package streamaggr import ( "strings" "sync" "github.com/VictoriaMetrics/VictoriaMetrics/lib/fasttime" ) // stdvarAggrState calculates output=stdvar, e.g. the average value over input samples. type stdvarAggrState struct { m sync.Map } type stdvarStateValue struct { mu sync.Mutex count float64 avg float64 q float64 deleted bool } func newStdvarAggrState() *stdvarAggrState { return &stdvarAggrState{} } func (as *stdvarAggrState) pushSamples(samples []pushSample) { for i := range samples { s := &samples[i] outputKey := getOutputKey(s.key) again: v, ok := as.m.Load(outputKey) if !ok { // The entry is missing in the map. Try creating it. v = &stdvarStateValue{} outputKey = strings.Clone(outputKey) vNew, loaded := as.m.LoadOrStore(outputKey, v) if loaded { // Use the entry created by a concurrent goroutine. v = vNew } } sv := v.(*stdvarStateValue) sv.mu.Lock() deleted := sv.deleted if !deleted { // See `Rapid calculation methods` at https://en.wikipedia.org/wiki/Standard_deviation sv.count++ avg := sv.avg + (s.value-sv.avg)/sv.count sv.q += (s.value - sv.avg) * (s.value - avg) sv.avg = avg } sv.mu.Unlock() if deleted { // The entry has been deleted by the concurrent call to flushState // Try obtaining and updating the entry again. goto again } } } func (as *stdvarAggrState) flushState(ctx *flushCtx) { currentTimeMsec := int64(fasttime.UnixTimestamp()) * 1000 m := &as.m m.Range(func(k, v interface{}) bool { // Atomically delete the entry from the map, so new entry is created for the next flush. m.Delete(k) sv := v.(*stdvarStateValue) sv.mu.Lock() stdvar := sv.q / sv.count // Mark the entry as deleted, so it won't be updated anymore by concurrent pushSample() calls. sv.deleted = true sv.mu.Unlock() key := k.(string) ctx.appendSeries(key, "stdvar", currentTimeMsec, stdvar) return true }) }