{% import (
	"github.com/VictoriaMetrics/metricsql"
) %}

{% stripspace %}

// ExpandWithExprsResponse returns a webpage, which expands with templates in q MetricsQL.
{% func ExpandWithExprsResponse(q string) %}
<html>
  <head>
    <title>Expand WITH expressions</title>
    <style>
p { font-weight: bold }
textarea { margin: 1em }
    </style>
  </head>
  <body>

<div>
  <form method="get">
    <div>
      <p>
        <a href="https://docs.victoriametrics.com/MetricsQL.html">MetricsQL</a> query with optional WITH expressions:
      </p>
      <textarea name="query" style="height: 15em; width: 90%">{%s q %}</textarea><br/>
      <input type="submit" value="Expand" />

      <p>
        <a href="https://docs.victoriametrics.com/MetricsQL.html">MetricsQL</a> query after expanding WITH expressions and applying other optimizations:
      </p>
      <textarea style="height: 5em; width: 90%" readonly="readonly">{%= expandWithExprs(q) %}</textarea>
    </div>
  </form>
</div>

<div>{%= withExprsTutorial() %}</div>

  </body>
</html>
{% endfunc %}

{% func expandWithExprs(q string) %}
	{% if len(q) == 0 %}
		{% return %}
	{% endif %}

	{% code	expr, err := metricsql.Parse(q) %}
	{% if err != nil %}
		Cannot parse query: {%v err %}
	{% else %}
		{% code expr = metricsql.Optimize(expr) %}
		{%z expr.AppendString(nil) %}
	{% endif %}
{% endfunc %}

{% endstripspace %}

{% func withExprsTutorial() %}
<h3>Tutorial for WITH expressions in <a href="https://docs.victoriametrics.com/MetricsQL.html">MetricsQL</a></h3>

<p>
    Let's look at the following real query from <a href="https://grafana.com/grafana/dashboards/1860-node-exporter-full/">Node Exporter Full</a> dashboard:
</p>

<pre>
(
  (
    node_memory_MemTotal_bytes{instance=~"$node:$port", job=~"$job"}
      -
    node_memory_MemFree_bytes{instance=~"$node:$port", job=~"$job"}
  )
    /
  node_memory_MemTotal_bytes{instance=~"$node:$port", job=~"$job"}
)
  *
100
</pre>

<p>
    It is clear the query calculates the percentage of used memory
    for the given $node, $port and $job. Isn't it? :)
</p>

<p>
    What's wrong with this query? Copy-pasted label filters for distinct timeseries
    which makes it easy to mistype these filters during modification.
    Let's simplify the query with WITH expressions:
</p>

<pre>
WITH (
    commonFilters = {instance=~"$node:$port",job=~"$job"}
)
(
  node_memory_MemTotal_bytes{commonFilters}
    -
  node_memory_MemFree_bytes{commonFilters}
)
  /
node_memory_MemTotal_bytes{commonFilters} * 100
</pre>

<p>
    Now label filters are located in a single place instead of three distinct places.
    The query mentions node_memory_MemTotal_bytes metric twice and {commonFilters}
    three times. WITH expressions may improve this:
</p>

<pre>
WITH (
    my_resource_utilization(free, limit, filters) = (limit{filters} - free{filters}) / limit{filters} * 100
)
my_resource_utilization(
  node_memory_MemFree_bytes,
  node_memory_MemTotal_bytes,
  {instance=~"$node:$port",job=~"$job"},
)
</pre>

<p>
    Now the template function my_resource_utilization() may be used for monitoring arbitrary
    resources - memory, CPU, network, storage, you name it.
</p>

<p>
    Let's take another nice query from <a href="https://grafana.com/grafana/dashboards/1860-node-exporter-full/">Node Exporter Full</a> dashboard:
</p>

<pre>
(
  (
    (
      count(
        count(node_cpu_seconds_total{instance=~"$node:$port",job=~"$job"}) by (cpu)
      )
    )
      -
    avg(
      sum by (mode) (rate(node_cpu_seconds_total{mode='idle',instance=~"$node:$port",job=~"$job"}[5m]))
    )
  )
    *
  100
)
  /
count(
  count(node_cpu_seconds_total{instance=~"$node:$port",job=~"$job"}) by (cpu)
)
</pre>

<p>
    Do you understand what does this mess do? Is it manageable? :) WITH expressions are happy to help in a few iterations.
    <br/>
    <br/>
    1. Extract common filters used in multiple places into a commonFilters variable:
</p>

<pre>
WITH (
    commonFilters = {instance=~"$node:$port",job=~"$job"}
)
(
  (
    (
      count(
        count(node_cpu_seconds_total{commonFilters}) by (cpu)
      )
    )
      -
    avg(
      sum by (mode) (rate(node_cpu_seconds_total{mode='idle',commonFilters}[5m]))
    )
  )
    *
  100
)
  /
count(
  count(node_cpu_seconds_total{commonFilters}) by (cpu)
)
</pre>

<p>
    2. Extract "count(count(...) by (cpu))" into cpuCount variable:
</p>
<pre>
WITH (
    commonFilters = {instance=~"$node:$port",job=~"$job"},
    cpuCount = count(count(node_cpu_seconds_total{commonFilters}) by (cpu))
)
(
  (
    cpuCount
      -
    avg(
      sum by (mode) (rate(node_cpu_seconds_total{mode='idle',commonFilters}[5m]))
    )
  )
    *
  100
) / cpuCount
</pre>

<p>
    3. Extract rate(...) part into cpuIdle variable, since it is clear now that this part calculates the number of idle CPUs:
</p>
<pre>
WITH (
    commonFilters = {instance=~"$node:$port",job=~"$job"},
    cpuCount = count(count(node_cpu_seconds_total{commonFilters}) by (cpu)),
    cpuIdle = sum(rate(node_cpu_seconds_total{mode='idle',commonFilters}[5m]))
)
((cpuCount - cpuIdle) * 100) / cpuCount
</pre>

<p>
    4. Put node_cpu_seconds_total{commonFilters} into its own varialbe with the name cpuSeconds:
</p>
<pre>
WITH (
    cpuSeconds = node_cpu_seconds_total{instance=~"$node:$port",job=~"$job"},
    cpuCount = count(count(cpuSeconds) by (cpu)),
    cpuIdle = sum(rate(cpuSeconds{mode='idle'}[5m]))
)
((cpuCount - cpuIdle) * 100) / cpuCount
</pre>

<p>
    Now the query became more clear comparing to the initial query.
</p>

<p>
    WITH expressions may be nested and may be put anywhere. Try expanding the following query:
</p>

<pre>
WITH (
    f(a, b) = WITH (
        f1(x) = b-x,
        f2(x) = x+x
    ) f1(a)*f2(b)
) f(foo, with(x=bar) x)
</pre>

{% endfunc %}