VictoriaMetrics/vendor/github.com/klauspost/compress/flate/deflate.go
2023-07-07 00:04:32 -07:00

989 lines
27 KiB
Go

// Copyright 2009 The Go Authors. All rights reserved.
// Copyright (c) 2015 Klaus Post
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package flate
import (
"encoding/binary"
"fmt"
"io"
"math"
)
const (
NoCompression = 0
BestSpeed = 1
BestCompression = 9
DefaultCompression = -1
// HuffmanOnly disables Lempel-Ziv match searching and only performs Huffman
// entropy encoding. This mode is useful in compressing data that has
// already been compressed with an LZ style algorithm (e.g. Snappy or LZ4)
// that lacks an entropy encoder. Compression gains are achieved when
// certain bytes in the input stream occur more frequently than others.
//
// Note that HuffmanOnly produces a compressed output that is
// RFC 1951 compliant. That is, any valid DEFLATE decompressor will
// continue to be able to decompress this output.
HuffmanOnly = -2
ConstantCompression = HuffmanOnly // compatibility alias.
logWindowSize = 15
windowSize = 1 << logWindowSize
windowMask = windowSize - 1
logMaxOffsetSize = 15 // Standard DEFLATE
minMatchLength = 4 // The smallest match that the compressor looks for
maxMatchLength = 258 // The longest match for the compressor
minOffsetSize = 1 // The shortest offset that makes any sense
// The maximum number of tokens we will encode at the time.
// Smaller sizes usually creates less optimal blocks.
// Bigger can make context switching slow.
// We use this for levels 7-9, so we make it big.
maxFlateBlockTokens = 1 << 15
maxStoreBlockSize = 65535
hashBits = 17 // After 17 performance degrades
hashSize = 1 << hashBits
hashMask = (1 << hashBits) - 1
hashShift = (hashBits + minMatchLength - 1) / minMatchLength
maxHashOffset = 1 << 28
skipNever = math.MaxInt32
debugDeflate = false
)
type compressionLevel struct {
good, lazy, nice, chain, fastSkipHashing, level int
}
// Compression levels have been rebalanced from zlib deflate defaults
// to give a bigger spread in speed and compression.
// See https://blog.klauspost.com/rebalancing-deflate-compression-levels/
var levels = []compressionLevel{
{}, // 0
// Level 1-6 uses specialized algorithm - values not used
{0, 0, 0, 0, 0, 1},
{0, 0, 0, 0, 0, 2},
{0, 0, 0, 0, 0, 3},
{0, 0, 0, 0, 0, 4},
{0, 0, 0, 0, 0, 5},
{0, 0, 0, 0, 0, 6},
// Levels 7-9 use increasingly more lazy matching
// and increasingly stringent conditions for "good enough".
{8, 12, 16, 24, skipNever, 7},
{16, 30, 40, 64, skipNever, 8},
{32, 258, 258, 1024, skipNever, 9},
}
// advancedState contains state for the advanced levels, with bigger hash tables, etc.
type advancedState struct {
// deflate state
length int
offset int
maxInsertIndex int
chainHead int
hashOffset int
ii uint16 // position of last match, intended to overflow to reset.
// input window: unprocessed data is window[index:windowEnd]
index int
hashMatch [maxMatchLength + minMatchLength]uint32
// Input hash chains
// hashHead[hashValue] contains the largest inputIndex with the specified hash value
// If hashHead[hashValue] is within the current window, then
// hashPrev[hashHead[hashValue] & windowMask] contains the previous index
// with the same hash value.
hashHead [hashSize]uint32
hashPrev [windowSize]uint32
}
type compressor struct {
compressionLevel
h *huffmanEncoder
w *huffmanBitWriter
// compression algorithm
fill func(*compressor, []byte) int // copy data to window
step func(*compressor) // process window
window []byte
windowEnd int
blockStart int // window index where current tokens start
err error
// queued output tokens
tokens tokens
fast fastEnc
state *advancedState
sync bool // requesting flush
byteAvailable bool // if true, still need to process window[index-1].
}
func (d *compressor) fillDeflate(b []byte) int {
s := d.state
if s.index >= 2*windowSize-(minMatchLength+maxMatchLength) {
// shift the window by windowSize
//copy(d.window[:], d.window[windowSize:2*windowSize])
*(*[windowSize]byte)(d.window) = *(*[windowSize]byte)(d.window[windowSize:])
s.index -= windowSize
d.windowEnd -= windowSize
if d.blockStart >= windowSize {
d.blockStart -= windowSize
} else {
d.blockStart = math.MaxInt32
}
s.hashOffset += windowSize
if s.hashOffset > maxHashOffset {
delta := s.hashOffset - 1
s.hashOffset -= delta
s.chainHead -= delta
// Iterate over slices instead of arrays to avoid copying
// the entire table onto the stack (Issue #18625).
for i, v := range s.hashPrev[:] {
if int(v) > delta {
s.hashPrev[i] = uint32(int(v) - delta)
} else {
s.hashPrev[i] = 0
}
}
for i, v := range s.hashHead[:] {
if int(v) > delta {
s.hashHead[i] = uint32(int(v) - delta)
} else {
s.hashHead[i] = 0
}
}
}
}
n := copy(d.window[d.windowEnd:], b)
d.windowEnd += n
return n
}
func (d *compressor) writeBlock(tok *tokens, index int, eof bool) error {
if index > 0 || eof {
var window []byte
if d.blockStart <= index {
window = d.window[d.blockStart:index]
}
d.blockStart = index
//d.w.writeBlock(tok, eof, window)
d.w.writeBlockDynamic(tok, eof, window, d.sync)
return d.w.err
}
return nil
}
// writeBlockSkip writes the current block and uses the number of tokens
// to determine if the block should be stored on no matches, or
// only huffman encoded.
func (d *compressor) writeBlockSkip(tok *tokens, index int, eof bool) error {
if index > 0 || eof {
if d.blockStart <= index {
window := d.window[d.blockStart:index]
// If we removed less than a 64th of all literals
// we huffman compress the block.
if int(tok.n) > len(window)-int(tok.n>>6) {
d.w.writeBlockHuff(eof, window, d.sync)
} else {
// Write a dynamic huffman block.
d.w.writeBlockDynamic(tok, eof, window, d.sync)
}
} else {
d.w.writeBlock(tok, eof, nil)
}
d.blockStart = index
return d.w.err
}
return nil
}
// fillWindow will fill the current window with the supplied
// dictionary and calculate all hashes.
// This is much faster than doing a full encode.
// Should only be used after a start/reset.
func (d *compressor) fillWindow(b []byte) {
// Do not fill window if we are in store-only or huffman mode.
if d.level <= 0 {
return
}
if d.fast != nil {
// encode the last data, but discard the result
if len(b) > maxMatchOffset {
b = b[len(b)-maxMatchOffset:]
}
d.fast.Encode(&d.tokens, b)
d.tokens.Reset()
return
}
s := d.state
// If we are given too much, cut it.
if len(b) > windowSize {
b = b[len(b)-windowSize:]
}
// Add all to window.
n := copy(d.window[d.windowEnd:], b)
// Calculate 256 hashes at the time (more L1 cache hits)
loops := (n + 256 - minMatchLength) / 256
for j := 0; j < loops; j++ {
startindex := j * 256
end := startindex + 256 + minMatchLength - 1
if end > n {
end = n
}
tocheck := d.window[startindex:end]
dstSize := len(tocheck) - minMatchLength + 1
if dstSize <= 0 {
continue
}
dst := s.hashMatch[:dstSize]
bulkHash4(tocheck, dst)
var newH uint32
for i, val := range dst {
di := i + startindex
newH = val & hashMask
// Get previous value with the same hash.
// Our chain should point to the previous value.
s.hashPrev[di&windowMask] = s.hashHead[newH]
// Set the head of the hash chain to us.
s.hashHead[newH] = uint32(di + s.hashOffset)
}
}
// Update window information.
d.windowEnd += n
s.index = n
}
// Try to find a match starting at index whose length is greater than prevSize.
// We only look at chainCount possibilities before giving up.
// pos = s.index, prevHead = s.chainHead-s.hashOffset, prevLength=minMatchLength-1, lookahead
func (d *compressor) findMatch(pos int, prevHead int, lookahead int) (length, offset int, ok bool) {
minMatchLook := maxMatchLength
if lookahead < minMatchLook {
minMatchLook = lookahead
}
win := d.window[0 : pos+minMatchLook]
// We quit when we get a match that's at least nice long
nice := len(win) - pos
if d.nice < nice {
nice = d.nice
}
// If we've got a match that's good enough, only look in 1/4 the chain.
tries := d.chain
length = minMatchLength - 1
wEnd := win[pos+length]
wPos := win[pos:]
minIndex := pos - windowSize
if minIndex < 0 {
minIndex = 0
}
offset = 0
if d.chain < 100 {
for i := prevHead; tries > 0; tries-- {
if wEnd == win[i+length] {
n := matchLen(win[i:i+minMatchLook], wPos)
if n > length {
length = n
offset = pos - i
ok = true
if n >= nice {
// The match is good enough that we don't try to find a better one.
break
}
wEnd = win[pos+n]
}
}
if i <= minIndex {
// hashPrev[i & windowMask] has already been overwritten, so stop now.
break
}
i = int(d.state.hashPrev[i&windowMask]) - d.state.hashOffset
if i < minIndex {
break
}
}
return
}
// Minimum gain to accept a match.
cGain := 4
// Some like it higher (CSV), some like it lower (JSON)
const baseCost = 3
// Base is 4 bytes at with an additional cost.
// Matches must be better than this.
for i := prevHead; tries > 0; tries-- {
if wEnd == win[i+length] {
n := matchLen(win[i:i+minMatchLook], wPos)
if n > length {
// Calculate gain. Estimate
newGain := d.h.bitLengthRaw(wPos[:n]) - int(offsetExtraBits[offsetCode(uint32(pos-i))]) - baseCost - int(lengthExtraBits[lengthCodes[(n-3)&255]])
//fmt.Println("gain:", newGain, "prev:", cGain, "raw:", d.h.bitLengthRaw(wPos[:n]), "this-len:", n, "prev-len:", length)
if newGain > cGain {
length = n
offset = pos - i
cGain = newGain
ok = true
if n >= nice {
// The match is good enough that we don't try to find a better one.
break
}
wEnd = win[pos+n]
}
}
}
if i <= minIndex {
// hashPrev[i & windowMask] has already been overwritten, so stop now.
break
}
i = int(d.state.hashPrev[i&windowMask]) - d.state.hashOffset
if i < minIndex {
break
}
}
return
}
func (d *compressor) writeStoredBlock(buf []byte) error {
if d.w.writeStoredHeader(len(buf), false); d.w.err != nil {
return d.w.err
}
d.w.writeBytes(buf)
return d.w.err
}
// hash4 returns a hash representation of the first 4 bytes
// of the supplied slice.
// The caller must ensure that len(b) >= 4.
func hash4(b []byte) uint32 {
return hash4u(binary.LittleEndian.Uint32(b), hashBits)
}
// hash4 returns the hash of u to fit in a hash table with h bits.
// Preferably h should be a constant and should always be <32.
func hash4u(u uint32, h uint8) uint32 {
return (u * prime4bytes) >> (32 - h)
}
// bulkHash4 will compute hashes using the same
// algorithm as hash4
func bulkHash4(b []byte, dst []uint32) {
if len(b) < 4 {
return
}
hb := binary.LittleEndian.Uint32(b)
dst[0] = hash4u(hb, hashBits)
end := len(b) - 4 + 1
for i := 1; i < end; i++ {
hb = (hb >> 8) | uint32(b[i+3])<<24
dst[i] = hash4u(hb, hashBits)
}
}
func (d *compressor) initDeflate() {
d.window = make([]byte, 2*windowSize)
d.byteAvailable = false
d.err = nil
if d.state == nil {
return
}
s := d.state
s.index = 0
s.hashOffset = 1
s.length = minMatchLength - 1
s.offset = 0
s.chainHead = -1
}
// deflateLazy is the same as deflate, but with d.fastSkipHashing == skipNever,
// meaning it always has lazy matching on.
func (d *compressor) deflateLazy() {
s := d.state
// Sanity enables additional runtime tests.
// It's intended to be used during development
// to supplement the currently ad-hoc unit tests.
const sanity = debugDeflate
if d.windowEnd-s.index < minMatchLength+maxMatchLength && !d.sync {
return
}
if d.windowEnd != s.index && d.chain > 100 {
// Get literal huffman coder.
if d.h == nil {
d.h = newHuffmanEncoder(maxFlateBlockTokens)
}
var tmp [256]uint16
for _, v := range d.window[s.index:d.windowEnd] {
tmp[v]++
}
d.h.generate(tmp[:], 15)
}
s.maxInsertIndex = d.windowEnd - (minMatchLength - 1)
for {
if sanity && s.index > d.windowEnd {
panic("index > windowEnd")
}
lookahead := d.windowEnd - s.index
if lookahead < minMatchLength+maxMatchLength {
if !d.sync {
return
}
if sanity && s.index > d.windowEnd {
panic("index > windowEnd")
}
if lookahead == 0 {
// Flush current output block if any.
if d.byteAvailable {
// There is still one pending token that needs to be flushed
d.tokens.AddLiteral(d.window[s.index-1])
d.byteAvailable = false
}
if d.tokens.n > 0 {
if d.err = d.writeBlock(&d.tokens, s.index, false); d.err != nil {
return
}
d.tokens.Reset()
}
return
}
}
if s.index < s.maxInsertIndex {
// Update the hash
hash := hash4(d.window[s.index:])
ch := s.hashHead[hash]
s.chainHead = int(ch)
s.hashPrev[s.index&windowMask] = ch
s.hashHead[hash] = uint32(s.index + s.hashOffset)
}
prevLength := s.length
prevOffset := s.offset
s.length = minMatchLength - 1
s.offset = 0
minIndex := s.index - windowSize
if minIndex < 0 {
minIndex = 0
}
if s.chainHead-s.hashOffset >= minIndex && lookahead > prevLength && prevLength < d.lazy {
if newLength, newOffset, ok := d.findMatch(s.index, s.chainHead-s.hashOffset, lookahead); ok {
s.length = newLength
s.offset = newOffset
}
}
if prevLength >= minMatchLength && s.length <= prevLength {
// No better match, but check for better match at end...
//
// Skip forward a number of bytes.
// Offset of 2 seems to yield best results. 3 is sometimes better.
const checkOff = 2
// Check all, except full length
if prevLength < maxMatchLength-checkOff {
prevIndex := s.index - 1
if prevIndex+prevLength < s.maxInsertIndex {
end := lookahead
if lookahead > maxMatchLength+checkOff {
end = maxMatchLength + checkOff
}
end += prevIndex
// Hash at match end.
h := hash4(d.window[prevIndex+prevLength:])
ch2 := int(s.hashHead[h]) - s.hashOffset - prevLength
if prevIndex-ch2 != prevOffset && ch2 > minIndex+checkOff {
length := matchLen(d.window[prevIndex+checkOff:end], d.window[ch2+checkOff:])
// It seems like a pure length metric is best.
if length > prevLength {
prevLength = length
prevOffset = prevIndex - ch2
// Extend back...
for i := checkOff - 1; i >= 0; i-- {
if prevLength >= maxMatchLength || d.window[prevIndex+i] != d.window[ch2+i] {
// Emit tokens we "owe"
for j := 0; j <= i; j++ {
d.tokens.AddLiteral(d.window[prevIndex+j])
if d.tokens.n == maxFlateBlockTokens {
// The block includes the current character
if d.err = d.writeBlock(&d.tokens, s.index, false); d.err != nil {
return
}
d.tokens.Reset()
}
s.index++
if s.index < s.maxInsertIndex {
h := hash4(d.window[s.index:])
ch := s.hashHead[h]
s.chainHead = int(ch)
s.hashPrev[s.index&windowMask] = ch
s.hashHead[h] = uint32(s.index + s.hashOffset)
}
}
break
} else {
prevLength++
}
}
} else if false {
// Check one further ahead.
// Only rarely better, disabled for now.
prevIndex++
h := hash4(d.window[prevIndex+prevLength:])
ch2 := int(s.hashHead[h]) - s.hashOffset - prevLength
if prevIndex-ch2 != prevOffset && ch2 > minIndex+checkOff {
length := matchLen(d.window[prevIndex+checkOff:end], d.window[ch2+checkOff:])
// It seems like a pure length metric is best.
if length > prevLength+checkOff {
prevLength = length
prevOffset = prevIndex - ch2
prevIndex--
// Extend back...
for i := checkOff; i >= 0; i-- {
if prevLength >= maxMatchLength || d.window[prevIndex+i] != d.window[ch2+i-1] {
// Emit tokens we "owe"
for j := 0; j <= i; j++ {
d.tokens.AddLiteral(d.window[prevIndex+j])
if d.tokens.n == maxFlateBlockTokens {
// The block includes the current character
if d.err = d.writeBlock(&d.tokens, s.index, false); d.err != nil {
return
}
d.tokens.Reset()
}
s.index++
if s.index < s.maxInsertIndex {
h := hash4(d.window[s.index:])
ch := s.hashHead[h]
s.chainHead = int(ch)
s.hashPrev[s.index&windowMask] = ch
s.hashHead[h] = uint32(s.index + s.hashOffset)
}
}
break
} else {
prevLength++
}
}
}
}
}
}
}
}
// There was a match at the previous step, and the current match is
// not better. Output the previous match.
d.tokens.AddMatch(uint32(prevLength-3), uint32(prevOffset-minOffsetSize))
// Insert in the hash table all strings up to the end of the match.
// index and index-1 are already inserted. If there is not enough
// lookahead, the last two strings are not inserted into the hash
// table.
newIndex := s.index + prevLength - 1
// Calculate missing hashes
end := newIndex
if end > s.maxInsertIndex {
end = s.maxInsertIndex
}
end += minMatchLength - 1
startindex := s.index + 1
if startindex > s.maxInsertIndex {
startindex = s.maxInsertIndex
}
tocheck := d.window[startindex:end]
dstSize := len(tocheck) - minMatchLength + 1
if dstSize > 0 {
dst := s.hashMatch[:dstSize]
bulkHash4(tocheck, dst)
var newH uint32
for i, val := range dst {
di := i + startindex
newH = val & hashMask
// Get previous value with the same hash.
// Our chain should point to the previous value.
s.hashPrev[di&windowMask] = s.hashHead[newH]
// Set the head of the hash chain to us.
s.hashHead[newH] = uint32(di + s.hashOffset)
}
}
s.index = newIndex
d.byteAvailable = false
s.length = minMatchLength - 1
if d.tokens.n == maxFlateBlockTokens {
// The block includes the current character
if d.err = d.writeBlock(&d.tokens, s.index, false); d.err != nil {
return
}
d.tokens.Reset()
}
s.ii = 0
} else {
// Reset, if we got a match this run.
if s.length >= minMatchLength {
s.ii = 0
}
// We have a byte waiting. Emit it.
if d.byteAvailable {
s.ii++
d.tokens.AddLiteral(d.window[s.index-1])
if d.tokens.n == maxFlateBlockTokens {
if d.err = d.writeBlock(&d.tokens, s.index, false); d.err != nil {
return
}
d.tokens.Reset()
}
s.index++
// If we have a long run of no matches, skip additional bytes
// Resets when s.ii overflows after 64KB.
if n := int(s.ii) - d.chain; n > 0 {
n = 1 + int(n>>6)
for j := 0; j < n; j++ {
if s.index >= d.windowEnd-1 {
break
}
d.tokens.AddLiteral(d.window[s.index-1])
if d.tokens.n == maxFlateBlockTokens {
if d.err = d.writeBlock(&d.tokens, s.index, false); d.err != nil {
return
}
d.tokens.Reset()
}
// Index...
if s.index < s.maxInsertIndex {
h := hash4(d.window[s.index:])
ch := s.hashHead[h]
s.chainHead = int(ch)
s.hashPrev[s.index&windowMask] = ch
s.hashHead[h] = uint32(s.index + s.hashOffset)
}
s.index++
}
// Flush last byte
d.tokens.AddLiteral(d.window[s.index-1])
d.byteAvailable = false
// s.length = minMatchLength - 1 // not needed, since s.ii is reset above, so it should never be > minMatchLength
if d.tokens.n == maxFlateBlockTokens {
if d.err = d.writeBlock(&d.tokens, s.index, false); d.err != nil {
return
}
d.tokens.Reset()
}
}
} else {
s.index++
d.byteAvailable = true
}
}
}
}
func (d *compressor) store() {
if d.windowEnd > 0 && (d.windowEnd == maxStoreBlockSize || d.sync) {
d.err = d.writeStoredBlock(d.window[:d.windowEnd])
d.windowEnd = 0
}
}
// fillWindow will fill the buffer with data for huffman-only compression.
// The number of bytes copied is returned.
func (d *compressor) fillBlock(b []byte) int {
n := copy(d.window[d.windowEnd:], b)
d.windowEnd += n
return n
}
// storeHuff will compress and store the currently added data,
// if enough has been accumulated or we at the end of the stream.
// Any error that occurred will be in d.err
func (d *compressor) storeHuff() {
if d.windowEnd < len(d.window) && !d.sync || d.windowEnd == 0 {
return
}
d.w.writeBlockHuff(false, d.window[:d.windowEnd], d.sync)
d.err = d.w.err
d.windowEnd = 0
}
// storeFast will compress and store the currently added data,
// if enough has been accumulated or we at the end of the stream.
// Any error that occurred will be in d.err
func (d *compressor) storeFast() {
// We only compress if we have maxStoreBlockSize.
if d.windowEnd < len(d.window) {
if !d.sync {
return
}
// Handle extremely small sizes.
if d.windowEnd < 128 {
if d.windowEnd == 0 {
return
}
if d.windowEnd <= 32 {
d.err = d.writeStoredBlock(d.window[:d.windowEnd])
} else {
d.w.writeBlockHuff(false, d.window[:d.windowEnd], true)
d.err = d.w.err
}
d.tokens.Reset()
d.windowEnd = 0
d.fast.Reset()
return
}
}
d.fast.Encode(&d.tokens, d.window[:d.windowEnd])
// If we made zero matches, store the block as is.
if d.tokens.n == 0 {
d.err = d.writeStoredBlock(d.window[:d.windowEnd])
// If we removed less than 1/16th, huffman compress the block.
} else if int(d.tokens.n) > d.windowEnd-(d.windowEnd>>4) {
d.w.writeBlockHuff(false, d.window[:d.windowEnd], d.sync)
d.err = d.w.err
} else {
d.w.writeBlockDynamic(&d.tokens, false, d.window[:d.windowEnd], d.sync)
d.err = d.w.err
}
d.tokens.Reset()
d.windowEnd = 0
}
// write will add input byte to the stream.
// Unless an error occurs all bytes will be consumed.
func (d *compressor) write(b []byte) (n int, err error) {
if d.err != nil {
return 0, d.err
}
n = len(b)
for len(b) > 0 {
if d.windowEnd == len(d.window) || d.sync {
d.step(d)
}
b = b[d.fill(d, b):]
if d.err != nil {
return 0, d.err
}
}
return n, d.err
}
func (d *compressor) syncFlush() error {
d.sync = true
if d.err != nil {
return d.err
}
d.step(d)
if d.err == nil {
d.w.writeStoredHeader(0, false)
d.w.flush()
d.err = d.w.err
}
d.sync = false
return d.err
}
func (d *compressor) init(w io.Writer, level int) (err error) {
d.w = newHuffmanBitWriter(w)
switch {
case level == NoCompression:
d.window = make([]byte, maxStoreBlockSize)
d.fill = (*compressor).fillBlock
d.step = (*compressor).store
case level == ConstantCompression:
d.w.logNewTablePenalty = 10
d.window = make([]byte, 32<<10)
d.fill = (*compressor).fillBlock
d.step = (*compressor).storeHuff
case level == DefaultCompression:
level = 5
fallthrough
case level >= 1 && level <= 6:
d.w.logNewTablePenalty = 7
d.fast = newFastEnc(level)
d.window = make([]byte, maxStoreBlockSize)
d.fill = (*compressor).fillBlock
d.step = (*compressor).storeFast
case 7 <= level && level <= 9:
d.w.logNewTablePenalty = 8
d.state = &advancedState{}
d.compressionLevel = levels[level]
d.initDeflate()
d.fill = (*compressor).fillDeflate
d.step = (*compressor).deflateLazy
default:
return fmt.Errorf("flate: invalid compression level %d: want value in range [-2, 9]", level)
}
d.level = level
return nil
}
// reset the state of the compressor.
func (d *compressor) reset(w io.Writer) {
d.w.reset(w)
d.sync = false
d.err = nil
// We only need to reset a few things for Snappy.
if d.fast != nil {
d.fast.Reset()
d.windowEnd = 0
d.tokens.Reset()
return
}
switch d.compressionLevel.chain {
case 0:
// level was NoCompression or ConstantCompresssion.
d.windowEnd = 0
default:
s := d.state
s.chainHead = -1
for i := range s.hashHead {
s.hashHead[i] = 0
}
for i := range s.hashPrev {
s.hashPrev[i] = 0
}
s.hashOffset = 1
s.index, d.windowEnd = 0, 0
d.blockStart, d.byteAvailable = 0, false
d.tokens.Reset()
s.length = minMatchLength - 1
s.offset = 0
s.ii = 0
s.maxInsertIndex = 0
}
}
func (d *compressor) close() error {
if d.err != nil {
return d.err
}
d.sync = true
d.step(d)
if d.err != nil {
return d.err
}
if d.w.writeStoredHeader(0, true); d.w.err != nil {
return d.w.err
}
d.w.flush()
d.w.reset(nil)
return d.w.err
}
// NewWriter returns a new Writer compressing data at the given level.
// Following zlib, levels range from 1 (BestSpeed) to 9 (BestCompression);
// higher levels typically run slower but compress more.
// Level 0 (NoCompression) does not attempt any compression; it only adds the
// necessary DEFLATE framing.
// Level -1 (DefaultCompression) uses the default compression level.
// Level -2 (ConstantCompression) will use Huffman compression only, giving
// a very fast compression for all types of input, but sacrificing considerable
// compression efficiency.
//
// If level is in the range [-2, 9] then the error returned will be nil.
// Otherwise the error returned will be non-nil.
func NewWriter(w io.Writer, level int) (*Writer, error) {
var dw Writer
if err := dw.d.init(w, level); err != nil {
return nil, err
}
return &dw, nil
}
// NewWriterDict is like NewWriter but initializes the new
// Writer with a preset dictionary. The returned Writer behaves
// as if the dictionary had been written to it without producing
// any compressed output. The compressed data written to w
// can only be decompressed by a Reader initialized with the
// same dictionary.
func NewWriterDict(w io.Writer, level int, dict []byte) (*Writer, error) {
zw, err := NewWriter(w, level)
if err != nil {
return nil, err
}
zw.d.fillWindow(dict)
zw.dict = append(zw.dict, dict...) // duplicate dictionary for Reset method.
return zw, err
}
// A Writer takes data written to it and writes the compressed
// form of that data to an underlying writer (see NewWriter).
type Writer struct {
d compressor
dict []byte
}
// Write writes data to w, which will eventually write the
// compressed form of data to its underlying writer.
func (w *Writer) Write(data []byte) (n int, err error) {
return w.d.write(data)
}
// Flush flushes any pending data to the underlying writer.
// It is useful mainly in compressed network protocols, to ensure that
// a remote reader has enough data to reconstruct a packet.
// Flush does not return until the data has been written.
// Calling Flush when there is no pending data still causes the Writer
// to emit a sync marker of at least 4 bytes.
// If the underlying writer returns an error, Flush returns that error.
//
// In the terminology of the zlib library, Flush is equivalent to Z_SYNC_FLUSH.
func (w *Writer) Flush() error {
// For more about flushing:
// http://www.bolet.org/~pornin/deflate-flush.html
return w.d.syncFlush()
}
// Close flushes and closes the writer.
func (w *Writer) Close() error {
return w.d.close()
}
// Reset discards the writer's state and makes it equivalent to
// the result of NewWriter or NewWriterDict called with dst
// and w's level and dictionary.
func (w *Writer) Reset(dst io.Writer) {
if len(w.dict) > 0 {
// w was created with NewWriterDict
w.d.reset(dst)
if dst != nil {
w.d.fillWindow(w.dict)
}
} else {
// w was created with NewWriter
w.d.reset(dst)
}
}
// ResetDict discards the writer's state and makes it equivalent to
// the result of NewWriter or NewWriterDict called with dst
// and w's level, but sets a specific dictionary.
func (w *Writer) ResetDict(dst io.Writer, dict []byte) {
w.dict = dict
w.d.reset(dst)
w.d.fillWindow(w.dict)
}