// Copyright 2019+ Klaus Post. All rights reserved. // License information can be found in the LICENSE file. // Based on work by Yann Collet, released under BSD License. package zstd const ( dFastLongTableBits = 17 // Bits used in the long match table dFastLongTableSize = 1 << dFastLongTableBits // Size of the table dFastLongTableMask = dFastLongTableSize - 1 // Mask for table indices. Redundant, but can eliminate bounds checks. dFastShortTableBits = tableBits // Bits used in the short match table dFastShortTableSize = 1 << dFastShortTableBits // Size of the table dFastShortTableMask = dFastShortTableSize - 1 // Mask for table indices. Redundant, but can eliminate bounds checks. ) type doubleFastEncoder struct { fastEncoder longTable [dFastLongTableSize]tableEntry } // Encode mimmics functionality in zstd_dfast.c func (e *doubleFastEncoder) Encode(blk *blockEnc, src []byte) { const ( // Input margin is the number of bytes we read (8) // and the maximum we will read ahead (2) inputMargin = 8 + 2 minNonLiteralBlockSize = 16 ) // Protect against e.cur wraparound. for e.cur > (1<<30)+e.maxMatchOff { if len(e.hist) == 0 { for i := range e.table[:] { e.table[i] = tableEntry{} } for i := range e.longTable[:] { e.longTable[i] = tableEntry{} } e.cur = e.maxMatchOff break } // Shift down everything in the table that isn't already too far away. minOff := e.cur + int32(len(e.hist)) - e.maxMatchOff for i := range e.table[:] { v := e.table[i].offset if v < minOff { v = 0 } else { v = v - e.cur + e.maxMatchOff } e.table[i].offset = v } for i := range e.longTable[:] { v := e.longTable[i].offset if v < minOff { v = 0 } else { v = v - e.cur + e.maxMatchOff } e.longTable[i].offset = v } e.cur = e.maxMatchOff } s := e.addBlock(src) blk.size = len(src) if len(src) < minNonLiteralBlockSize { blk.extraLits = len(src) blk.literals = blk.literals[:len(src)] copy(blk.literals, src) return } // Override src src = e.hist sLimit := int32(len(src)) - inputMargin // stepSize is the number of bytes to skip on every main loop iteration. // It should be >= 1. stepSize := int32(e.o.targetLength) if stepSize == 0 { stepSize++ } const kSearchStrength = 8 // nextEmit is where in src the next emitLiteral should start from. nextEmit := s cv := load6432(src, s) // Relative offsets offset1 := int32(blk.recentOffsets[0]) offset2 := int32(blk.recentOffsets[1]) addLiterals := func(s *seq, until int32) { if until == nextEmit { return } blk.literals = append(blk.literals, src[nextEmit:until]...) s.litLen = uint32(until - nextEmit) } if debug { println("recent offsets:", blk.recentOffsets) } encodeLoop: for { var t int32 // We allow the encoder to optionally turn off repeat offsets across blocks canRepeat := len(blk.sequences) > 2 for { if debug && canRepeat && offset1 == 0 { panic("offset0 was 0") } nextHashS := hash5(cv, dFastShortTableBits) nextHashL := hash8(cv, dFastLongTableBits) candidateL := e.longTable[nextHashL] candidateS := e.table[nextHashS] const repOff = 1 repIndex := s - offset1 + repOff entry := tableEntry{offset: s + e.cur, val: uint32(cv)} e.longTable[nextHashL] = entry e.table[nextHashS] = entry if canRepeat { if repIndex >= 0 && load3232(src, repIndex) == uint32(cv>>(repOff*8)) { // Consider history as well. var seq seq lenght := 4 + e.matchlen(s+4+repOff, repIndex+4, src) seq.matchLen = uint32(lenght - zstdMinMatch) // We might be able to match backwards. // Extend as long as we can. start := s + repOff // We end the search early, so we don't risk 0 literals // and have to do special offset treatment. startLimit := nextEmit + 1 tMin := s - e.maxMatchOff if tMin < 0 { tMin = 0 } for repIndex > tMin && start > startLimit && src[repIndex-1] == src[start-1] && seq.matchLen < maxMatchLength-zstdMinMatch-1 { repIndex-- start-- seq.matchLen++ } addLiterals(&seq, start) // rep 0 seq.offset = 1 if debugSequences { println("repeat sequence", seq, "next s:", s) } blk.sequences = append(blk.sequences, seq) s += lenght + repOff nextEmit = s if s >= sLimit { if debug { println("repeat ended", s, lenght) } break encodeLoop } cv = load6432(src, s) continue } const repOff2 = 1 // We deviate from the reference encoder and also check offset 2. // Slower and not consistently better, so disabled. // repIndex = s - offset2 + repOff2 if false && repIndex >= 0 && load3232(src, repIndex) == uint32(cv>>(repOff2*8)) { // Consider history as well. var seq seq lenght := 4 + e.matchlen(s+4+repOff2, repIndex+4, src) seq.matchLen = uint32(lenght - zstdMinMatch) // We might be able to match backwards. // Extend as long as we can. start := s + repOff2 // We end the search early, so we don't risk 0 literals // and have to do special offset treatment. startLimit := nextEmit + 1 tMin := s - e.maxMatchOff if tMin < 0 { tMin = 0 } for repIndex > tMin && start > startLimit && src[repIndex-1] == src[start-1] && seq.matchLen < maxMatchLength-zstdMinMatch-1 { repIndex-- start-- seq.matchLen++ } addLiterals(&seq, start) // rep 2 seq.offset = 2 if debugSequences { println("repeat sequence 2", seq, "next s:", s) } blk.sequences = append(blk.sequences, seq) s += lenght + repOff2 nextEmit = s if s >= sLimit { if debug { println("repeat ended", s, lenght) } break encodeLoop } cv = load6432(src, s) // Swap offsets offset1, offset2 = offset2, offset1 continue } } // Find the offsets of our two matches. coffsetL := s - (candidateL.offset - e.cur) coffsetS := s - (candidateS.offset - e.cur) // Check if we have a long match. if coffsetL < e.maxMatchOff && uint32(cv) == candidateL.val { // Found a long match, likely at least 8 bytes. // Reference encoder checks all 8 bytes, we only check 4, // but the likelihood of both the first 4 bytes and the hash matching should be enough. t = candidateL.offset - e.cur if debug && s <= t { panic("s <= t") } if debug && s-t > e.maxMatchOff { panic("s - t >e.maxMatchOff") } if debug { println("long match") } break } // Check if we have a short match. if coffsetS < e.maxMatchOff && uint32(cv) == candidateS.val { // found a regular match // See if we can find a long match at s+1 const checkAt = 1 cv := load6432(src, s+checkAt) nextHashL = hash8(cv, dFastLongTableBits) candidateL = e.longTable[nextHashL] coffsetL = s - (candidateL.offset - e.cur) + checkAt // We can store it, since we have at least a 4 byte match. e.longTable[nextHashL] = tableEntry{offset: s + checkAt + e.cur, val: uint32(cv)} if coffsetL < e.maxMatchOff && uint32(cv) == candidateL.val { // Found a long match, likely at least 8 bytes. // Reference encoder checks all 8 bytes, we only check 4, // but the likelihood of both the first 4 bytes and the hash matching should be enough. t = candidateL.offset - e.cur s += checkAt if debug { println("long match (after short)") } break } t = candidateS.offset - e.cur if debug && s <= t { panic("s <= t") } if debug && s-t > e.maxMatchOff { panic("s - t >e.maxMatchOff") } if debug && t < 0 { panic("t<0") } if debug { println("short match") } break } // No match found, move forward in input. s += stepSize + ((s - nextEmit) >> (kSearchStrength - 1)) if s >= sLimit { break encodeLoop } cv = load6432(src, s) } // A 4-byte match has been found. Update recent offsets. // We'll later see if more than 4 bytes. offset2 = offset1 offset1 = s - t if debug && s <= t { panic("s <= t") } if debug && canRepeat && int(offset1) > len(src) { panic("invalid offset") } // Extend the 4-byte match as long as possible. l := e.matchlen(s+4, t+4, src) + 4 // Extend backwards tMin := s - e.maxMatchOff if tMin < 0 { tMin = 0 } for t > tMin && s > nextEmit && src[t-1] == src[s-1] && l < maxMatchLength { s-- t-- l++ } // Write our sequence var seq seq seq.litLen = uint32(s - nextEmit) seq.matchLen = uint32(l - zstdMinMatch) if seq.litLen > 0 { blk.literals = append(blk.literals, src[nextEmit:s]...) } seq.offset = uint32(s-t) + 3 s += l if debugSequences { println("sequence", seq, "next s:", s) } blk.sequences = append(blk.sequences, seq) nextEmit = s if s >= sLimit { break encodeLoop } // Index match start+1 (long) and start+2 (short) index0 := s - l + 1 // Index match end-2 (long) and end-1 (short) index1 := s - 2 cv0 := load6432(src, index0) cv1 := load6432(src, index1) te0 := tableEntry{offset: index0 + e.cur, val: uint32(cv0)} te1 := tableEntry{offset: index1 + e.cur, val: uint32(cv1)} e.longTable[hash8(cv0, dFastLongTableBits)] = te0 e.longTable[hash8(cv1, dFastLongTableBits)] = te1 cv0 >>= 8 cv1 >>= 8 te0.offset++ te1.offset++ te0.val = uint32(cv0) te1.val = uint32(cv1) e.table[hash5(cv0, dFastShortTableBits)] = te0 e.table[hash5(cv1, dFastShortTableBits)] = te1 cv = load6432(src, s) if !canRepeat { continue } // Check offset 2 for { o2 := s - offset2 if load3232(src, o2) != uint32(cv) { // Do regular search break } // Store this, since we have it. nextHashS := hash5(cv1>>8, dFastShortTableBits) nextHashL := hash8(cv, dFastLongTableBits) // We have at least 4 byte match. // No need to check backwards. We come straight from a match l := 4 + e.matchlen(s+4, o2+4, src) entry := tableEntry{offset: s + e.cur, val: uint32(cv)} e.longTable[nextHashL] = entry e.table[nextHashS] = entry seq.matchLen = uint32(l) - zstdMinMatch seq.litLen = 0 // Since litlen is always 0, this is offset 1. seq.offset = 1 s += l nextEmit = s if debugSequences { println("sequence", seq, "next s:", s) } blk.sequences = append(blk.sequences, seq) // Swap offset 1 and 2. offset1, offset2 = offset2, offset1 if s >= sLimit { // Finished break encodeLoop } cv = load6432(src, s) } } if int(nextEmit) < len(src) { blk.literals = append(blk.literals, src[nextEmit:]...) blk.extraLits = len(src) - int(nextEmit) } blk.recentOffsets[0] = uint32(offset1) blk.recentOffsets[1] = uint32(offset2) if debug { println("returning, recent offsets:", blk.recentOffsets, "extra literals:", blk.extraLits) } }