package promql import ( "fmt" "math" "strings" "sync" "github.com/VictoriaMetrics/VictoriaMetrics/lib/decimal" "github.com/VictoriaMetrics/VictoriaMetrics/lib/logger" "github.com/VictoriaMetrics/VictoriaMetrics/lib/storage" "github.com/VictoriaMetrics/metrics" "github.com/valyala/histogram" ) var rollupFuncs = map[string]newRollupFunc{ "default_rollup": newRollupFuncOneArg(rollupDefault), // default rollup func // Standard rollup funcs from PromQL. // See funcs accepting range-vector on https://prometheus.io/docs/prometheus/latest/querying/functions/ . "changes": newRollupFuncOneArg(rollupChanges), "delta": newRollupFuncOneArg(rollupDelta), "deriv": newRollupFuncOneArg(rollupDerivSlow), "deriv_fast": newRollupFuncOneArg(rollupDerivFast), "holt_winters": newRollupHoltWinters, "idelta": newRollupFuncOneArg(rollupIdelta), "increase": newRollupFuncOneArg(rollupIncrease), // + rollupFuncsRemoveCounterResets "irate": newRollupFuncOneArg(rollupIderiv), // + rollupFuncsRemoveCounterResets "predict_linear": newRollupPredictLinear, "rate": newRollupFuncOneArg(rollupDerivFast), // + rollupFuncsRemoveCounterResets "resets": newRollupFuncOneArg(rollupResets), "avg_over_time": newRollupFuncOneArg(rollupAvg), "min_over_time": newRollupFuncOneArg(rollupMin), "max_over_time": newRollupFuncOneArg(rollupMax), "sum_over_time": newRollupFuncOneArg(rollupSum), "count_over_time": newRollupFuncOneArg(rollupCount), "quantile_over_time": newRollupQuantile, "stddev_over_time": newRollupFuncOneArg(rollupStddev), "stdvar_over_time": newRollupFuncOneArg(rollupStdvar), "absent_over_time": newRollupFuncOneArg(rollupAbsent), // Additional rollup funcs. "sum2_over_time": newRollupFuncOneArg(rollupSum2), "geomean_over_time": newRollupFuncOneArg(rollupGeomean), "first_over_time": newRollupFuncOneArg(rollupFirst), "last_over_time": newRollupFuncOneArg(rollupLast), "distinct_over_time": newRollupFuncOneArg(rollupDistinct), "increases_over_time": newRollupFuncOneArg(rollupIncreases), "decreases_over_time": newRollupFuncOneArg(rollupDecreases), "integrate": newRollupFuncOneArg(rollupIntegrate), "ideriv": newRollupFuncOneArg(rollupIderiv), "lifetime": newRollupFuncOneArg(rollupLifetime), "lag": newRollupFuncOneArg(rollupLag), "scrape_interval": newRollupFuncOneArg(rollupScrapeInterval), "tmin_over_time": newRollupFuncOneArg(rollupTmin), "tmax_over_time": newRollupFuncOneArg(rollupTmax), "share_le_over_time": newRollupShareLE, "share_gt_over_time": newRollupShareGT, "histogram_over_time": newRollupFuncOneArg(rollupHistogram), "rollup": newRollupFuncOneArg(rollupFake), "rollup_rate": newRollupFuncOneArg(rollupFake), // + rollupFuncsRemoveCounterResets "rollup_deriv": newRollupFuncOneArg(rollupFake), "rollup_delta": newRollupFuncOneArg(rollupFake), "rollup_increase": newRollupFuncOneArg(rollupFake), // + rollupFuncsRemoveCounterResets "rollup_candlestick": newRollupFuncOneArg(rollupFake), } var rollupFuncsMayAdjustWindow = map[string]bool{ "default_rollup": true, "first_over_time": true, "last_over_time": true, "deriv": true, "deriv_fast": true, "irate": true, "rate": true, "lifetime": true, "scrape_interval": true, } var rollupFuncsRemoveCounterResets = map[string]bool{ "increase": true, "irate": true, "rate": true, "rollup_rate": true, "rollup_increase": true, } var rollupFuncsKeepMetricGroup = map[string]bool{ "default_rollup": true, "avg_over_time": true, "min_over_time": true, "max_over_time": true, "quantile_over_time": true, "rollup": true, "geomean_over_time": true, } func getRollupArgIdx(funcName string) int { funcName = strings.ToLower(funcName) if rollupFuncs[funcName] == nil { logger.Panicf("BUG: getRollupArgIdx is called for non-rollup func %q", funcName) } if funcName == "quantile_over_time" { return 1 } return 0 } func getRollupFunc(funcName string) newRollupFunc { funcName = strings.ToLower(funcName) return rollupFuncs[funcName] } type rollupFuncArg struct { prevValue float64 prevTimestamp int64 values []float64 timestamps []int64 currTimestamp int64 idx int step int64 // Real previous value even if it is located too far from the current window. // It matches prevValue if prevValue is not nan. realPrevValue float64 tsm *timeseriesMap } func (rfa *rollupFuncArg) reset() { rfa.prevValue = 0 rfa.prevTimestamp = 0 rfa.values = nil rfa.timestamps = nil rfa.currTimestamp = 0 rfa.idx = 0 rfa.step = 0 rfa.realPrevValue = nan rfa.tsm = nil } // rollupFunc must return rollup value for the given rfa. // // prevValue may be nan, values and timestamps may be empty. type rollupFunc func(rfa *rollupFuncArg) float64 type rollupConfig struct { // This tag value must be added to "rollup" tag if non-empty. TagValue string Func rollupFunc Start int64 End int64 Step int64 Window int64 // Whether window may be adjusted to 2 x interval between data points. // This is needed for functions which have dt in the denominator // such as rate, deriv, etc. // Without the adjustement their value would jump in unexpected directions // when using window smaller than 2 x scrape_interval. MayAdjustWindow bool Timestamps []int64 // LoookbackDelta is the analog to `-query.lookback-delta` from Prometheus world. LookbackDelta int64 } var ( nan = math.NaN() inf = math.Inf(1) ) // The maximum interval without previous rows. const maxSilenceInterval = 5 * 60 * 1000 type timeseriesMap struct { origin *timeseries labelName string h metrics.Histogram m map[string]*timeseries } func newTimeseriesMap(funcName string, sharedTimestamps []int64, mnSrc *storage.MetricName) *timeseriesMap { if funcName != "histogram_over_time" { return nil } values := make([]float64, len(sharedTimestamps)) for i := range values { values[i] = nan } var origin timeseries origin.MetricName.CopyFrom(mnSrc) origin.MetricName.ResetMetricGroup() origin.Timestamps = sharedTimestamps origin.Values = values return ×eriesMap{ origin: &origin, labelName: "vmrange", m: make(map[string]*timeseries), } } func (tsm *timeseriesMap) AppendTimeseriesTo(dst []*timeseries) []*timeseries { for _, ts := range tsm.m { dst = append(dst, ts) } return dst } func (tsm *timeseriesMap) GetOrCreateTimeseries(labelValue string) *timeseries { ts := tsm.m[labelValue] if ts != nil { return ts } ts = ×eries{} ts.CopyFromShallowTimestamps(tsm.origin) ts.MetricName.RemoveTag(tsm.labelName) ts.MetricName.AddTag(tsm.labelName, labelValue) tsm.m[labelValue] = ts return ts } // Do calculates rollups for the given timestamps and values, appends // them to dstValues and returns results. // // rc.Timestamps are used as timestamps for dstValues. // // timestamps must cover time range [rc.Start - rc.Window - maxSilenceInterval ... rc.End + rc.Step]. // // Do cannot be called from concurrent goroutines. func (rc *rollupConfig) Do(dstValues []float64, values []float64, timestamps []int64) []float64 { return rc.doInternal(dstValues, nil, values, timestamps) } // DoTimeseriesMap calculates rollups for the given timestamps and values and puts them to tsm. func (rc *rollupConfig) DoTimeseriesMap(tsm *timeseriesMap, values []float64, timestamps []int64) { ts := getTimeseries() ts.Values = rc.doInternal(ts.Values[:0], tsm, values, timestamps) putTimeseries(ts) } func (rc *rollupConfig) doInternal(dstValues []float64, tsm *timeseriesMap, values []float64, timestamps []int64) []float64 { // Sanity checks. if rc.Step <= 0 { logger.Panicf("BUG: Step must be bigger than 0; got %d", rc.Step) } if rc.Start > rc.End { logger.Panicf("BUG: Start cannot exceed End; got %d vs %d", rc.Start, rc.End) } if rc.Window < 0 { logger.Panicf("BUG: Window must be non-negative; got %d", rc.Window) } if err := ValidateMaxPointsPerTimeseries(rc.Start, rc.End, rc.Step); err != nil { logger.Panicf("BUG: %s; this must be validated before the call to rollupConfig.Do", err) } // Extend dstValues in order to remove mallocs below. dstValues = decimal.ExtendFloat64sCapacity(dstValues, len(rc.Timestamps)) scrapeInterval := getScrapeInterval(timestamps) maxPrevInterval := getMaxPrevInterval(scrapeInterval) if rc.LookbackDelta > 0 && maxPrevInterval > rc.LookbackDelta { maxPrevInterval = rc.LookbackDelta } window := rc.Window if window <= 0 { window = rc.Step } if rc.MayAdjustWindow && window < maxPrevInterval { window = maxPrevInterval } rfa := getRollupFuncArg() rfa.idx = 0 rfa.step = rc.Step rfa.realPrevValue = nan rfa.tsm = tsm i := 0 j := 0 ni := 0 nj := 0 for _, tEnd := range rc.Timestamps { tStart := tEnd - window ni = seekFirstTimestampIdxAfter(timestamps[i:], tStart, ni) i += ni if j < i { j = i } nj = seekFirstTimestampIdxAfter(timestamps[j:], tEnd, nj) j += nj rfa.prevValue = nan rfa.prevTimestamp = tStart - maxPrevInterval if i < len(timestamps) && i > 0 && timestamps[i-1] > rfa.prevTimestamp { rfa.prevValue = values[i-1] rfa.prevTimestamp = timestamps[i-1] } rfa.values = values[i:j] rfa.timestamps = timestamps[i:j] rfa.currTimestamp = tEnd if i > 0 { rfa.realPrevValue = values[i-1] } value := rc.Func(rfa) rfa.idx++ dstValues = append(dstValues, value) } putRollupFuncArg(rfa) return dstValues } func seekFirstTimestampIdxAfter(timestamps []int64, seekTimestamp int64, nHint int) int { if len(timestamps) == 0 || timestamps[0] > seekTimestamp { return 0 } startIdx := nHint - 2 if startIdx < 0 { startIdx = 0 } if startIdx >= len(timestamps) { startIdx = len(timestamps) - 1 } endIdx := nHint + 2 if endIdx > len(timestamps) { endIdx = len(timestamps) } if startIdx > 0 && timestamps[startIdx] <= seekTimestamp { timestamps = timestamps[startIdx:] endIdx -= startIdx } else { startIdx = 0 } if endIdx < len(timestamps) && timestamps[endIdx] > seekTimestamp { timestamps = timestamps[:endIdx] } if len(timestamps) < 16 { // Fast path: the number of timestamps to search is small, so scan them all. for i, timestamp := range timestamps { if timestamp > seekTimestamp { return startIdx + i } } return startIdx + len(timestamps) } // Slow path: too big len(timestamps), so use binary search. i := binarySearchInt64(timestamps, seekTimestamp+1) return startIdx + int(i) } func binarySearchInt64(a []int64, v int64) uint { // Copy-pasted sort.Search from https://golang.org/src/sort/search.go?s=2246:2286#L49 i, j := uint(0), uint(len(a)) for i < j { h := (i + j) >> 1 if h < uint(len(a)) && a[h] < v { i = h + 1 } else { j = h } } return i } func getScrapeInterval(timestamps []int64) int64 { if len(timestamps) < 2 { return int64(maxSilenceInterval) } // Estimate scrape interval as 0.6 quantile for the first 100 intervals. h := histogram.GetFast() tsPrev := timestamps[0] timestamps = timestamps[1:] if len(timestamps) > 100 { timestamps = timestamps[:100] } for _, ts := range timestamps { h.Update(float64(ts - tsPrev)) tsPrev = ts } scrapeInterval := int64(h.Quantile(0.6)) histogram.PutFast(h) if scrapeInterval <= 0 { return int64(maxSilenceInterval) } return scrapeInterval } func getMaxPrevInterval(scrapeInterval int64) int64 { // Increase scrapeInterval more for smaller scrape intervals in order to hide possible gaps // when high jitter is present. // See https://github.com/VictoriaMetrics/VictoriaMetrics/issues/139 . if scrapeInterval <= 2*1000 { return scrapeInterval + 4*scrapeInterval } if scrapeInterval <= 4*1000 { return scrapeInterval + 2*scrapeInterval } if scrapeInterval <= 8*1000 { return scrapeInterval + scrapeInterval } if scrapeInterval <= 16*1000 { return scrapeInterval + scrapeInterval/2 } if scrapeInterval <= 32*1000 { return scrapeInterval + scrapeInterval/4 } return scrapeInterval + scrapeInterval/8 } func removeCounterResets(values []float64) { // There is no need in handling NaNs here, since they are impossible // on values from vmstorage. if len(values) == 0 { return } var correction float64 prevValue := values[0] for i, v := range values { d := v - prevValue if d < 0 { if (-d * 8) < prevValue { // This is likely jitter from `Prometheus HA pairs`. // Just substitute v with prevValue. v = prevValue } else { correction += prevValue } } prevValue = v values[i] = v + correction } } func deltaValues(values []float64) { // There is no need in handling NaNs here, since they are impossible // on values from vmstorage. if len(values) == 0 { return } prevDelta := float64(0) prevValue := values[0] for i, v := range values[1:] { prevDelta = v - prevValue values[i] = prevDelta prevValue = v } values[len(values)-1] = prevDelta } func derivValues(values []float64, timestamps []int64) { // There is no need in handling NaNs here, since they are impossible // on values from vmstorage. if len(values) == 0 { return } prevDeriv := float64(0) prevValue := values[0] prevTs := timestamps[0] for i, v := range values[1:] { ts := timestamps[i+1] if ts == prevTs { // Use the previous value for duplicate timestamps. values[i] = prevDeriv continue } dt := float64(ts-prevTs) * 1e-3 prevDeriv = (v - prevValue) / dt values[i] = prevDeriv prevValue = v prevTs = ts } values[len(values)-1] = prevDeriv } type newRollupFunc func(args []interface{}) (rollupFunc, error) func newRollupFuncOneArg(rf rollupFunc) newRollupFunc { return func(args []interface{}) (rollupFunc, error) { if err := expectRollupArgsNum(args, 1); err != nil { return nil, err } return rf, nil } } func newRollupHoltWinters(args []interface{}) (rollupFunc, error) { if err := expectRollupArgsNum(args, 3); err != nil { return nil, err } sfs, err := getScalar(args[1], 1) if err != nil { return nil, err } tfs, err := getScalar(args[2], 2) if err != nil { return nil, err } rf := func(rfa *rollupFuncArg) float64 { // There is no need in handling NaNs here, since they must be cleaned up // before calling rollup funcs. values := rfa.values if len(values) == 0 { return rfa.prevValue } sf := sfs[rfa.idx] if sf <= 0 || sf >= 1 { return nan } tf := tfs[rfa.idx] if tf <= 0 || tf >= 1 { return nan } // See https://en.wikipedia.org/wiki/Exponential_smoothing#Double_exponential_smoothing . // TODO: determine whether this shit really works. s0 := rfa.prevValue if math.IsNaN(s0) { s0 = values[0] values = values[1:] if len(values) == 0 { return s0 } } b0 := values[0] - s0 for _, v := range values { s1 := sf*v + (1-sf)*(s0+b0) b1 := tf*(s1-s0) + (1-tf)*b0 s0 = s1 b0 = b1 } return s0 } return rf, nil } func newRollupPredictLinear(args []interface{}) (rollupFunc, error) { if err := expectRollupArgsNum(args, 2); err != nil { return nil, err } secs, err := getScalar(args[1], 1) if err != nil { return nil, err } rf := func(rfa *rollupFuncArg) float64 { v, k := linearRegression(rfa) if math.IsNaN(v) { return nan } sec := secs[rfa.idx] return v + k*sec } return rf, nil } func linearRegression(rfa *rollupFuncArg) (float64, float64) { // There is no need in handling NaNs here, since they must be cleaned up // before calling rollup funcs. values := rfa.values timestamps := rfa.timestamps if len(values) == 0 { return rfa.prevValue, 0 } // See https://en.wikipedia.org/wiki/Simple_linear_regression#Numerical_example tFirst := rfa.prevTimestamp vSum := rfa.prevValue tSum := float64(0) tvSum := float64(0) ttSum := float64(0) n := 1.0 if math.IsNaN(rfa.prevValue) { tFirst = timestamps[0] vSum = 0 n = 0 } for i, v := range values { dt := float64(timestamps[i]-tFirst) * 1e-3 vSum += v tSum += dt tvSum += dt * v ttSum += dt * dt } n += float64(len(values)) if n == 1 { return vSum, 0 } k := (n*tvSum - tSum*vSum) / (n*ttSum - tSum*tSum) v := (vSum - k*tSum) / n // Adjust v to the last timestamp on the given time range. v += k * (float64(timestamps[len(timestamps)-1]-tFirst) * 1e-3) return v, k } func newRollupShareLE(args []interface{}) (rollupFunc, error) { return newRollupShareFilter(args, countFilterLE) } func countFilterLE(values []float64, le float64) int { n := 0 for _, v := range values { if v <= le { n++ } } return n } func newRollupShareGT(args []interface{}) (rollupFunc, error) { return newRollupShareFilter(args, countFilterGT) } func countFilterGT(values []float64, gt float64) int { n := 0 for _, v := range values { if v > gt { n++ } } return n } func newRollupShareFilter(args []interface{}, countFilter func(values []float64, limit float64) int) (rollupFunc, error) { if err := expectRollupArgsNum(args, 2); err != nil { return nil, err } limits, err := getScalar(args[1], 1) if err != nil { return nil, err } rf := func(rfa *rollupFuncArg) float64 { // There is no need in handling NaNs here, since they must be cleaned up // before calling rollup funcs. values := rfa.values if len(values) == 0 { return nan } limit := limits[rfa.idx] n := countFilter(values, limit) return float64(n) / float64(len(values)) } return rf, nil } func newRollupQuantile(args []interface{}) (rollupFunc, error) { if err := expectRollupArgsNum(args, 2); err != nil { return nil, err } phis, err := getScalar(args[0], 0) if err != nil { return nil, err } rf := func(rfa *rollupFuncArg) float64 { // There is no need in handling NaNs here, since they must be cleaned up // before calling rollup funcs. values := rfa.values if len(values) == 0 { return rfa.prevValue } if len(values) == 1 { // Fast path - only a single value. return values[0] } hf := histogram.GetFast() for _, v := range values { hf.Update(v) } phi := phis[rfa.idx] qv := hf.Quantile(phi) histogram.PutFast(hf) return qv } return rf, nil } func rollupHistogram(rfa *rollupFuncArg) float64 { values := rfa.values tsm := rfa.tsm tsm.h.Reset() for _, v := range values { tsm.h.Update(v) } idx := rfa.idx tsm.h.VisitNonZeroBuckets(func(vmrange string, count uint64) { ts := tsm.GetOrCreateTimeseries(vmrange) ts.Values[idx] = float64(count) }) return nan } func rollupAvg(rfa *rollupFuncArg) float64 { // Do not use `Rapid calculation methods` at https://en.wikipedia.org/wiki/Standard_deviation, // since it is slower and has no significant benefits in precision. // There is no need in handling NaNs here, since they must be cleaned up // before calling rollup funcs. values := rfa.values if len(values) == 0 { return rfa.prevValue } var sum float64 for _, v := range values { sum += v } return sum / float64(len(values)) } func rollupMin(rfa *rollupFuncArg) float64 { // There is no need in handling NaNs here, since they must be cleaned up // before calling rollup funcs. minValue := rfa.prevValue values := rfa.values if math.IsNaN(minValue) { if len(values) == 0 { return nan } minValue = values[0] } for _, v := range values { if v < minValue { minValue = v } } return minValue } func rollupMax(rfa *rollupFuncArg) float64 { // There is no need in handling NaNs here, since they must be cleaned up // before calling rollup funcs. maxValue := rfa.prevValue values := rfa.values if math.IsNaN(maxValue) { if len(values) == 0 { return nan } maxValue = values[0] } for _, v := range values { if v > maxValue { maxValue = v } } return maxValue } func rollupTmin(rfa *rollupFuncArg) float64 { // There is no need in handling NaNs here, since they must be cleaned up // before calling rollup funcs. minValue := rfa.prevValue minTimestamp := rfa.prevTimestamp values := rfa.values timestamps := rfa.timestamps if math.IsNaN(minValue) { if len(values) == 0 { return nan } minValue = values[0] minTimestamp = timestamps[0] } for i, v := range values { if v < minValue { minValue = v minTimestamp = timestamps[i] } } return float64(minTimestamp) * 1e-3 } func rollupTmax(rfa *rollupFuncArg) float64 { // There is no need in handling NaNs here, since they must be cleaned up // before calling rollup funcs. maxValue := rfa.prevValue maxTimestamp := rfa.prevTimestamp values := rfa.values timestamps := rfa.timestamps if math.IsNaN(maxValue) { if len(values) == 0 { return nan } maxValue = values[0] maxTimestamp = timestamps[0] } for i, v := range values { if v > maxValue { maxValue = v maxTimestamp = timestamps[i] } } return float64(maxTimestamp) * 1e-3 } func rollupSum(rfa *rollupFuncArg) float64 { // There is no need in handling NaNs here, since they must be cleaned up // before calling rollup funcs. values := rfa.values if len(values) == 0 { if math.IsNaN(rfa.prevValue) { return nan } return 0 } var sum float64 for _, v := range values { sum += v } return sum } func rollupSum2(rfa *rollupFuncArg) float64 { // There is no need in handling NaNs here, since they must be cleaned up // before calling rollup funcs. values := rfa.values if len(values) == 0 { return rfa.prevValue * rfa.prevValue } var sum2 float64 for _, v := range values { sum2 += v * v } return sum2 } func rollupGeomean(rfa *rollupFuncArg) float64 { // There is no need in handling NaNs here, since they must be cleaned up // before calling rollup funcs. values := rfa.values if len(values) == 0 { return rfa.prevValue } p := 1.0 for _, v := range values { p *= v } return math.Pow(p, 1/float64(len(values))) } func rollupAbsent(rfa *rollupFuncArg) float64 { if len(rfa.values) == 0 { return 1 } return nan } func rollupCount(rfa *rollupFuncArg) float64 { // There is no need in handling NaNs here, since they must be cleaned up // before calling rollup funcs. values := rfa.values if len(values) == 0 { if math.IsNaN(rfa.prevValue) { return nan } return 0 } return float64(len(values)) } func rollupStddev(rfa *rollupFuncArg) float64 { stdvar := rollupStdvar(rfa) return math.Sqrt(stdvar) } func rollupStdvar(rfa *rollupFuncArg) float64 { // See `Rapid calculation methods` at https://en.wikipedia.org/wiki/Standard_deviation // There is no need in handling NaNs here, since they must be cleaned up // before calling rollup funcs. values := rfa.values if len(values) == 0 { if math.IsNaN(rfa.prevValue) { return nan } return 0 } if len(values) == 1 { // Fast path. return values[0] } var avg float64 var count float64 var q float64 for _, v := range values { count++ avgNew := avg + (v-avg)/count q += (v - avg) * (v - avgNew) avg = avgNew } return q / count } func rollupDelta(rfa *rollupFuncArg) float64 { return rollupDeltaInternal(rfa, false) } func rollupIncrease(rfa *rollupFuncArg) float64 { return rollupDeltaInternal(rfa, true) } func rollupDeltaInternal(rfa *rollupFuncArg, canUseRealPrevValue bool) float64 { // There is no need in handling NaNs here, since they must be cleaned up // before calling rollup funcs. values := rfa.values prevValue := rfa.prevValue if math.IsNaN(prevValue) { if len(values) == 0 { return nan } // Assume that the previous non-existing value was 0. prevValue = 0 if canUseRealPrevValue && !math.IsNaN(rfa.prevValue) { prevValue = rfa.prevValue } } if len(values) == 0 { // Assume that the value didn't change on the given interval. return 0 } return values[len(values)-1] - prevValue } func rollupIdelta(rfa *rollupFuncArg) float64 { // There is no need in handling NaNs here, since they must be cleaned up // before calling rollup funcs. values := rfa.values if len(values) == 0 { if math.IsNaN(rfa.prevValue) { return nan } // Assume that the value didn't change on the given interval. return 0 } lastValue := values[len(values)-1] values = values[:len(values)-1] if len(values) == 0 { prevValue := rfa.prevValue if math.IsNaN(prevValue) { // Assume that the previous non-existing value was 0. return lastValue } return lastValue - prevValue } return lastValue - values[len(values)-1] } func rollupDerivSlow(rfa *rollupFuncArg) float64 { // Use linear regression like Prometheus does. // See https://github.com/VictoriaMetrics/VictoriaMetrics/issues/73 _, k := linearRegression(rfa) return k } func rollupDerivFast(rfa *rollupFuncArg) float64 { // There is no need in handling NaNs here, since they must be cleaned up // before calling rollup funcs. values := rfa.values timestamps := rfa.timestamps prevValue := rfa.prevValue prevTimestamp := rfa.prevTimestamp if math.IsNaN(prevValue) { if len(values) == 0 { return nan } if len(values) == 1 { // It is impossible to determine the duration during which the value changed // from 0 to the current value. // The following attempts didn't work well: // - using scrape interval as the duration. It fails on Prometheus restarts when it // skips scraping for the counter. This results in too high rate() value for the first point // after Prometheus restarts. // - using window or step as the duration. It results in too small rate() values for the first // points of time series. // // So just return nan return nan } prevValue = values[0] prevTimestamp = timestamps[0] } else if len(values) == 0 { // Assume that the value didn't change on the given interval. return 0 } vEnd := values[len(values)-1] tEnd := timestamps[len(timestamps)-1] dv := vEnd - prevValue dt := float64(tEnd-prevTimestamp) * 1e-3 return dv / dt } func rollupIderiv(rfa *rollupFuncArg) float64 { // There is no need in handling NaNs here, since they must be cleaned up // before calling rollup funcs. values := rfa.values timestamps := rfa.timestamps if len(values) < 2 { if len(values) == 0 { return nan } if math.IsNaN(rfa.prevValue) { // It is impossible to determine the duration during which the value changed // from 0 to the current value. // The following attempts didn't work well: // - using scrape interval as the duration. It fails on Prometheus restarts when it // skips scraping for the counter. This results in too high rate() value for the first point // after Prometheus restarts. // - using window or step as the duration. It results in too small rate() values for the first // points of time series. // // So just return nan return nan } return (values[0] - rfa.prevValue) / (float64(timestamps[0]-rfa.prevTimestamp) * 1e-3) } vEnd := values[len(values)-1] tEnd := timestamps[len(timestamps)-1] values = values[:len(values)-1] timestamps = timestamps[:len(timestamps)-1] // Skip data points with duplicate timestamps. for len(timestamps) > 0 && timestamps[len(timestamps)-1] >= tEnd { timestamps = timestamps[:len(timestamps)-1] } var tStart int64 var vStart float64 if len(timestamps) == 0 { if math.IsNaN(rfa.prevValue) { return 0 } tStart = rfa.prevTimestamp vStart = rfa.prevValue } else { tStart = timestamps[len(timestamps)-1] vStart = values[len(timestamps)-1] } dv := vEnd - vStart dt := tEnd - tStart return dv / (float64(dt) * 1e-3) } func rollupLifetime(rfa *rollupFuncArg) float64 { // Calculate the duration between the first and the last data points. timestamps := rfa.timestamps if math.IsNaN(rfa.prevValue) { if len(timestamps) < 2 { return nan } return float64(timestamps[len(timestamps)-1]-timestamps[0]) * 1e-3 } if len(timestamps) == 0 { return nan } return float64(timestamps[len(timestamps)-1]-rfa.prevTimestamp) * 1e-3 } func rollupLag(rfa *rollupFuncArg) float64 { // Calculate the duration between the current timestamp and the last data point. timestamps := rfa.timestamps if len(timestamps) == 0 { if math.IsNaN(rfa.prevValue) { return nan } return float64(rfa.currTimestamp-rfa.prevTimestamp) * 1e-3 } return float64(rfa.currTimestamp-timestamps[len(timestamps)-1]) * 1e-3 } func rollupScrapeInterval(rfa *rollupFuncArg) float64 { // Calculate the average interval between data points. timestamps := rfa.timestamps if math.IsNaN(rfa.prevValue) { if len(timestamps) < 2 { return nan } return float64(timestamps[len(timestamps)-1]-timestamps[0]) * 1e-3 / float64(len(timestamps)-1) } if len(timestamps) == 0 { return nan } return (float64(timestamps[len(timestamps)-1]-rfa.prevTimestamp) * 1e-3) / float64(len(timestamps)) } func rollupChanges(rfa *rollupFuncArg) float64 { // There is no need in handling NaNs here, since they must be cleaned up // before calling rollup funcs. values := rfa.values prevValue := rfa.prevValue n := 0 if math.IsNaN(prevValue) { if len(values) == 0 { return nan } prevValue = values[0] values = values[1:] n++ } for _, v := range values { if v != prevValue { n++ prevValue = v } } return float64(n) } func rollupIncreases(rfa *rollupFuncArg) float64 { // There is no need in handling NaNs here, since they must be cleaned up // before calling rollup funcs. values := rfa.values if len(values) == 0 { if math.IsNaN(rfa.prevValue) { return nan } return 0 } prevValue := rfa.prevValue if math.IsNaN(prevValue) { prevValue = values[0] values = values[1:] } if len(values) == 0 { return 0 } n := 0 for _, v := range values { if v > prevValue { n++ } prevValue = v } return float64(n) } // `decreases_over_time` logic is the same as `resets` logic. var rollupDecreases = rollupResets func rollupResets(rfa *rollupFuncArg) float64 { // There is no need in handling NaNs here, since they must be cleaned up // before calling rollup funcs. values := rfa.values if len(values) == 0 { if math.IsNaN(rfa.prevValue) { return nan } return 0 } prevValue := rfa.prevValue if math.IsNaN(prevValue) { prevValue = values[0] values = values[1:] } if len(values) == 0 { return 0 } n := 0 for _, v := range values { if v < prevValue { n++ } prevValue = v } return float64(n) } func rollupFirst(rfa *rollupFuncArg) float64 { // See https://prometheus.io/docs/prometheus/latest/querying/basics/#staleness v := rfa.prevValue if !math.IsNaN(v) { return v } // There is no need in handling NaNs here, since they must be cleaned up // before calling rollup funcs. values := rfa.values if len(values) == 0 { return nan } return values[0] } var rollupDefault = rollupLast func rollupLast(rfa *rollupFuncArg) float64 { // There is no need in handling NaNs here, since they must be cleaned up // before calling rollup funcs. values := rfa.values if len(values) == 0 { return rfa.prevValue } return values[len(values)-1] } func rollupDistinct(rfa *rollupFuncArg) float64 { // There is no need in handling NaNs here, since they must be cleaned up // before calling rollup funcs. values := rfa.values if len(values) == 0 { if math.IsNaN(rfa.prevValue) { return nan } return 0 } m := make(map[float64]struct{}) for _, v := range values { m[v] = struct{}{} } return float64(len(m)) } func rollupIntegrate(rfa *rollupFuncArg) float64 { prevTimestamp := rfa.prevTimestamp // There is no need in handling NaNs here, since they must be cleaned up // before calling rollup funcs. values := rfa.values timestamps := rfa.timestamps if len(values) == 0 { if math.IsNaN(rfa.prevValue) { return nan } return 0 } prevValue := rfa.prevValue if math.IsNaN(prevValue) { prevValue = values[0] prevTimestamp = timestamps[0] values = values[1:] timestamps = timestamps[1:] } if len(values) == 0 { return 0 } var sum float64 for i, v := range values { timestamp := timestamps[i] dt := float64(timestamp-prevTimestamp) * 1e-3 sum += 0.5 * (v + prevValue) * dt prevTimestamp = timestamp prevValue = v } return sum } func rollupFake(rfa *rollupFuncArg) float64 { logger.Panicf("BUG: rollupFake shouldn't be called") return 0 } func getScalar(arg interface{}, argNum int) ([]float64, error) { ts, ok := arg.([]*timeseries) if !ok { return nil, fmt.Errorf(`unexpected type for arg #%d; got %T; want %T`, argNum+1, arg, ts) } if len(ts) != 1 { return nil, fmt.Errorf(`arg #%d must contain a single timeseries; got %d timeseries`, argNum+1, len(ts)) } return ts[0].Values, nil } func getString(tss []*timeseries, argNum int) (string, error) { if len(tss) != 1 { return "", fmt.Errorf(`arg #%d must contain a single timeseries; got %d timeseries`, argNum+1, len(tss)) } ts := tss[0] for _, v := range ts.Values { if !math.IsNaN(v) { return "", fmt.Errorf(`arg #%d contains non-string timeseries`, argNum+1) } } return string(ts.MetricName.MetricGroup), nil } func expectRollupArgsNum(args []interface{}, expectedNum int) error { if len(args) == expectedNum { return nil } return fmt.Errorf(`unexpected number of args; got %d; want %d`, len(args), expectedNum) } func getRollupFuncArg() *rollupFuncArg { v := rfaPool.Get() if v == nil { return &rollupFuncArg{} } return v.(*rollupFuncArg) } func putRollupFuncArg(rfa *rollupFuncArg) { rfa.reset() rfaPool.Put(rfa) } var rfaPool sync.Pool