// Copyright 2019+ Klaus Post. All rights reserved. // License information can be found in the LICENSE file. // Based on work by Yann Collet, released under BSD License. package zstd import ( "errors" "fmt" ) const ( tablelogAbsoluteMax = 9 ) const ( /*!MEMORY_USAGE : * Memory usage formula : N->2^N Bytes (examples : 10 -> 1KB; 12 -> 4KB ; 16 -> 64KB; 20 -> 1MB; etc.) * Increasing memory usage improves compression ratio * Reduced memory usage can improve speed, due to cache effect * Recommended max value is 14, for 16KB, which nicely fits into Intel x86 L1 cache */ maxMemoryUsage = 11 maxTableLog = maxMemoryUsage - 2 maxTablesize = 1 << maxTableLog maxTableMask = (1 << maxTableLog) - 1 minTablelog = 5 maxSymbolValue = 255 ) // fseDecoder provides temporary storage for compression and decompression. type fseDecoder struct { dt [maxTablesize]decSymbol // Decompression table. symbolLen uint16 // Length of active part of the symbol table. actualTableLog uint8 // Selected tablelog. maxBits uint8 // Maximum number of additional bits // used for table creation to avoid allocations. stateTable [256]uint16 norm [maxSymbolValue + 1]int16 preDefined bool } // tableStep returns the next table index. func tableStep(tableSize uint32) uint32 { return (tableSize >> 1) + (tableSize >> 3) + 3 } // readNCount will read the symbol distribution so decoding tables can be constructed. func (s *fseDecoder) readNCount(b *byteReader, maxSymbol uint16) error { var ( charnum uint16 previous0 bool ) if b.remain() < 4 { return errors.New("input too small") } bitStream := b.Uint32() nbBits := uint((bitStream & 0xF) + minTablelog) // extract tableLog if nbBits > tablelogAbsoluteMax { println("Invalid tablelog:", nbBits) return errors.New("tableLog too large") } bitStream >>= 4 bitCount := uint(4) s.actualTableLog = uint8(nbBits) remaining := int32((1 << nbBits) + 1) threshold := int32(1 << nbBits) gotTotal := int32(0) nbBits++ for remaining > 1 && charnum <= maxSymbol { if previous0 { //println("prev0") n0 := charnum for (bitStream & 0xFFFF) == 0xFFFF { //println("24 x 0") n0 += 24 if r := b.remain(); r > 5 { b.advance(2) bitStream = b.Uint32() >> bitCount } else { // end of bit stream bitStream >>= 16 bitCount += 16 } } //printf("bitstream: %d, 0b%b", bitStream&3, bitStream) for (bitStream & 3) == 3 { n0 += 3 bitStream >>= 2 bitCount += 2 } n0 += uint16(bitStream & 3) bitCount += 2 if n0 > maxSymbolValue { return errors.New("maxSymbolValue too small") } //println("inserting ", n0-charnum, "zeroes from idx", charnum, "ending before", n0) for charnum < n0 { s.norm[uint8(charnum)] = 0 charnum++ } if r := b.remain(); r >= 7 || r+int(bitCount>>3) >= 4 { b.advance(bitCount >> 3) bitCount &= 7 bitStream = b.Uint32() >> bitCount } else { bitStream >>= 2 } } max := (2*threshold - 1) - remaining var count int32 if int32(bitStream)&(threshold-1) < max { count = int32(bitStream) & (threshold - 1) if debug && nbBits < 1 { panic("nbBits underflow") } bitCount += nbBits - 1 } else { count = int32(bitStream) & (2*threshold - 1) if count >= threshold { count -= max } bitCount += nbBits } // extra accuracy count-- if count < 0 { // -1 means +1 remaining += count gotTotal -= count } else { remaining -= count gotTotal += count } s.norm[charnum&0xff] = int16(count) charnum++ previous0 = count == 0 for remaining < threshold { nbBits-- threshold >>= 1 } //println("b.off:", b.off, "len:", len(b.b), "bc:", bitCount, "remain:", b.remain()) if r := b.remain(); r >= 7 || r+int(bitCount>>3) >= 4 { b.advance(bitCount >> 3) bitCount &= 7 } else { bitCount -= (uint)(8 * (len(b.b) - 4 - b.off)) b.off = len(b.b) - 4 //println("b.off:", b.off, "len:", len(b.b), "bc:", bitCount, "iend", iend) } bitStream = b.Uint32() >> (bitCount & 31) //printf("bitstream is now: 0b%b", bitStream) } s.symbolLen = charnum if s.symbolLen <= 1 { return fmt.Errorf("symbolLen (%d) too small", s.symbolLen) } if s.symbolLen > maxSymbolValue+1 { return fmt.Errorf("symbolLen (%d) too big", s.symbolLen) } if remaining != 1 { return fmt.Errorf("corruption detected (remaining %d != 1)", remaining) } if bitCount > 32 { return fmt.Errorf("corruption detected (bitCount %d > 32)", bitCount) } if gotTotal != 1<> 3) // println(s.norm[:s.symbolLen], s.symbolLen) return s.buildDtable() } // decSymbol contains information about a state entry, // Including the state offset base, the output symbol and // the number of bits to read for the low part of the destination state. type decSymbol struct { newState uint16 addBits uint8 // Used for symbols until transformed. nbBits uint8 baseline uint32 } // decSymbolValue returns the transformed decSymbol for the given symbol. func decSymbolValue(symb uint8, t []baseOffset) (decSymbol, error) { if int(symb) >= len(t) { return decSymbol{}, fmt.Errorf("rle symbol %d >= max %d", symb, len(t)) } lu := t[symb] return decSymbol{ addBits: lu.addBits, baseline: lu.baseLine, }, nil } // setRLE will set the decoder til RLE mode. func (s *fseDecoder) setRLE(symbol decSymbol) { s.actualTableLog = 0 s.maxBits = symbol.addBits s.dt[0] = symbol } // buildDtable will build the decoding table. func (s *fseDecoder) buildDtable() error { tableSize := uint32(1 << s.actualTableLog) highThreshold := tableSize - 1 symbolNext := s.stateTable[:256] // Init, lay down lowprob symbols { for i, v := range s.norm[:s.symbolLen] { if v == -1 { s.dt[highThreshold].addBits = uint8(i) highThreshold-- symbolNext[i] = 1 } else { symbolNext[i] = uint16(v) } } } // Spread symbols { tableMask := tableSize - 1 step := tableStep(tableSize) position := uint32(0) for ss, v := range s.norm[:s.symbolLen] { for i := 0; i < int(v); i++ { s.dt[position].addBits = uint8(ss) position = (position + step) & tableMask for position > highThreshold { // lowprob area position = (position + step) & tableMask } } } if position != 0 { // position must reach all cells once, otherwise normalizedCounter is incorrect return errors.New("corrupted input (position != 0)") } } // Build Decoding table { tableSize := uint16(1 << s.actualTableLog) for u, v := range s.dt[:tableSize] { symbol := v.addBits nextState := symbolNext[symbol] symbolNext[symbol] = nextState + 1 nBits := s.actualTableLog - byte(highBits(uint32(nextState))) s.dt[u&maxTableMask].nbBits = nBits newState := (nextState << nBits) - tableSize if newState > tableSize { return fmt.Errorf("newState (%d) outside table size (%d)", newState, tableSize) } if newState == uint16(u) && nBits == 0 { // Seems weird that this is possible with nbits > 0. return fmt.Errorf("newState (%d) == oldState (%d) and no bits", newState, u) } s.dt[u&maxTableMask].newState = newState } } return nil } // transform will transform the decoder table into a table usable for // decoding without having to apply the transformation while decoding. // The state will contain the base value and the number of bits to read. func (s *fseDecoder) transform(t []baseOffset) error { tableSize := uint16(1 << s.actualTableLog) s.maxBits = 0 for i, v := range s.dt[:tableSize] { if int(v.addBits) >= len(t) { return fmt.Errorf("invalid decoding table entry %d, symbol %d >= max (%d)", i, v.addBits, len(t)) } lu := t[v.addBits] if lu.addBits > s.maxBits { s.maxBits = lu.addBits } s.dt[i&maxTableMask] = decSymbol{ newState: v.newState, nbBits: v.nbBits, addBits: lu.addBits, baseline: lu.baseLine, } } return nil } type fseState struct { // TODO: Check if *[1 << maxTablelog]decSymbol is faster. dt []decSymbol state decSymbol } // Initialize and decodeAsync first state and symbol. func (s *fseState) init(br *bitReader, tableLog uint8, dt []decSymbol) { s.dt = dt br.fill() s.state = dt[br.getBits(tableLog)] } // next returns the current symbol and sets the next state. // At least tablelog bits must be available in the bit reader. func (s *fseState) next(br *bitReader) { lowBits := uint16(br.getBits(s.state.nbBits)) s.state = s.dt[s.state.newState+lowBits] } // finished returns true if all bits have been read from the bitstream // and the next state would require reading bits from the input. func (s *fseState) finished(br *bitReader) bool { return br.finished() && s.state.nbBits > 0 } // final returns the current state symbol without decoding the next. func (s *fseState) final() (int, uint8) { return int(s.state.baseline), s.state.addBits } // nextFast returns the next symbol and sets the next state. // This can only be used if no symbols are 0 bits. // At least tablelog bits must be available in the bit reader. func (s *fseState) nextFast(br *bitReader) (uint32, uint8) { lowBits := uint16(br.getBitsFast(s.state.nbBits)) s.state = s.dt[s.state.newState+lowBits] return s.state.baseline, s.state.addBits }