package persistentqueue import ( "sync" "github.com/VictoriaMetrics/VictoriaMetrics/lib/bytesutil" "github.com/VictoriaMetrics/VictoriaMetrics/lib/logger" ) // FastQueue is a wrapper around Queue, which prefers sending data via memory. // // It falls back to sending data via file when readers don't catch up with writers. type FastQueue struct { // my protects the state of FastQueue. mu sync.Mutex // cond is used for notifying blocked readers when new data has been added // or when MustClose is called. cond sync.Cond // pq is file-based queue pq *Queue // ch is in-memory queue ch chan *bytesutil.ByteBuffer pendingInmemoryBytes uint64 mustStop bool } // MustOpenFastQueue opens persistent queue at the given path. // // It holds up to maxInmemoryBlocks in memory before falling back to file-based persistence. // // if maxPendingBytes is 0, then the queue size is unlimited. // Otherwise its size is limited by maxPendingBytes. The oldest data is dropped when the queue // reaches maxPendingSize. func MustOpenFastQueue(path, name string, maxInmemoryBlocks, maxPendingBytes int) *FastQueue { pq := MustOpen(path, name, maxPendingBytes) fq := &FastQueue{ pq: pq, ch: make(chan *bytesutil.ByteBuffer, maxInmemoryBlocks), } fq.cond.L = &fq.mu logger.Infof("opened fast persistent queue at %q with maxInmemoryBlocks=%d", path, maxInmemoryBlocks) return fq } // MustClose unblocks all the readers. // // It is expected no new writers during and after the call. func (fq *FastQueue) MustClose() { fq.mu.Lock() defer fq.mu.Unlock() // Unblock blocked readers fq.mustStop = true fq.cond.Broadcast() // flush blocks from fq.ch to fq.pq, so they can be persisted fq.flushInmemoryBlocksToFileLocked() // Close fq.pq fq.pq.MustClose() logger.Infof("closed fast persistent queue at %q", fq.pq.dir) } func (fq *FastQueue) flushInmemoryBlocksToFileLocked() { // fq.mu must be locked by the caller. for len(fq.ch) > 0 { bb := <-fq.ch fq.pq.MustWriteBlock(bb.B) fq.pendingInmemoryBytes -= uint64(len(bb.B)) blockBufPool.Put(bb) } } // GetPendingBytes returns the number of pending bytes in the fq. func (fq *FastQueue) GetPendingBytes() uint64 { fq.mu.Lock() defer fq.mu.Unlock() n := fq.pendingInmemoryBytes n += fq.pq.GetPendingBytes() return n } // GetInmemoryQueueLen returns the length of inmemory queue. func (fq *FastQueue) GetInmemoryQueueLen() int { fq.mu.Lock() defer fq.mu.Unlock() return len(fq.ch) } // MustWriteBlock writes block to fq. func (fq *FastQueue) MustWriteBlock(block []byte) { fq.mu.Lock() defer fq.mu.Unlock() if n := fq.pq.GetPendingBytes(); n > 0 { // The file-based queue isn't drained yet. This means that in-memory queue cannot be used yet. // So put the block to file-based queue. if len(fq.ch) > 0 { logger.Panicf("BUG: the in-memory queue must be empty when the file-based queue is non-empty; it contains %d pending bytes", n) } fq.pq.MustWriteBlock(block) return } if len(fq.ch) == cap(fq.ch) { // There is no space in the in-memory queue. Put the data to file-based queue. fq.flushInmemoryBlocksToFileLocked() fq.pq.MustWriteBlock(block) return } // There is enough space in the in-memory queue. bb := blockBufPool.Get() bb.B = append(bb.B[:0], block...) fq.ch <- bb fq.pendingInmemoryBytes += uint64(len(block)) if len(fq.ch) >= 1 { // Notify potentially blocked reader fq.cond.Signal() } } // MustReadBlock reads the next block from fq to dst and returns it. func (fq *FastQueue) MustReadBlock(dst []byte) ([]byte, bool) { fq.mu.Lock() defer fq.mu.Unlock() for { if fq.mustStop { return dst, false } if len(fq.ch) > 0 { if n := fq.pq.GetPendingBytes(); n > 0 { logger.Panicf("BUG: the file-based queue must be empty when the inmemory queue is empty; it contains %d pending bytes", n) } bb := <-fq.ch fq.pendingInmemoryBytes -= uint64(len(bb.B)) dst = append(dst, bb.B...) blockBufPool.Put(bb) return dst, true } if n := fq.pq.GetPendingBytes(); n > 0 { return fq.pq.MustReadBlock(dst) } // There are no blocks. Wait for new block. fq.pq.ResetIfEmpty() fq.cond.Wait() } }