFuncArg) float64 { // There is no need in handling NaNs here, since they must be cleanup up // before calling rollup funcs. values := rfa.values if len(values) == 0 { return nan } n := 0 prevValue := rfa.prevValue if math.IsNaN(prevValue) { prevValue = values[0] } for _, v := range values { if v != prevValue { n++ prevValue = v } } return float64(n) } func rollupResets(rfa *rollupFuncArg) float64 { // There is no need in handling NaNs here, since they must be cleanup up // before calling rollup funcs. values := rfa.values if len(values) == 0 { return nan } prevValue := rfa.prevValue if math.IsNaN(prevValue) { prevValue = values[0] values = values[1:] } if len(values) == 0 { return nan } n := 0 for _, v := range values { if v < prevValue { n++ } prevValue = v } return float64(n) } func rollupFirst(rfa *rollupFuncArg) float64 { // See https://prometheus.io/docs/prometheus/latest/querying/basics/#staleness v := rfa.prevValue if !math.IsNaN(v) { return v } // There is no need in handling NaNs here, since they must be cleanup up // before calling rollup funcs. values := rfa.values if len(values) == 0 { return nan } return values[0] } var rollupDefault = rollupLast func rollupLast(rfa *rollupFuncArg) float64 { // There is no need in handling NaNs here, since they must be cleanup up // before calling rollup funcs. values := rfa.values if len(values) == 0 { return nan } return values[len(values)-1] } func rollupDistinct(rfa *rollupFuncArg) float64 { // There is no need in handling NaNs here, since they must be cleanup up // before calling rollup funcs. values := rfa.values if len(values) == 0 { return nan } m := make(map[float64]struct{}) for _, v := range values { m[v] = struct{}{} } return float64(len(m)) } func rollupIntegrate(rfa *rollupFuncArg) float64 { prevTimestamp := rfa.prevTimestamp // There is no need in handling NaNs here, since they must be cleanup up // before calling rollup funcs. values := rfa.values timestamps := rfa.timestamps if len(values) == 0 { return nan } prevValue := rfa.prevValue if math.IsNaN(prevValue) { prevValue = values[0] prevTimestamp = timestamps[0] values = values[1:] timestamps = timestamps[1:] } if len(values) == 0 { return nan } var sum float64 for i, v := range values { timestamp := timestamps[i] dt := float64(timestamp-prevTimestamp) * 1e-3 sum += 0.5 * (v + prevValue) * dt } return sum } func rollupFake(rfa *rollupFuncArg) float64 { logger.Panicf("BUG: rollupFake shouldn't be called") return 0 } func getScalar(arg interface{}, argNum int) ([]float64, error) { ts, ok := arg.([]*timeseries) if !ok { return nil, fmt.Errorf(`unexpected type for arg #%d; got %T; want %T`, argNum+1, arg, ts) } if len(ts) != 1 { return nil, fmt.Errorf(`arg #%d must contain a single timeseries; got %d timeseries`, argNum+1, len(ts)) } return ts[0].Values, nil } func getString(tss []*timeseries, argNum int) (string, error) { if len(tss) != 1 { return "", fmt.Errorf(`arg #%d must contain a single timeseries; got %d timeseries`, argNum+1, len(tss)) } ts := tss[0] for _, v := range ts.Values { if !math.IsNaN(v) { return "", fmt.Errorf(`arg #%d contains non-string timeseries`, argNum+1) } } return string(ts.MetricName.MetricGroup), nil } func expectRollupArgsNum(args []interface{}, expectedNum int) error { if len(args) == expectedNum { return nil } return fmt.Errorf(`unexpected number of args; got %d; want %d`, len(args), expectedNum) } func getRollupFuncArg() *rollupFuncArg { v := rfaPool.Get() if v == nil { return &rollupFuncArg{} } return v.(*rollupFuncArg) } func putRollupFuncArg(rfa *rollupFuncArg) { rfa.reset() rfaPool.Put(rfa) } var rfaPool sync.Pool