VictoriaMetrics/lib/streamaggr/streamaggr.go
Aliaksandr Valialkin 1332b6f912
lib/streamaggr: consistently use the same timestamp across all the output aggregated samples in a single aggregation interval
Prevsiously every aggregation output was using its own timestamp for the output aggregated samples
in a single aggregation interval. This could result in unexpected inconsitent timesetamps for the output
aggregated samples.

This commit consistently uses the same timestamp across all the output aggregated samples.
This commit makes sure that the duration between subsequent timestamps strictly equals
the configured aggregation interval.

Thanks to @AndrewChubatiuk for the original idea at https://github.com/VictoriaMetrics/VictoriaMetrics/pull/6314
This commit should help https://github.com/VictoriaMetrics/VictoriaMetrics/issues/4580
2024-08-07 11:46:47 +02:00

1283 lines
38 KiB
Go

package streamaggr
import (
"encoding/json"
"fmt"
"math"
"slices"
"sort"
"strconv"
"strings"
"sync"
"sync/atomic"
"time"
"github.com/VictoriaMetrics/VictoriaMetrics/lib/bytesutil"
"github.com/VictoriaMetrics/VictoriaMetrics/lib/cgroup"
"github.com/VictoriaMetrics/VictoriaMetrics/lib/encoding"
"github.com/VictoriaMetrics/VictoriaMetrics/lib/envtemplate"
"github.com/VictoriaMetrics/VictoriaMetrics/lib/fs/fscore"
"github.com/VictoriaMetrics/VictoriaMetrics/lib/logger"
"github.com/VictoriaMetrics/VictoriaMetrics/lib/prompbmarshal"
"github.com/VictoriaMetrics/VictoriaMetrics/lib/promrelabel"
"github.com/VictoriaMetrics/VictoriaMetrics/lib/promutils"
"github.com/VictoriaMetrics/VictoriaMetrics/lib/timerpool"
"github.com/VictoriaMetrics/metrics"
"gopkg.in/yaml.v2"
)
var supportedOutputs = []string{
"avg",
"count_samples",
"count_series",
"histogram_bucket",
"increase",
"increase_prometheus",
"last",
"max",
"min",
"quantiles(phi1, ..., phiN)",
"rate_avg",
"rate_sum",
"stddev",
"stdvar",
"sum_samples",
"total",
"total_prometheus",
"unique_samples",
}
var (
// lc contains information about all compressed labels for streaming aggregation
lc promutils.LabelsCompressor
_ = metrics.NewGauge(`vm_streamaggr_labels_compressor_size_bytes`, func() float64 {
return float64(lc.SizeBytes())
})
_ = metrics.NewGauge(`vm_streamaggr_labels_compressor_items_count`, func() float64 {
return float64(lc.ItemsCount())
})
)
// LoadFromFile loads Aggregators from the given path and uses the given pushFunc for pushing the aggregated data.
//
// opts can contain additional options. If opts is nil, then default options are used.
//
// alias is used as url label in metrics exposed for the returned Aggregators.
//
// The returned Aggregators must be stopped with MustStop() when no longer needed.
func LoadFromFile(path string, pushFunc PushFunc, opts *Options, alias string) (*Aggregators, error) {
data, err := fscore.ReadFileOrHTTP(path)
if err != nil {
return nil, fmt.Errorf("cannot load aggregators: %w", err)
}
data, err = envtemplate.ReplaceBytes(data)
if err != nil {
return nil, fmt.Errorf("cannot expand environment variables in %q: %w", path, err)
}
as, err := loadFromData(data, path, pushFunc, opts, alias)
if err != nil {
return nil, fmt.Errorf("cannot initialize aggregators from %q: %w; see https://docs.victoriametrics.com/stream-aggregation/#stream-aggregation-config", path, err)
}
return as, nil
}
// Options contains optional settings for the Aggregators.
type Options struct {
// DedupInterval is deduplication interval for samples received for the same time series.
//
// The last sample per each series is left per each DedupInterval if DedupInterval > 0.
//
// By default deduplication is disabled.
//
// The deduplication can be set up individually per each aggregation via dedup_interval option.
DedupInterval time.Duration
// DropInputLabels is an optional list of labels to drop from samples before de-duplication and stream aggregation.
DropInputLabels []string
// NoAlignFlushToInterval disables alignment of flushes to the aggregation interval.
//
// By default flushes are aligned to aggregation interval.
//
// The alignment of flushes can be disabled individually per each aggregation via no_align_flush_to_interval option.
NoAlignFlushToInterval bool
// FlushOnShutdown enables flush of incomplete aggregation state on startup and shutdown.
//
// By default incomplete state is dropped.
//
// The flush of incomplete state can be enabled individually per each aggregation via flush_on_shutdown option.
FlushOnShutdown bool
// KeepMetricNames instructs to leave metric names as is for the output time series without adding any suffix.
//
// By default the following suffix is added to every output time series:
//
// input_name:<interval>[_by_<by_labels>][_without_<without_labels>]_<output>
//
// This option can be overridden individually per each aggregation via keep_metric_names option.
KeepMetricNames bool
// IgnoreOldSamples instructs to ignore samples with timestamps older than the current aggregation interval.
//
// By default all the samples are taken into account.
//
// This option can be overridden individually per each aggregation via ignore_old_samples option.
IgnoreOldSamples bool
// IgnoreFirstIntervals sets the number of aggregation intervals to be ignored on start.
//
// By default, zero intervals are ignored.
//
// This option can be overridden individually per each aggregation via ignore_first_intervals option.
IgnoreFirstIntervals int
}
// Config is a configuration for a single stream aggregation.
type Config struct {
// Name is an optional name of the Config.
//
// It is used as `name` label in the exposed metrics for the given Config.
Name string `yaml:"name,omitempty"`
// Match is a label selector for filtering time series for the given selector.
//
// If the match isn't set, then all the input time series are processed.
Match *promrelabel.IfExpression `yaml:"match,omitempty"`
// Interval is the interval between aggregations.
Interval string `yaml:"interval"`
// NoAlighFlushToInterval disables aligning of flushes to multiples of Interval.
// By default flushes are aligned to Interval.
//
// See also FlushOnShutdown.
NoAlignFlushToInterval *bool `yaml:"no_align_flush_to_interval,omitempty"`
// FlushOnShutdown defines whether to flush incomplete aggregation state on startup and shutdown.
// By default incomplete aggregation state is dropped, since it may confuse users.
FlushOnShutdown *bool `yaml:"flush_on_shutdown,omitempty"`
// DedupInterval is an optional interval for deduplication.
DedupInterval string `yaml:"dedup_interval,omitempty"`
// Staleness interval is interval after which the series state will be reset if no samples have been sent during it.
// The parameter is only relevant for outputs: total, total_prometheus, increase, increase_prometheus and histogram_bucket.
StalenessInterval string `yaml:"staleness_interval,omitempty"`
// Outputs is a list of output aggregate functions to produce.
//
// The following names are allowed:
//
// - avg - the average value across all the samples
// - count_samples - counts the input samples
// - count_series - counts the number of unique input series
// - histogram_bucket - creates VictoriaMetrics histogram for input samples
// - increase - calculates the increase over input series
// - increase_prometheus - calculates the increase over input series, ignoring the first sample in new time series
// - last - the last biggest sample value
// - max - the maximum sample value
// - min - the minimum sample value
// - quantiles(phi1, ..., phiN) - quantiles' estimation for phi in the range [0..1]
// - rate_avg - calculates average of rate for input counters
// - rate_sum - calculates sum of rate for input counters
// - stddev - standard deviation across all the samples
// - stdvar - standard variance across all the samples
// - sum_samples - sums the input sample values
// - total - aggregates input counters
// - total_prometheus - aggregates input counters, ignoring the first sample in new time series
// - unique_samples - counts the number of unique sample values
//
// The output time series will have the following names by default:
//
// input_name:<interval>[_by_<by_labels>][_without_<without_labels>]_<output>
//
// See also KeepMetricNames
//
Outputs []string `yaml:"outputs"`
// KeepMetricNames instructs to leave metric names as is for the output time series without adding any suffix.
KeepMetricNames *bool `yaml:"keep_metric_names,omitempty"`
// IgnoreOldSamples instructs to ignore samples with old timestamps outside the current aggregation interval.
IgnoreOldSamples *bool `yaml:"ignore_old_samples,omitempty"`
// IgnoreFirstIntervals sets number of aggregation intervals to be ignored on start.
IgnoreFirstIntervals *int `yaml:"ignore_first_intervals,omitempty"`
// By is an optional list of labels for grouping input series.
//
// See also Without.
//
// If neither By nor Without are set, then the Outputs are calculated
// individually per each input time series.
By []string `yaml:"by,omitempty"`
// Without is an optional list of labels, which must be excluded when grouping input series.
//
// See also By.
//
// If neither By nor Without are set, then the Outputs are calculated
// individually per each input time series.
Without []string `yaml:"without,omitempty"`
// DropInputLabels is an optional list with labels, which must be dropped before further processing of input samples.
//
// Labels are dropped before de-duplication and aggregation.
DropInputLabels *[]string `yaml:"drop_input_labels,omitempty"`
// InputRelabelConfigs is an optional relabeling rules, which are applied on the input
// before aggregation.
InputRelabelConfigs []promrelabel.RelabelConfig `yaml:"input_relabel_configs,omitempty"`
// OutputRelabelConfigs is an optional relabeling rules, which are applied
// on the aggregated output before being sent to remote storage.
OutputRelabelConfigs []promrelabel.RelabelConfig `yaml:"output_relabel_configs,omitempty"`
}
// Aggregators aggregates metrics passed to Push and calls pushFunc for aggregated data.
type Aggregators struct {
as []*aggregator
// configData contains marshaled configs.
// It is used in Equal() for comparing Aggregators.
configData []byte
// filePath is the path to config file used for creating the Aggregators.
filePath string
// ms contains metrics associated with the Aggregators.
ms *metrics.Set
}
// FilePath returns path to file with the configuration used for creating the given Aggregators.
func (a *Aggregators) FilePath() string {
return a.filePath
}
// LoadFromData loads aggregators from data.
//
// opts can contain additional options. If opts is nil, then default options are used.
func LoadFromData(data []byte, pushFunc PushFunc, opts *Options, alias string) (*Aggregators, error) {
return loadFromData(data, "inmemory", pushFunc, opts, alias)
}
func loadFromData(data []byte, filePath string, pushFunc PushFunc, opts *Options, alias string) (*Aggregators, error) {
var cfgs []*Config
if err := yaml.UnmarshalStrict(data, &cfgs); err != nil {
return nil, fmt.Errorf("cannot parse stream aggregation config: %w", err)
}
ms := metrics.NewSet()
as := make([]*aggregator, len(cfgs))
for i, cfg := range cfgs {
a, err := newAggregator(cfg, filePath, pushFunc, ms, opts, alias, i+1)
if err != nil {
// Stop already initialized aggregators before returning the error.
for _, a := range as[:i] {
a.MustStop()
}
return nil, fmt.Errorf("cannot initialize aggregator #%d: %w", i, err)
}
as[i] = a
}
configData, err := json.Marshal(cfgs)
if err != nil {
logger.Panicf("BUG: cannot marshal the provided configs: %s", err)
}
metrics.RegisterSet(ms)
return &Aggregators{
as: as,
configData: configData,
filePath: filePath,
ms: ms,
}, nil
}
// IsEnabled returns true if Aggregators has at least one configured aggregator
func (a *Aggregators) IsEnabled() bool {
if a == nil {
return false
}
if len(a.as) == 0 {
return false
}
return true
}
// MustStop stops a.
func (a *Aggregators) MustStop() {
if a == nil {
return
}
metrics.UnregisterSet(a.ms, true)
a.ms = nil
for _, aggr := range a.as {
aggr.MustStop()
}
a.as = nil
}
// Equal returns true if a and b are initialized from identical configs.
func (a *Aggregators) Equal(b *Aggregators) bool {
if a == nil || b == nil {
return a == nil && b == nil
}
return string(a.configData) == string(b.configData)
}
// Push pushes tss to a.
//
// Push sets matchIdxs[idx] to 1 if the corresponding tss[idx] was used in aggregations.
// Otherwise matchIdxs[idx] is set to 0.
//
// Push returns matchIdxs with len equal to len(tss).
// It re-uses the matchIdxs if it has enough capacity to hold len(tss) items.
// Otherwise it allocates new matchIdxs.
func (a *Aggregators) Push(tss []prompbmarshal.TimeSeries, matchIdxs []byte) []byte {
matchIdxs = bytesutil.ResizeNoCopyMayOverallocate(matchIdxs, len(tss))
for i := range matchIdxs {
matchIdxs[i] = 0
}
if a == nil {
return matchIdxs
}
for _, aggr := range a.as {
aggr.Push(tss, matchIdxs)
}
return matchIdxs
}
// aggregator aggregates input series according to the config passed to NewAggregator
type aggregator struct {
match *promrelabel.IfExpression
dropInputLabels []string
inputRelabeling *promrelabel.ParsedConfigs
outputRelabeling *promrelabel.ParsedConfigs
keepMetricNames bool
ignoreOldSamples bool
by []string
without []string
aggregateOnlyByTime bool
// interval is the interval between flushes
interval time.Duration
// dedupInterval is optional deduplication interval for incoming samples
dedupInterval time.Duration
// da is set to non-nil if input samples must be de-duplicated
da *dedupAggr
// aggrOutputs contains aggregate states for the given outputs
aggrOutputs []aggrOutput
// minTimestamp is used for ignoring old samples when ignoreOldSamples is set
minTimestamp atomic.Int64
// suffix contains a suffix, which should be added to aggregate metric names
//
// It contains the interval, labels in (by, without), plus output name.
// For example, foo_bar metric name is transformed to foo_bar:1m_by_job
// for `interval: 1m`, `by: [job]`
suffix string
wg sync.WaitGroup
stopCh chan struct{}
flushDuration *metrics.Histogram
dedupFlushDuration *metrics.Histogram
samplesLag *metrics.Histogram
flushTimeouts *metrics.Counter
dedupFlushTimeouts *metrics.Counter
ignoredOldSamples *metrics.Counter
ignoredNaNSamples *metrics.Counter
matchedSamples *metrics.Counter
}
type aggrOutput struct {
as aggrState
outputSamples *metrics.Counter
}
type aggrState interface {
// pushSamples must push samples to the aggrState.
//
// samples[].key must be cloned by aggrState, since it may change after returning from pushSamples.
pushSamples(samples []pushSample)
// flushState must flush aggrState data to ctx.
//
// if resetState is true, then aggrState must be reset after flushing the data to ctx,
// otherwise the aggrState data must be kept unchanged.
//
// The resetState is set to false only in the benchmark, which measures flushState() performance
// over the same aggrState.
flushState(ctx *flushCtx, resetState bool)
}
// PushFunc is called by Aggregators when it needs to push its state to metrics storage
type PushFunc func(tss []prompbmarshal.TimeSeries)
// newAggregator creates new aggregator for the given cfg, which pushes the aggregate data to pushFunc.
//
// opts can contain additional options. If opts is nil, then default options are used.
//
// The returned aggregator must be stopped when no longer needed by calling MustStop().
func newAggregator(cfg *Config, path string, pushFunc PushFunc, ms *metrics.Set, opts *Options, alias string, aggrID int) (*aggregator, error) {
// check cfg.Interval
if cfg.Interval == "" {
return nil, fmt.Errorf("missing `interval` option")
}
interval, err := time.ParseDuration(cfg.Interval)
if err != nil {
return nil, fmt.Errorf("cannot parse `interval: %q`: %w", cfg.Interval, err)
}
if interval < time.Second {
return nil, fmt.Errorf("aggregation interval cannot be smaller than 1s; got %s", interval)
}
if opts == nil {
opts = &Options{}
}
// check cfg.DedupInterval
dedupInterval := opts.DedupInterval
if cfg.DedupInterval != "" {
di, err := time.ParseDuration(cfg.DedupInterval)
if err != nil {
return nil, fmt.Errorf("cannot parse `dedup_interval: %q`: %w", cfg.DedupInterval, err)
}
dedupInterval = di
}
if dedupInterval > interval {
return nil, fmt.Errorf("dedup_interval=%s cannot exceed interval=%s", dedupInterval, interval)
}
if dedupInterval > 0 && interval%dedupInterval != 0 {
return nil, fmt.Errorf("interval=%s must be a multiple of dedup_interval=%s", interval, dedupInterval)
}
// check cfg.StalenessInterval
stalenessInterval := interval * 2
if cfg.StalenessInterval != "" {
stalenessInterval, err = time.ParseDuration(cfg.StalenessInterval)
if err != nil {
return nil, fmt.Errorf("cannot parse `staleness_interval: %q`: %w", cfg.StalenessInterval, err)
}
if stalenessInterval < interval {
return nil, fmt.Errorf("staleness_interval=%s cannot be smaller than interval=%s", cfg.StalenessInterval, cfg.Interval)
}
}
// Check cfg.DropInputLabels
dropInputLabels := opts.DropInputLabels
if v := cfg.DropInputLabels; v != nil {
dropInputLabels = *v
}
// initialize input_relabel_configs and output_relabel_configs
inputRelabeling, err := promrelabel.ParseRelabelConfigs(cfg.InputRelabelConfigs)
if err != nil {
return nil, fmt.Errorf("cannot parse input_relabel_configs: %w", err)
}
outputRelabeling, err := promrelabel.ParseRelabelConfigs(cfg.OutputRelabelConfigs)
if err != nil {
return nil, fmt.Errorf("cannot parse output_relabel_configs: %w", err)
}
// check by and without lists
by := sortAndRemoveDuplicates(cfg.By)
without := sortAndRemoveDuplicates(cfg.Without)
if len(by) > 0 && len(without) > 0 {
return nil, fmt.Errorf("`by: %s` and `without: %s` lists cannot be set simultaneously; see https://docs.victoriametrics.com/stream-aggregation/", by, without)
}
aggregateOnlyByTime := (len(by) == 0 && len(without) == 0)
if !aggregateOnlyByTime && len(without) == 0 {
by = addMissingUnderscoreName(by)
}
// check cfg.KeepMetricNames
keepMetricNames := opts.KeepMetricNames
if v := cfg.KeepMetricNames; v != nil {
keepMetricNames = *v
}
if keepMetricNames {
if len(cfg.Outputs) != 1 {
return nil, fmt.Errorf("`outputs` list must contain only a single entry if `keep_metric_names` is set; got %q; "+
"see https://docs.victoriametrics.com/stream-aggregation/#output-metric-names", cfg.Outputs)
}
if cfg.Outputs[0] == "histogram_bucket" || strings.HasPrefix(cfg.Outputs[0], "quantiles(") && strings.Contains(cfg.Outputs[0], ",") {
return nil, fmt.Errorf("`keep_metric_names` cannot be applied to `outputs: %q`, since they can generate multiple time series; "+
"see https://docs.victoriametrics.com/stream-aggregation/#output-metric-names", cfg.Outputs)
}
}
// check cfg.IgnoreOldSamples
ignoreOldSamples := opts.IgnoreOldSamples
if v := cfg.IgnoreOldSamples; v != nil {
ignoreOldSamples = *v
}
// check cfg.IgnoreFirstIntervals
ignoreFirstIntervals := opts.IgnoreFirstIntervals
if v := cfg.IgnoreFirstIntervals; v != nil {
ignoreFirstIntervals = *v
}
// Initialize common metric labels
name := cfg.Name
if name == "" {
name = "none"
}
metricLabels := fmt.Sprintf(`name=%q,path=%q,url=%q,position="%d"`, name, path, alias, aggrID)
// initialize aggrOutputs
if len(cfg.Outputs) == 0 {
return nil, fmt.Errorf("`outputs` list must contain at least a single entry from the list %s; "+
"see https://docs.victoriametrics.com/stream-aggregation/", supportedOutputs)
}
aggrOutputs := make([]aggrOutput, len(cfg.Outputs))
outputsSeen := make(map[string]struct{}, len(cfg.Outputs))
for i, output := range cfg.Outputs {
as, err := newAggrState(output, outputsSeen, stalenessInterval)
if err != nil {
return nil, err
}
aggrOutputs[i] = aggrOutput{
as: as,
outputSamples: ms.NewCounter(fmt.Sprintf(`vm_streamaggr_output_samples_total{output=%q,%s}`, output, metricLabels)),
}
}
// initialize suffix to add to metric names after aggregation
suffix := ":" + cfg.Interval
if labels := removeUnderscoreName(by); len(labels) > 0 {
suffix += fmt.Sprintf("_by_%s", strings.Join(labels, "_"))
}
if labels := removeUnderscoreName(without); len(labels) > 0 {
suffix += fmt.Sprintf("_without_%s", strings.Join(labels, "_"))
}
suffix += "_"
// initialize the aggregator
a := &aggregator{
match: cfg.Match,
dropInputLabels: dropInputLabels,
inputRelabeling: inputRelabeling,
outputRelabeling: outputRelabeling,
keepMetricNames: keepMetricNames,
ignoreOldSamples: ignoreOldSamples,
by: by,
without: without,
aggregateOnlyByTime: aggregateOnlyByTime,
interval: interval,
dedupInterval: dedupInterval,
aggrOutputs: aggrOutputs,
suffix: suffix,
stopCh: make(chan struct{}),
flushDuration: ms.NewHistogram(fmt.Sprintf(`vm_streamaggr_flush_duration_seconds{%s}`, metricLabels)),
dedupFlushDuration: ms.NewHistogram(fmt.Sprintf(`vm_streamaggr_dedup_flush_duration_seconds{%s}`, metricLabels)),
samplesLag: ms.NewHistogram(fmt.Sprintf(`vm_streamaggr_samples_lag_seconds{%s}`, metricLabels)),
matchedSamples: ms.NewCounter(fmt.Sprintf(`vm_streamaggr_matched_samples_total{%s}`, metricLabels)),
flushTimeouts: ms.NewCounter(fmt.Sprintf(`vm_streamaggr_flush_timeouts_total{%s}`, metricLabels)),
dedupFlushTimeouts: ms.NewCounter(fmt.Sprintf(`vm_streamaggr_dedup_flush_timeouts_total{%s}`, metricLabels)),
ignoredNaNSamples: ms.NewCounter(fmt.Sprintf(`vm_streamaggr_ignored_samples_total{reason="nan",%s}`, metricLabels)),
ignoredOldSamples: ms.NewCounter(fmt.Sprintf(`vm_streamaggr_ignored_samples_total{reason="too_old",%s}`, metricLabels)),
}
if dedupInterval > 0 {
a.da = newDedupAggr()
_ = ms.NewGauge(fmt.Sprintf(`vm_streamaggr_dedup_state_size_bytes{%s}`, metricLabels), func() float64 {
n := a.da.sizeBytes()
return float64(n)
})
_ = ms.NewGauge(fmt.Sprintf(`vm_streamaggr_dedup_state_items_count{%s}`, metricLabels), func() float64 {
n := a.da.itemsCount()
return float64(n)
})
}
alignFlushToInterval := !opts.NoAlignFlushToInterval
if v := cfg.NoAlignFlushToInterval; v != nil {
alignFlushToInterval = !*v
}
skipIncompleteFlush := !opts.FlushOnShutdown
if v := cfg.FlushOnShutdown; v != nil {
skipIncompleteFlush = !*v
}
a.wg.Add(1)
go func() {
a.runFlusher(pushFunc, alignFlushToInterval, skipIncompleteFlush, ignoreFirstIntervals)
a.wg.Done()
}()
return a, nil
}
func newAggrState(output string, outputsSeen map[string]struct{}, stalenessInterval time.Duration) (aggrState, error) {
// check for duplicated output
if _, ok := outputsSeen[output]; ok {
return nil, fmt.Errorf("`outputs` list contains duplicate aggregation function: %s", output)
}
outputsSeen[output] = struct{}{}
if strings.HasPrefix(output, "quantiles(") {
if !strings.HasSuffix(output, ")") {
return nil, fmt.Errorf("missing closing brace for `quantiles()` output")
}
argsStr := output[len("quantiles(") : len(output)-1]
if len(argsStr) == 0 {
return nil, fmt.Errorf("`quantiles()` must contain at least one phi")
}
args := strings.Split(argsStr, ",")
phis := make([]float64, len(args))
for i, arg := range args {
arg = strings.TrimSpace(arg)
phi, err := strconv.ParseFloat(arg, 64)
if err != nil {
return nil, fmt.Errorf("cannot parse phi=%q for quantiles(%s): %w", arg, argsStr, err)
}
if phi < 0 || phi > 1 {
return nil, fmt.Errorf("phi inside quantiles(%s) must be in the range [0..1]; got %v", argsStr, phi)
}
phis[i] = phi
}
if _, ok := outputsSeen["quantiles"]; ok {
return nil, fmt.Errorf("`outputs` list contains duplicated `quantiles()` function, please combine multiple phi* like `quantiles(0.5, 0.9)`")
}
outputsSeen["quantiles"] = struct{}{}
return newQuantilesAggrState(phis), nil
}
switch output {
case "avg":
return newAvgAggrState(), nil
case "count_samples":
return newCountSamplesAggrState(), nil
case "count_series":
return newCountSeriesAggrState(), nil
case "histogram_bucket":
return newHistogramBucketAggrState(stalenessInterval), nil
case "increase":
return newTotalAggrState(stalenessInterval, true, true), nil
case "increase_prometheus":
return newTotalAggrState(stalenessInterval, true, false), nil
case "last":
return newLastAggrState(), nil
case "max":
return newMaxAggrState(), nil
case "min":
return newMinAggrState(), nil
case "rate_avg":
return newRateAggrState(stalenessInterval, true), nil
case "rate_sum":
return newRateAggrState(stalenessInterval, false), nil
case "stddev":
return newStddevAggrState(), nil
case "stdvar":
return newStdvarAggrState(), nil
case "sum_samples":
return newSumSamplesAggrState(), nil
case "total":
return newTotalAggrState(stalenessInterval, false, true), nil
case "total_prometheus":
return newTotalAggrState(stalenessInterval, false, false), nil
case "unique_samples":
return newUniqueSamplesAggrState(), nil
default:
return nil, fmt.Errorf("unsupported output=%q; supported values: %s; see https://docs.victoriametrics.com/stream-aggregation/", output, supportedOutputs)
}
}
func (a *aggregator) runFlusher(pushFunc PushFunc, alignFlushToInterval, skipIncompleteFlush bool, ignoreFirstIntervals int) {
alignedSleep := func(d time.Duration) {
if !alignFlushToInterval {
return
}
ct := time.Duration(time.Now().UnixNano())
dSleep := d - (ct % d)
timer := timerpool.Get(dSleep)
defer timer.Stop()
select {
case <-a.stopCh:
case <-timer.C:
}
}
var flushTimeMsec int64
tickerWait := func(t *time.Ticker) bool {
select {
case <-a.stopCh:
flushTimeMsec = time.Now().UnixMilli()
return false
case ct := <-t.C:
flushTimeMsec = ct.UnixMilli()
return true
}
}
if a.dedupInterval <= 0 {
alignedSleep(a.interval)
t := time.NewTicker(a.interval)
defer t.Stop()
if alignFlushToInterval && skipIncompleteFlush {
a.flush(nil, 0)
ignoreFirstIntervals--
}
for tickerWait(t) {
if ignoreFirstIntervals > 0 {
a.flush(nil, 0)
ignoreFirstIntervals--
} else {
a.flush(pushFunc, flushTimeMsec)
}
if alignFlushToInterval {
select {
case <-t.C:
default:
}
}
}
} else {
alignedSleep(a.dedupInterval)
t := time.NewTicker(a.dedupInterval)
defer t.Stop()
flushDeadline := time.Now().Add(a.interval)
isSkippedFirstFlush := false
for tickerWait(t) {
a.dedupFlush()
ct := time.Now()
if ct.After(flushDeadline) {
// It is time to flush the aggregated state
if alignFlushToInterval && skipIncompleteFlush && !isSkippedFirstFlush {
a.flush(nil, 0)
ignoreFirstIntervals--
isSkippedFirstFlush = true
} else if ignoreFirstIntervals > 0 {
a.flush(nil, 0)
ignoreFirstIntervals--
} else {
a.flush(pushFunc, flushTimeMsec)
}
for ct.After(flushDeadline) {
flushDeadline = flushDeadline.Add(a.interval)
}
}
if alignFlushToInterval {
select {
case <-t.C:
default:
}
}
}
}
if !skipIncompleteFlush && ignoreFirstIntervals <= 0 {
a.dedupFlush()
a.flush(pushFunc, flushTimeMsec)
}
}
func (a *aggregator) dedupFlush() {
if a.dedupInterval <= 0 {
// The de-duplication is disabled.
return
}
startTime := time.Now()
a.da.flush(a.pushSamples)
d := time.Since(startTime)
a.dedupFlushDuration.Update(d.Seconds())
if d > a.dedupInterval {
a.dedupFlushTimeouts.Inc()
logger.Warnf("deduplication couldn't be finished in the configured dedup_interval=%s; it took %.03fs; "+
"possible solutions: increase dedup_interval; use match filter matching smaller number of series; "+
"reduce samples' ingestion rate to stream aggregation", a.dedupInterval, d.Seconds())
}
}
// flush flushes aggregator state to pushFunc.
//
// If pushFunc is nil, then the aggregator state is just reset.
func (a *aggregator) flush(pushFunc PushFunc, flushTimeMsec int64) {
a.flushInternal(pushFunc, flushTimeMsec, true)
}
func (a *aggregator) flushInternal(pushFunc PushFunc, flushTimeMsec int64, resetState bool) {
startTime := time.Now()
// Update minTimestamp before flushing samples to the storage,
// since the flush durtion can be quite long.
// This should prevent from dropping samples with old timestamps when the flush takes long time.
a.minTimestamp.Store(flushTimeMsec - 5_000)
var wg sync.WaitGroup
for i := range a.aggrOutputs {
ao := &a.aggrOutputs[i]
flushConcurrencyCh <- struct{}{}
wg.Add(1)
go func(ao *aggrOutput) {
defer func() {
<-flushConcurrencyCh
wg.Done()
}()
ctx := getFlushCtx(a, ao, pushFunc, flushTimeMsec)
ao.as.flushState(ctx, resetState)
ctx.flushSeries()
putFlushCtx(ctx)
}(ao)
}
wg.Wait()
d := time.Since(startTime)
a.flushDuration.Update(d.Seconds())
if d > a.interval {
a.flushTimeouts.Inc()
logger.Warnf("stream aggregation couldn't be finished in the configured interval=%s; it took %.03fs; "+
"possible solutions: increase interval; use match filter matching smaller number of series; "+
"reduce samples' ingestion rate to stream aggregation", a.interval, d.Seconds())
}
}
var flushConcurrencyCh = make(chan struct{}, cgroup.AvailableCPUs())
// MustStop stops the aggregator.
//
// The aggregator stops pushing the aggregated metrics after this call.
func (a *aggregator) MustStop() {
close(a.stopCh)
a.wg.Wait()
}
// Push pushes tss to a.
func (a *aggregator) Push(tss []prompbmarshal.TimeSeries, matchIdxs []byte) {
ctx := getPushCtx()
defer putPushCtx(ctx)
samples := ctx.samples
buf := ctx.buf
labels := &ctx.labels
inputLabels := &ctx.inputLabels
outputLabels := &ctx.outputLabels
dropLabels := a.dropInputLabels
ignoreOldSamples := a.ignoreOldSamples
minTimestamp := a.minTimestamp.Load()
nowMsec := time.Now().UnixMilli()
var maxLagMsec int64
for idx, ts := range tss {
if !a.match.Match(ts.Labels) {
continue
}
matchIdxs[idx] = 1
if len(dropLabels) > 0 {
labels.Labels = dropSeriesLabels(labels.Labels[:0], ts.Labels, dropLabels)
} else {
labels.Labels = append(labels.Labels[:0], ts.Labels...)
}
labels.Labels = a.inputRelabeling.Apply(labels.Labels, 0)
if len(labels.Labels) == 0 {
// The metric has been deleted by the relabeling
continue
}
labels.Sort()
inputLabels.Reset()
outputLabels.Reset()
if !a.aggregateOnlyByTime {
inputLabels.Labels, outputLabels.Labels = getInputOutputLabels(inputLabels.Labels, outputLabels.Labels, labels.Labels, a.by, a.without)
} else {
outputLabels.Labels = append(outputLabels.Labels, labels.Labels...)
}
bufLen := len(buf)
buf = compressLabels(buf, inputLabels.Labels, outputLabels.Labels)
// key remains valid only by the end of this function and can't be reused after
// do not intern key because number of unique keys could be too high
key := bytesutil.ToUnsafeString(buf[bufLen:])
for _, s := range ts.Samples {
if math.IsNaN(s.Value) {
a.ignoredNaNSamples.Inc()
// Skip NaN values
continue
}
if ignoreOldSamples && s.Timestamp < minTimestamp {
a.ignoredOldSamples.Inc()
// Skip old samples outside the current aggregation interval
continue
}
lagMsec := nowMsec - s.Timestamp
if lagMsec > maxLagMsec {
maxLagMsec = lagMsec
}
samples = append(samples, pushSample{
key: key,
value: s.Value,
timestamp: s.Timestamp,
})
}
}
if len(samples) > 0 {
a.matchedSamples.Add(len(samples))
a.samplesLag.Update(float64(maxLagMsec) / 1_000)
}
ctx.samples = samples
ctx.buf = buf
if a.da != nil {
a.da.pushSamples(samples)
} else {
a.pushSamples(samples)
}
}
func compressLabels(dst []byte, inputLabels, outputLabels []prompbmarshal.Label) []byte {
bb := bbPool.Get()
bb.B = lc.Compress(bb.B, inputLabels)
dst = encoding.MarshalVarUint64(dst, uint64(len(bb.B)))
dst = append(dst, bb.B...)
bbPool.Put(bb)
dst = lc.Compress(dst, outputLabels)
return dst
}
func decompressLabels(dst []prompbmarshal.Label, key string) []prompbmarshal.Label {
return lc.Decompress(dst, bytesutil.ToUnsafeBytes(key))
}
func getOutputKey(key string) string {
src := bytesutil.ToUnsafeBytes(key)
inputKeyLen, nSize := encoding.UnmarshalVarUint64(src)
if nSize <= 0 {
logger.Panicf("BUG: cannot unmarshal inputKeyLen from uvarint")
}
src = src[nSize:]
outputKey := src[inputKeyLen:]
return bytesutil.ToUnsafeString(outputKey)
}
func getInputOutputKey(key string) (string, string) {
src := bytesutil.ToUnsafeBytes(key)
inputKeyLen, nSize := encoding.UnmarshalVarUint64(src)
if nSize <= 0 {
logger.Panicf("BUG: cannot unmarshal inputKeyLen from uvarint")
}
src = src[nSize:]
inputKey := src[:inputKeyLen]
outputKey := src[inputKeyLen:]
return bytesutil.ToUnsafeString(inputKey), bytesutil.ToUnsafeString(outputKey)
}
func (a *aggregator) pushSamples(samples []pushSample) {
for _, ao := range a.aggrOutputs {
ao.as.pushSamples(samples)
}
}
type pushCtx struct {
samples []pushSample
labels promutils.Labels
inputLabels promutils.Labels
outputLabels promutils.Labels
buf []byte
}
func (ctx *pushCtx) reset() {
clear(ctx.samples)
ctx.samples = ctx.samples[:0]
ctx.labels.Reset()
ctx.inputLabels.Reset()
ctx.outputLabels.Reset()
ctx.buf = ctx.buf[:0]
}
type pushSample struct {
// key identifies a sample that belongs to unique series
// key value can't be re-used
key string
value float64
timestamp int64
}
func getPushCtx() *pushCtx {
v := pushCtxPool.Get()
if v == nil {
return &pushCtx{}
}
return v.(*pushCtx)
}
func putPushCtx(ctx *pushCtx) {
ctx.reset()
pushCtxPool.Put(ctx)
}
var pushCtxPool sync.Pool
func getInputOutputLabels(dstInput, dstOutput, labels []prompbmarshal.Label, by, without []string) ([]prompbmarshal.Label, []prompbmarshal.Label) {
if len(without) > 0 {
for _, label := range labels {
if slices.Contains(without, label.Name) {
dstInput = append(dstInput, label)
} else {
dstOutput = append(dstOutput, label)
}
}
} else {
for _, label := range labels {
if !slices.Contains(by, label.Name) {
dstInput = append(dstInput, label)
} else {
dstOutput = append(dstOutput, label)
}
}
}
return dstInput, dstOutput
}
func getFlushCtx(a *aggregator, ao *aggrOutput, pushFunc PushFunc, flushTimestamp int64) *flushCtx {
v := flushCtxPool.Get()
if v == nil {
v = &flushCtx{}
}
ctx := v.(*flushCtx)
ctx.a = a
ctx.ao = ao
ctx.pushFunc = pushFunc
ctx.flushTimestamp = flushTimestamp
return ctx
}
func putFlushCtx(ctx *flushCtx) {
ctx.reset()
flushCtxPool.Put(ctx)
}
var flushCtxPool sync.Pool
type flushCtx struct {
a *aggregator
ao *aggrOutput
pushFunc PushFunc
flushTimestamp int64
tss []prompbmarshal.TimeSeries
labels []prompbmarshal.Label
samples []prompbmarshal.Sample
}
func (ctx *flushCtx) reset() {
ctx.a = nil
ctx.ao = nil
ctx.pushFunc = nil
ctx.flushTimestamp = 0
ctx.resetSeries()
}
func (ctx *flushCtx) resetSeries() {
clear(ctx.tss)
ctx.tss = ctx.tss[:0]
clear(ctx.labels)
ctx.labels = ctx.labels[:0]
ctx.samples = ctx.samples[:0]
}
func (ctx *flushCtx) flushSeries() {
defer ctx.resetSeries()
tss := ctx.tss
if len(tss) == 0 {
// nothing to flush
return
}
outputRelabeling := ctx.a.outputRelabeling
if outputRelabeling == nil {
// Fast path - push the output metrics.
if ctx.pushFunc != nil {
ctx.pushFunc(tss)
ctx.ao.outputSamples.Add(len(tss))
}
return
}
// Slow path - apply output relabeling and then push the output metrics.
auxLabels := promutils.GetLabels()
dstLabels := auxLabels.Labels[:0]
dst := tss[:0]
for _, ts := range tss {
dstLabelsLen := len(dstLabels)
dstLabels = append(dstLabels, ts.Labels...)
dstLabels = outputRelabeling.Apply(dstLabels, dstLabelsLen)
if len(dstLabels) == dstLabelsLen {
// The metric has been deleted by the relabeling
continue
}
ts.Labels = dstLabels[dstLabelsLen:]
dst = append(dst, ts)
}
if ctx.pushFunc != nil {
ctx.pushFunc(dst)
ctx.ao.outputSamples.Add(len(dst))
}
auxLabels.Labels = dstLabels
promutils.PutLabels(auxLabels)
}
func (ctx *flushCtx) appendSeries(key, suffix string, value float64) {
labelsLen := len(ctx.labels)
samplesLen := len(ctx.samples)
ctx.labels = decompressLabels(ctx.labels, key)
if !ctx.a.keepMetricNames {
ctx.labels = addMetricSuffix(ctx.labels, labelsLen, ctx.a.suffix, suffix)
}
ctx.samples = append(ctx.samples, prompbmarshal.Sample{
Timestamp: ctx.flushTimestamp,
Value: value,
})
ctx.tss = append(ctx.tss, prompbmarshal.TimeSeries{
Labels: ctx.labels[labelsLen:],
Samples: ctx.samples[samplesLen:],
})
// Limit the maximum length of ctx.tss in order to limit memory usage.
if len(ctx.tss) >= 10_000 {
ctx.flushSeries()
}
}
func (ctx *flushCtx) appendSeriesWithExtraLabel(key, suffix string, value float64, extraName, extraValue string) {
labelsLen := len(ctx.labels)
samplesLen := len(ctx.samples)
ctx.labels = decompressLabels(ctx.labels, key)
if !ctx.a.keepMetricNames {
ctx.labels = addMetricSuffix(ctx.labels, labelsLen, ctx.a.suffix, suffix)
}
ctx.labels = append(ctx.labels, prompbmarshal.Label{
Name: extraName,
Value: extraValue,
})
ctx.samples = append(ctx.samples, prompbmarshal.Sample{
Timestamp: ctx.flushTimestamp,
Value: value,
})
ctx.tss = append(ctx.tss, prompbmarshal.TimeSeries{
Labels: ctx.labels[labelsLen:],
Samples: ctx.samples[samplesLen:],
})
// Limit the maximum length of ctx.tss in order to limit memory usage.
if len(ctx.tss) >= 10_000 {
ctx.flushSeries()
}
}
func addMetricSuffix(labels []prompbmarshal.Label, offset int, firstSuffix, lastSuffix string) []prompbmarshal.Label {
src := labels[offset:]
for i := range src {
label := &src[i]
if label.Name != "__name__" {
continue
}
bb := bbPool.Get()
bb.B = append(bb.B, label.Value...)
bb.B = append(bb.B, firstSuffix...)
bb.B = append(bb.B, lastSuffix...)
label.Value = bytesutil.InternBytes(bb.B)
bbPool.Put(bb)
return labels
}
// The __name__ isn't found. Add it
bb := bbPool.Get()
bb.B = append(bb.B, firstSuffix...)
bb.B = append(bb.B, lastSuffix...)
labelValue := bytesutil.InternBytes(bb.B)
labels = append(labels, prompbmarshal.Label{
Name: "__name__",
Value: labelValue,
})
return labels
}
func addMissingUnderscoreName(labels []string) []string {
result := []string{"__name__"}
for _, s := range labels {
if s == "__name__" {
continue
}
result = append(result, s)
}
return result
}
func removeUnderscoreName(labels []string) []string {
var result []string
for _, s := range labels {
if s == "__name__" {
continue
}
result = append(result, s)
}
return result
}
func sortAndRemoveDuplicates(a []string) []string {
if len(a) == 0 {
return nil
}
a = append([]string{}, a...)
sort.Strings(a)
dst := a[:1]
for _, v := range a[1:] {
if v != dst[len(dst)-1] {
dst = append(dst, v)
}
}
return dst
}
var bbPool bytesutil.ByteBufferPool