VictoriaMetrics/app/vmselect/netstorage/netstorage.go

1371 lines
41 KiB
Go

package netstorage
import (
"container/heap"
"errors"
"flag"
"fmt"
"sort"
"sync"
"sync/atomic"
"time"
"unsafe"
"github.com/VictoriaMetrics/VictoriaMetrics/app/vmselect/searchutils"
"github.com/VictoriaMetrics/VictoriaMetrics/app/vmstorage"
"github.com/VictoriaMetrics/VictoriaMetrics/lib/bytesutil"
"github.com/VictoriaMetrics/VictoriaMetrics/lib/cgroup"
"github.com/VictoriaMetrics/VictoriaMetrics/lib/fasttime"
"github.com/VictoriaMetrics/VictoriaMetrics/lib/querytracer"
"github.com/VictoriaMetrics/VictoriaMetrics/lib/storage"
"github.com/VictoriaMetrics/metrics"
"github.com/VictoriaMetrics/metricsql"
)
var (
maxTagKeysPerSearch = flag.Int("search.maxTagKeys", 100e3, "The maximum number of tag keys returned from /api/v1/labels . "+
"See also -search.maxLabelsAPISeries and -search.maxLabelsAPIDuration")
maxTagValuesPerSearch = flag.Int("search.maxTagValues", 100e3, "The maximum number of tag values returned from /api/v1/label/<label_name>/values . "+
"See also -search.maxLabelsAPISeries and -search.maxLabelsAPIDuration")
maxSamplesPerSeries = flag.Int("search.maxSamplesPerSeries", 30e6, "The maximum number of raw samples a single query can scan per each time series. This option allows limiting memory usage")
maxSamplesPerQuery = flag.Int("search.maxSamplesPerQuery", 1e9, "The maximum number of raw samples a single query can process across all time series. "+
"This protects from heavy queries, which select unexpectedly high number of raw samples. See also -search.maxSamplesPerSeries")
maxWorkersPerQuery = flag.Int("search.maxWorkersPerQuery", defaultMaxWorkersPerQuery, "The maximum number of CPU cores a single query can use. "+
"The default value should work good for most cases. "+
"The flag can be set to lower values for improving performance of big number of concurrently executed queries. "+
"The flag can be set to bigger values for improving performance of heavy queries, which scan big number of time series (>10K) and/or big number of samples (>100M). "+
"There is no sense in setting this flag to values bigger than the number of CPU cores available on the system")
)
// Result is a single timeseries result.
//
// ProcessSearchQuery returns Result slice.
type Result struct {
// The name of the metric.
MetricName storage.MetricName
// Values are sorted by Timestamps.
Values []float64
Timestamps []int64
}
func (r *Result) reset() {
r.MetricName.Reset()
r.Values = r.Values[:0]
r.Timestamps = r.Timestamps[:0]
}
// Results holds results returned from ProcessSearchQuery.
type Results struct {
tr storage.TimeRange
deadline searchutils.Deadline
packedTimeseries []packedTimeseries
sr *storage.Search
tbf *tmpBlocksFile
}
// Len returns the number of results in rss.
func (rss *Results) Len() int {
return len(rss.packedTimeseries)
}
// Cancel cancels rss work.
func (rss *Results) Cancel() {
rss.mustClose()
}
func (rss *Results) mustClose() {
putStorageSearch(rss.sr)
rss.sr = nil
putTmpBlocksFile(rss.tbf)
rss.tbf = nil
}
type timeseriesWork struct {
mustStop *atomic.Bool
rss *Results
pts *packedTimeseries
f func(rs *Result, workerID uint) error
err error
rowsProcessed int
}
func (tsw *timeseriesWork) do(r *Result, workerID uint) error {
if tsw.mustStop.Load() {
return nil
}
rss := tsw.rss
if rss.deadline.Exceeded() {
tsw.mustStop.Store(true)
return fmt.Errorf("timeout exceeded during query execution: %s", rss.deadline.String())
}
if err := tsw.pts.Unpack(r, rss.tbf, rss.tr); err != nil {
tsw.mustStop.Store(true)
return fmt.Errorf("error during time series unpacking: %w", err)
}
tsw.rowsProcessed = len(r.Timestamps)
if len(r.Timestamps) > 0 {
if err := tsw.f(r, workerID); err != nil {
tsw.mustStop.Store(true)
return err
}
}
return nil
}
func timeseriesWorker(qt *querytracer.Tracer, workChs []chan *timeseriesWork, workerID uint) {
tmpResult := getTmpResult()
// Perform own work at first.
rowsProcessed := 0
seriesProcessed := 0
ch := workChs[workerID]
for tsw := range ch {
tsw.err = tsw.do(&tmpResult.rs, workerID)
rowsProcessed += tsw.rowsProcessed
seriesProcessed++
}
qt.Printf("own work processed: series=%d, samples=%d", seriesProcessed, rowsProcessed)
// Then help others with the remaining work.
rowsProcessed = 0
seriesProcessed = 0
for i := uint(1); i < uint(len(workChs)); i++ {
idx := (i + workerID) % uint(len(workChs))
ch := workChs[idx]
for len(ch) > 0 {
// Do not call runtime.Gosched() here in order to give a chance
// the real owner of the work to complete it, since it consumes additional CPU
// and slows down the code on systems with big number of CPU cores.
// See https://github.com/VictoriaMetrics/VictoriaMetrics/issues/3966#issuecomment-1483208419
// It is expected that every channel in the workChs is already closed,
// so the next line should return immediately.
tsw, ok := <-ch
if !ok {
break
}
tsw.err = tsw.do(&tmpResult.rs, workerID)
rowsProcessed += tsw.rowsProcessed
seriesProcessed++
}
}
qt.Printf("others work processed: series=%d, samples=%d", seriesProcessed, rowsProcessed)
putTmpResult(tmpResult)
}
func getTmpResult() *result {
v := resultPool.Get()
if v == nil {
v = &result{}
}
return v.(*result)
}
func putTmpResult(r *result) {
currentTime := fasttime.UnixTimestamp()
if cap(r.rs.Values) > 1024*1024 && 4*len(r.rs.Values) < cap(r.rs.Values) && currentTime-r.lastResetTime > 10 {
// Reset r.rs in order to preserve memory usage after processing big time series with millions of rows.
r.rs = Result{}
r.lastResetTime = currentTime
}
resultPool.Put(r)
}
type result struct {
rs Result
lastResetTime uint64
}
var resultPool sync.Pool
// MaxWorkers returns the maximum number of concurrent goroutines, which can be used by RunParallel()
func MaxWorkers() int {
n := *maxWorkersPerQuery
if n <= 0 {
return defaultMaxWorkersPerQuery
}
if n > gomaxprocs {
// There is no sense in running more than gomaxprocs CPU-bound concurrent workers,
// since this may worsen the query performance.
n = gomaxprocs
}
return n
}
var gomaxprocs = cgroup.AvailableCPUs()
var defaultMaxWorkersPerQuery = func() int {
// maxWorkersLimit is the maximum number of CPU cores, which can be used in parallel
// for processing an average query, without significant impact on inter-CPU communications.
const maxWorkersLimit = 32
n := gomaxprocs
if n > maxWorkersLimit {
n = maxWorkersLimit
}
return n
}()
// RunParallel runs f in parallel for all the results from rss.
//
// f shouldn't hold references to rs after returning.
// workerID is the id of the worker goroutine that calls f. The workerID is in the range [0..MaxWorkers()-1].
// Data processing is immediately stopped if f returns non-nil error.
//
// rss becomes unusable after the call to RunParallel.
func (rss *Results) RunParallel(qt *querytracer.Tracer, f func(rs *Result, workerID uint) error) error {
qt = qt.NewChild("parallel process of fetched data")
defer rss.mustClose()
rowsProcessedTotal, err := rss.runParallel(qt, f)
seriesProcessedTotal := len(rss.packedTimeseries)
rss.packedTimeseries = rss.packedTimeseries[:0]
rowsReadPerQuery.Update(float64(rowsProcessedTotal))
seriesReadPerQuery.Update(float64(seriesProcessedTotal))
qt.Donef("series=%d, samples=%d", seriesProcessedTotal, rowsProcessedTotal)
return err
}
func (rss *Results) runParallel(qt *querytracer.Tracer, f func(rs *Result, workerID uint) error) (int, error) {
tswsLen := len(rss.packedTimeseries)
if tswsLen == 0 {
// Nothing to process
return 0, nil
}
var mustStop atomic.Bool
initTimeseriesWork := func(tsw *timeseriesWork, pts *packedTimeseries) {
tsw.rss = rss
tsw.pts = pts
tsw.f = f
tsw.mustStop = &mustStop
}
maxWorkers := MaxWorkers()
if maxWorkers == 1 || tswsLen == 1 {
// It is faster to process time series in the current goroutine.
var tsw timeseriesWork
tmpResult := getTmpResult()
rowsProcessedTotal := 0
var err error
for i := range rss.packedTimeseries {
initTimeseriesWork(&tsw, &rss.packedTimeseries[i])
err = tsw.do(&tmpResult.rs, 0)
rowsReadPerSeries.Update(float64(tsw.rowsProcessed))
rowsProcessedTotal += tsw.rowsProcessed
if err != nil {
break
}
}
putTmpResult(tmpResult)
return rowsProcessedTotal, err
}
// Slow path - spin up multiple local workers for parallel data processing.
// Do not use global workers pool, since it increases inter-CPU memory ping-poing,
// which reduces the scalability on systems with many CPU cores.
// Prepare the work for workers.
tsws := make([]timeseriesWork, len(rss.packedTimeseries))
for i := range rss.packedTimeseries {
initTimeseriesWork(&tsws[i], &rss.packedTimeseries[i])
}
// Prepare worker channels.
workers := len(tsws)
if workers > maxWorkers {
workers = maxWorkers
}
itemsPerWorker := (len(tsws) + workers - 1) / workers
workChs := make([]chan *timeseriesWork, workers)
for i := range workChs {
workChs[i] = make(chan *timeseriesWork, itemsPerWorker)
}
// Spread work among workers.
for i := range tsws {
idx := i % len(workChs)
workChs[idx] <- &tsws[i]
}
// Mark worker channels as closed.
for _, workCh := range workChs {
close(workCh)
}
// Start workers and wait until they finish the work.
var wg sync.WaitGroup
for i := range workChs {
wg.Add(1)
qtChild := qt.NewChild("worker #%d", i)
go func(workerID uint) {
timeseriesWorker(qtChild, workChs, workerID)
qtChild.Done()
wg.Done()
}(uint(i))
}
wg.Wait()
// Collect results.
var firstErr error
rowsProcessedTotal := 0
for i := range tsws {
tsw := &tsws[i]
if tsw.err != nil && firstErr == nil {
// Return just the first error, since other errors are likely duplicate the first error.
firstErr = tsw.err
}
rowsReadPerSeries.Update(float64(tsw.rowsProcessed))
rowsProcessedTotal += tsw.rowsProcessed
}
return rowsProcessedTotal, firstErr
}
var (
rowsReadPerSeries = metrics.NewHistogram(`vm_rows_read_per_series`)
rowsReadPerQuery = metrics.NewHistogram(`vm_rows_read_per_query`)
seriesReadPerQuery = metrics.NewHistogram(`vm_series_read_per_query`)
)
type packedTimeseries struct {
metricName string
brs []blockRef
}
type unpackWork struct {
tbf *tmpBlocksFile
br blockRef
tr storage.TimeRange
sb *sortBlock
err error
}
func (upw *unpackWork) reset() {
upw.tbf = nil
upw.br = blockRef{}
upw.tr = storage.TimeRange{}
upw.sb = nil
upw.err = nil
}
func (upw *unpackWork) unpack(tmpBlock *storage.Block) {
sb := getSortBlock()
if err := sb.unpackFrom(tmpBlock, upw.tbf, upw.br, upw.tr); err != nil {
putSortBlock(sb)
upw.err = fmt.Errorf("cannot unpack block: %w", err)
return
}
upw.sb = sb
}
func getUnpackWork() *unpackWork {
v := unpackWorkPool.Get()
if v != nil {
return v.(*unpackWork)
}
return &unpackWork{}
}
func putUnpackWork(upw *unpackWork) {
upw.reset()
unpackWorkPool.Put(upw)
}
var unpackWorkPool sync.Pool
func unpackWorker(workChs []chan *unpackWork, workerID uint) {
tmpBlock := getTmpStorageBlock()
// Deal with own work at first.
ch := workChs[workerID]
for upw := range ch {
upw.unpack(tmpBlock)
}
// Then help others with their work.
for i := uint(1); i < uint(len(workChs)); i++ {
idx := (i + workerID) % uint(len(workChs))
ch := workChs[idx]
for len(ch) > 0 {
// Do not call runtime.Gosched() here in order to give a chance
// the real owner of the work to complete it, since it consumes additional CPU
// and slows down the code on systems with big number of CPU cores.
// See https://github.com/VictoriaMetrics/VictoriaMetrics/issues/3966#issuecomment-1483208419
// It is expected that every channel in the workChs is already closed,
// so the next line should return immediately.
upw, ok := <-ch
if !ok {
break
}
upw.unpack(tmpBlock)
}
}
putTmpStorageBlock(tmpBlock)
}
func getTmpStorageBlock() *storage.Block {
v := tmpStorageBlockPool.Get()
if v == nil {
v = &storage.Block{}
}
return v.(*storage.Block)
}
func putTmpStorageBlock(sb *storage.Block) {
tmpStorageBlockPool.Put(sb)
}
var tmpStorageBlockPool sync.Pool
// Unpack unpacks pts to dst.
func (pts *packedTimeseries) Unpack(dst *Result, tbf *tmpBlocksFile, tr storage.TimeRange) error {
dst.reset()
if err := dst.MetricName.Unmarshal(bytesutil.ToUnsafeBytes(pts.metricName)); err != nil {
return fmt.Errorf("cannot unmarshal metricName %q: %w", pts.metricName, err)
}
sbh := getSortBlocksHeap()
var err error
sbh.sbs, err = pts.unpackTo(sbh.sbs[:0], tbf, tr)
pts.brs = pts.brs[:0]
if err != nil {
putSortBlocksHeap(sbh)
return err
}
dedupInterval := storage.GetDedupInterval()
mergeSortBlocks(dst, sbh, dedupInterval)
putSortBlocksHeap(sbh)
return nil
}
func (pts *packedTimeseries) unpackTo(dst []*sortBlock, tbf *tmpBlocksFile, tr storage.TimeRange) ([]*sortBlock, error) {
upwsLen := len(pts.brs)
if upwsLen == 0 {
// Nothing to do
return nil, nil
}
initUnpackWork := func(upw *unpackWork, br blockRef) {
upw.tbf = tbf
upw.br = br
upw.tr = tr
}
if gomaxprocs == 1 || upwsLen <= 1000 {
// It is faster to unpack all the data in the current goroutine.
upw := getUnpackWork()
samples := 0
tmpBlock := getTmpStorageBlock()
var err error
for _, br := range pts.brs {
initUnpackWork(upw, br)
upw.unpack(tmpBlock)
if upw.err != nil {
return dst, upw.err
}
samples += len(upw.sb.Timestamps)
if *maxSamplesPerSeries > 0 && samples > *maxSamplesPerSeries {
putSortBlock(upw.sb)
err = fmt.Errorf("cannot process more than %d samples per series; either increase -search.maxSamplesPerSeries "+
"or reduce time range for the query", *maxSamplesPerSeries)
break
}
dst = append(dst, upw.sb)
upw.reset()
}
putTmpStorageBlock(tmpBlock)
putUnpackWork(upw)
return dst, err
}
// Slow path - spin up multiple local workers for parallel data unpacking.
// Do not use global workers pool, since it increases inter-CPU memory ping-poing,
// which reduces the scalability on systems with many CPU cores.
// Prepare the work for workers.
upws := make([]*unpackWork, upwsLen)
for i, br := range pts.brs {
upw := getUnpackWork()
initUnpackWork(upw, br)
upws[i] = upw
}
// Prepare worker channels.
workers := len(upws)
if workers > gomaxprocs {
workers = gomaxprocs
}
if workers < 1 {
workers = 1
}
itemsPerWorker := (len(upws) + workers - 1) / workers
workChs := make([]chan *unpackWork, workers)
for i := range workChs {
workChs[i] = make(chan *unpackWork, itemsPerWorker)
}
// Spread work among worker channels.
for i, upw := range upws {
idx := i % len(workChs)
workChs[idx] <- upw
}
// Mark worker channels as closed.
for _, workCh := range workChs {
close(workCh)
}
// Start workers and wait until they finish the work.
var wg sync.WaitGroup
for i := 0; i < workers; i++ {
wg.Add(1)
go func(workerID uint) {
unpackWorker(workChs, workerID)
wg.Done()
}(uint(i))
}
wg.Wait()
// Collect results.
samples := 0
var firstErr error
for _, upw := range upws {
if upw.err != nil && firstErr == nil {
// Return the first error only, since other errors are likely the same.
firstErr = upw.err
}
if firstErr == nil {
sb := upw.sb
samples += len(sb.Timestamps)
if *maxSamplesPerSeries > 0 && samples > *maxSamplesPerSeries {
putSortBlock(sb)
firstErr = fmt.Errorf("cannot process more than %d samples per series; either increase -search.maxSamplesPerSeries "+
"or reduce time range for the query", *maxSamplesPerSeries)
} else {
dst = append(dst, sb)
}
} else {
putSortBlock(upw.sb)
}
putUnpackWork(upw)
}
return dst, firstErr
}
func getSortBlock() *sortBlock {
v := sbPool.Get()
if v == nil {
return &sortBlock{}
}
return v.(*sortBlock)
}
func putSortBlock(sb *sortBlock) {
sb.reset()
sbPool.Put(sb)
}
var sbPool sync.Pool
var metricRowsSkipped = metrics.NewCounter(`vm_metric_rows_skipped_total{name="vmselect"}`)
func mergeSortBlocks(dst *Result, sbh *sortBlocksHeap, dedupInterval int64) {
// Skip empty sort blocks, since they cannot be passed to heap.Init.
sbs := sbh.sbs[:0]
for _, sb := range sbh.sbs {
if len(sb.Timestamps) == 0 {
putSortBlock(sb)
continue
}
sbs = append(sbs, sb)
}
sbh.sbs = sbs
if sbh.Len() == 0 {
return
}
heap.Init(sbh)
for {
sbs := sbh.sbs
top := sbs[0]
if len(sbs) == 1 {
dst.Timestamps = append(dst.Timestamps, top.Timestamps[top.NextIdx:]...)
dst.Values = append(dst.Values, top.Values[top.NextIdx:]...)
putSortBlock(top)
break
}
sbNext := sbh.getNextBlock()
tsNext := sbNext.Timestamps[sbNext.NextIdx]
topNextIdx := top.NextIdx
if n := equalSamplesPrefix(top, sbNext); n > 0 && dedupInterval > 0 {
// Skip n replicated samples at top if deduplication is enabled.
top.NextIdx = topNextIdx + n
} else {
// Copy samples from top to dst with timestamps not exceeding tsNext.
top.NextIdx = topNextIdx + binarySearchTimestamps(top.Timestamps[topNextIdx:], tsNext)
dst.Timestamps = append(dst.Timestamps, top.Timestamps[topNextIdx:top.NextIdx]...)
dst.Values = append(dst.Values, top.Values[topNextIdx:top.NextIdx]...)
}
if top.NextIdx < len(top.Timestamps) {
heap.Fix(sbh, 0)
} else {
heap.Pop(sbh)
putSortBlock(top)
}
}
timestamps, values := storage.DeduplicateSamples(dst.Timestamps, dst.Values, dedupInterval)
dedups := len(dst.Timestamps) - len(timestamps)
dedupsDuringSelect.Add(dedups)
dst.Timestamps = timestamps
dst.Values = values
}
var dedupsDuringSelect = metrics.NewCounter(`vm_deduplicated_samples_total{type="select"}`)
func equalSamplesPrefix(a, b *sortBlock) int {
n := equalTimestampsPrefix(a.Timestamps[a.NextIdx:], b.Timestamps[b.NextIdx:])
if n == 0 {
return 0
}
return equalValuesPrefix(a.Values[a.NextIdx:a.NextIdx+n], b.Values[b.NextIdx:b.NextIdx+n])
}
func equalTimestampsPrefix(a, b []int64) int {
for i, v := range a {
if i >= len(b) || v != b[i] {
return i
}
}
return len(a)
}
func equalValuesPrefix(a, b []float64) int {
for i, v := range a {
if i >= len(b) || v != b[i] {
return i
}
}
return len(a)
}
func binarySearchTimestamps(timestamps []int64, ts int64) int {
// The code has been adapted from sort.Search.
n := len(timestamps)
if n > 0 && timestamps[n-1] <= ts {
// Fast path for timestamps scanned in ascending order.
return n
}
i, j := 0, n
for i < j {
h := int(uint(i+j) >> 1)
if h >= 0 && h < len(timestamps) && timestamps[h] <= ts {
i = h + 1
} else {
j = h
}
}
return i
}
type sortBlock struct {
Timestamps []int64
Values []float64
NextIdx int
}
func (sb *sortBlock) reset() {
sb.Timestamps = sb.Timestamps[:0]
sb.Values = sb.Values[:0]
sb.NextIdx = 0
}
func (sb *sortBlock) unpackFrom(tmpBlock *storage.Block, tbf *tmpBlocksFile, br blockRef, tr storage.TimeRange) error {
tmpBlock.Reset()
brReal := tbf.MustReadBlockRefAt(br.partRef, br.addr)
brReal.MustReadBlock(tmpBlock)
if err := tmpBlock.UnmarshalData(); err != nil {
return fmt.Errorf("cannot unmarshal block: %w", err)
}
sb.Timestamps, sb.Values = tmpBlock.AppendRowsWithTimeRangeFilter(sb.Timestamps[:0], sb.Values[:0], tr)
skippedRows := tmpBlock.RowsCount() - len(sb.Timestamps)
metricRowsSkipped.Add(skippedRows)
return nil
}
type sortBlocksHeap struct {
sbs []*sortBlock
}
func (sbh *sortBlocksHeap) getNextBlock() *sortBlock {
sbs := sbh.sbs
if len(sbs) < 2 {
return nil
}
if len(sbs) < 3 {
return sbs[1]
}
a := sbs[1]
b := sbs[2]
if a.Timestamps[a.NextIdx] <= b.Timestamps[b.NextIdx] {
return a
}
return b
}
func (sbh *sortBlocksHeap) Len() int {
return len(sbh.sbs)
}
func (sbh *sortBlocksHeap) Less(i, j int) bool {
sbs := sbh.sbs
a := sbs[i]
b := sbs[j]
return a.Timestamps[a.NextIdx] < b.Timestamps[b.NextIdx]
}
func (sbh *sortBlocksHeap) Swap(i, j int) {
sbs := sbh.sbs
sbs[i], sbs[j] = sbs[j], sbs[i]
}
func (sbh *sortBlocksHeap) Push(x interface{}) {
sbh.sbs = append(sbh.sbs, x.(*sortBlock))
}
func (sbh *sortBlocksHeap) Pop() interface{} {
sbs := sbh.sbs
v := sbs[len(sbs)-1]
sbs[len(sbs)-1] = nil
sbh.sbs = sbs[:len(sbs)-1]
return v
}
func getSortBlocksHeap() *sortBlocksHeap {
v := sbhPool.Get()
if v == nil {
return &sortBlocksHeap{}
}
return v.(*sortBlocksHeap)
}
func putSortBlocksHeap(sbh *sortBlocksHeap) {
sbs := sbh.sbs
for i := range sbs {
sbs[i] = nil
}
sbh.sbs = sbs[:0]
sbhPool.Put(sbh)
}
var sbhPool sync.Pool
// DeleteSeries deletes time series matching the given tagFilterss.
func DeleteSeries(qt *querytracer.Tracer, sq *storage.SearchQuery, deadline searchutils.Deadline) (int, error) {
qt = qt.NewChild("delete series: %s", sq)
defer qt.Done()
tr := sq.GetTimeRange()
tfss, err := setupTfss(qt, tr, sq.TagFilterss, sq.MaxMetrics, deadline)
if err != nil {
return 0, err
}
return vmstorage.DeleteSeries(qt, tfss)
}
// LabelNames returns label names matching the given sq until the given deadline.
func LabelNames(qt *querytracer.Tracer, sq *storage.SearchQuery, maxLabelNames int, deadline searchutils.Deadline) ([]string, error) {
qt = qt.NewChild("get labels: %s", sq)
defer qt.Done()
if deadline.Exceeded() {
return nil, fmt.Errorf("timeout exceeded before starting the query processing: %s", deadline.String())
}
if maxLabelNames > *maxTagKeysPerSearch || maxLabelNames <= 0 {
maxLabelNames = *maxTagKeysPerSearch
}
tr := sq.GetTimeRange()
tfss, err := setupTfss(qt, tr, sq.TagFilterss, sq.MaxMetrics, deadline)
if err != nil {
return nil, err
}
labels, err := vmstorage.SearchLabelNamesWithFiltersOnTimeRange(qt, tfss, tr, maxLabelNames, sq.MaxMetrics, deadline.Deadline())
if err != nil {
return nil, fmt.Errorf("error during labels search on time range: %w", err)
}
// Sort labels like Prometheus does
sort.Strings(labels)
qt.Printf("sort %d labels", len(labels))
return labels, nil
}
// GraphiteTags returns Graphite tags until the given deadline.
func GraphiteTags(qt *querytracer.Tracer, filter string, limit int, deadline searchutils.Deadline) ([]string, error) {
qt = qt.NewChild("get graphite tags: filter=%s, limit=%d", filter, limit)
defer qt.Done()
if deadline.Exceeded() {
return nil, fmt.Errorf("timeout exceeded before starting the query processing: %s", deadline.String())
}
sq := storage.NewSearchQuery(0, 0, nil, 0)
labels, err := LabelNames(qt, sq, 0, deadline)
if err != nil {
return nil, err
}
// Substitute "__name__" with "name" for Graphite compatibility
for i := range labels {
if labels[i] != "__name__" {
continue
}
// Prevent from duplicate `name` tag.
// See https://github.com/VictoriaMetrics/VictoriaMetrics/issues/942
if hasString(labels, "name") {
labels = append(labels[:i], labels[i+1:]...)
} else {
labels[i] = "name"
sort.Strings(labels)
}
break
}
if len(filter) > 0 {
labels, err = applyGraphiteRegexpFilter(filter, labels)
if err != nil {
return nil, err
}
}
if limit > 0 && limit < len(labels) {
labels = labels[:limit]
}
return labels, nil
}
func hasString(a []string, s string) bool {
for _, x := range a {
if x == s {
return true
}
}
return false
}
// LabelValues returns label values matching the given labelName and sq until the given deadline.
func LabelValues(qt *querytracer.Tracer, labelName string, sq *storage.SearchQuery, maxLabelValues int, deadline searchutils.Deadline) ([]string, error) {
qt = qt.NewChild("get values for label %s: %s", labelName, sq)
defer qt.Done()
if deadline.Exceeded() {
return nil, fmt.Errorf("timeout exceeded before starting the query processing: %s", deadline.String())
}
if maxLabelValues > *maxTagValuesPerSearch || maxLabelValues <= 0 {
maxLabelValues = *maxTagValuesPerSearch
}
tr := sq.GetTimeRange()
tfss, err := setupTfss(qt, tr, sq.TagFilterss, sq.MaxMetrics, deadline)
if err != nil {
return nil, err
}
labelValues, err := vmstorage.SearchLabelValuesWithFiltersOnTimeRange(qt, labelName, tfss, tr, maxLabelValues, sq.MaxMetrics, deadline.Deadline())
if err != nil {
return nil, fmt.Errorf("error during label values search on time range for labelName=%q: %w", labelName, err)
}
// Sort labelValues like Prometheus does
sort.Strings(labelValues)
qt.Printf("sort %d label values", len(labelValues))
return labelValues, nil
}
// GraphiteTagValues returns tag values for the given tagName until the given deadline.
func GraphiteTagValues(qt *querytracer.Tracer, tagName, filter string, limit int, deadline searchutils.Deadline) ([]string, error) {
qt = qt.NewChild("get graphite tag values for tagName=%s, filter=%s, limit=%d", tagName, filter, limit)
defer qt.Done()
if deadline.Exceeded() {
return nil, fmt.Errorf("timeout exceeded before starting the query processing: %s", deadline.String())
}
if tagName == "name" {
tagName = ""
}
sq := storage.NewSearchQuery(0, 0, nil, 0)
tagValues, err := LabelValues(qt, tagName, sq, 0, deadline)
if err != nil {
return nil, err
}
if len(filter) > 0 {
tagValues, err = applyGraphiteRegexpFilter(filter, tagValues)
if err != nil {
return nil, err
}
}
if limit > 0 && limit < len(tagValues) {
tagValues = tagValues[:limit]
}
return tagValues, nil
}
// TagValueSuffixes returns tag value suffixes for the given tagKey and the given tagValuePrefix.
//
// It can be used for implementing https://graphite-api.readthedocs.io/en/latest/api.html#metrics-find
func TagValueSuffixes(qt *querytracer.Tracer, tr storage.TimeRange, tagKey, tagValuePrefix string, delimiter byte, maxSuffixes int, deadline searchutils.Deadline) ([]string, error) {
qt = qt.NewChild("get tag value suffixes for tagKey=%s, tagValuePrefix=%s, maxSuffixes=%d, timeRange=%s", tagKey, tagValuePrefix, maxSuffixes, &tr)
defer qt.Done()
if deadline.Exceeded() {
return nil, fmt.Errorf("timeout exceeded before starting the query processing: %s", deadline.String())
}
suffixes, err := vmstorage.SearchTagValueSuffixes(qt, tr, tagKey, tagValuePrefix, delimiter, maxSuffixes, deadline.Deadline())
if err != nil {
return nil, fmt.Errorf("error during search for suffixes for tagKey=%q, tagValuePrefix=%q, delimiter=%c on time range %s: %w",
tagKey, tagValuePrefix, delimiter, tr.String(), err)
}
if len(suffixes) >= maxSuffixes {
return nil, fmt.Errorf("more than -search.maxTagValueSuffixesPerSearch=%d tag value suffixes found for tagKey=%q, tagValuePrefix=%q, delimiter=%c on time range %s; "+
"either narrow down the query or increase -search.maxTagValueSuffixesPerSearch command-line flag value",
maxSuffixes, tagKey, tagValuePrefix, delimiter, tr.String())
}
return suffixes, nil
}
// TSDBStatus returns tsdb status according to https://prometheus.io/docs/prometheus/latest/querying/api/#tsdb-stats
//
// It accepts arbitrary filters on time series in sq.
func TSDBStatus(qt *querytracer.Tracer, sq *storage.SearchQuery, focusLabel string, topN int, deadline searchutils.Deadline) (*storage.TSDBStatus, error) {
qt = qt.NewChild("get tsdb stats: %s, focusLabel=%q, topN=%d", sq, focusLabel, topN)
defer qt.Done()
if deadline.Exceeded() {
return nil, fmt.Errorf("timeout exceeded before starting the query processing: %s", deadline.String())
}
tr := sq.GetTimeRange()
tfss, err := setupTfss(qt, tr, sq.TagFilterss, sq.MaxMetrics, deadline)
if err != nil {
return nil, err
}
date := uint64(tr.MinTimestamp) / (3600 * 24 * 1000)
status, err := vmstorage.GetTSDBStatus(qt, tfss, date, focusLabel, topN, sq.MaxMetrics, deadline.Deadline())
if err != nil {
return nil, fmt.Errorf("error during tsdb status request: %w", err)
}
return status, nil
}
// SeriesCount returns the number of unique series.
func SeriesCount(qt *querytracer.Tracer, deadline searchutils.Deadline) (uint64, error) {
qt = qt.NewChild("get series count")
defer qt.Done()
if deadline.Exceeded() {
return 0, fmt.Errorf("timeout exceeded before starting the query processing: %s", deadline.String())
}
n, err := vmstorage.GetSeriesCount(deadline.Deadline())
if err != nil {
return 0, fmt.Errorf("error during series count request: %w", err)
}
return n, nil
}
func getStorageSearch() *storage.Search {
v := ssPool.Get()
if v == nil {
return &storage.Search{}
}
return v.(*storage.Search)
}
func putStorageSearch(sr *storage.Search) {
sr.MustClose()
ssPool.Put(sr)
}
var ssPool sync.Pool
// ExportBlocks searches for time series matching sq and calls f for each found block.
//
// f is called in parallel from multiple goroutines.
// Data processing is immediately stopped if f returns non-nil error.
// It is the responsibility of f to call b.UnmarshalData before reading timestamps and values from the block.
// It is the responsibility of f to filter blocks according to the given tr.
func ExportBlocks(qt *querytracer.Tracer, sq *storage.SearchQuery, deadline searchutils.Deadline,
f func(mn *storage.MetricName, b *storage.Block, tr storage.TimeRange, workerID uint) error) error {
qt = qt.NewChild("export blocks: %s", sq)
defer qt.Done()
if deadline.Exceeded() {
return fmt.Errorf("timeout exceeded before starting data export: %s", deadline.String())
}
tr := sq.GetTimeRange()
if err := vmstorage.CheckTimeRange(tr); err != nil {
return err
}
tfss, err := setupTfss(qt, tr, sq.TagFilterss, sq.MaxMetrics, deadline)
if err != nil {
return err
}
vmstorage.WG.Add(1)
defer vmstorage.WG.Done()
sr := getStorageSearch()
defer putStorageSearch(sr)
startTime := time.Now()
sr.Init(qt, vmstorage.Storage, tfss, tr, sq.MaxMetrics, deadline.Deadline())
indexSearchDuration.UpdateDuration(startTime)
// Start workers that call f in parallel on available CPU cores.
workCh := make(chan *exportWork, gomaxprocs*8)
var (
errGlobal error
errGlobalLock sync.Mutex
mustStop atomic.Bool
)
var wg sync.WaitGroup
wg.Add(gomaxprocs)
for i := 0; i < gomaxprocs; i++ {
go func(workerID uint) {
defer wg.Done()
for xw := range workCh {
if err := f(&xw.mn, &xw.b, tr, workerID); err != nil {
errGlobalLock.Lock()
if errGlobal == nil {
errGlobal = err
mustStop.Store(true)
}
errGlobalLock.Unlock()
}
xw.reset()
exportWorkPool.Put(xw)
}
}(uint(i))
}
// Feed workers with work
blocksRead := 0
samples := 0
for sr.NextMetricBlock() {
blocksRead++
if deadline.Exceeded() {
return fmt.Errorf("timeout exceeded while fetching data block #%d from storage: %s", blocksRead, deadline.String())
}
if mustStop.Load() {
break
}
xw := exportWorkPool.Get().(*exportWork)
if err := xw.mn.Unmarshal(sr.MetricBlockRef.MetricName); err != nil {
return fmt.Errorf("cannot unmarshal metricName for block #%d: %w", blocksRead, err)
}
br := sr.MetricBlockRef.BlockRef
br.MustReadBlock(&xw.b)
samples += br.RowsCount()
workCh <- xw
}
close(workCh)
// Wait for workers to finish.
wg.Wait()
qt.Printf("export blocks=%d, samples=%d", blocksRead, samples)
// Check errors.
err = sr.Error()
if err == nil {
err = errGlobal
}
if err != nil {
if errors.Is(err, storage.ErrDeadlineExceeded) {
return fmt.Errorf("timeout exceeded during the query: %s", deadline.String())
}
return fmt.Errorf("search error after reading %d data blocks: %w", blocksRead, err)
}
return nil
}
type exportWork struct {
mn storage.MetricName
b storage.Block
}
func (xw *exportWork) reset() {
xw.mn.Reset()
xw.b.Reset()
}
var exportWorkPool = &sync.Pool{
New: func() interface{} {
return &exportWork{}
},
}
// SearchMetricNames returns all the metric names matching sq until the given deadline.
//
// The returned metric names must be unmarshaled via storage.MetricName.UnmarshalString().
func SearchMetricNames(qt *querytracer.Tracer, sq *storage.SearchQuery, deadline searchutils.Deadline) ([]string, error) {
qt = qt.NewChild("fetch metric names: %s", sq)
defer qt.Done()
if deadline.Exceeded() {
return nil, fmt.Errorf("timeout exceeded before starting to search metric names: %s", deadline.String())
}
// Setup search.
tr := sq.GetTimeRange()
if err := vmstorage.CheckTimeRange(tr); err != nil {
return nil, err
}
tfss, err := setupTfss(qt, tr, sq.TagFilterss, sq.MaxMetrics, deadline)
if err != nil {
return nil, err
}
metricNames, err := vmstorage.SearchMetricNames(qt, tfss, tr, sq.MaxMetrics, deadline.Deadline())
if err != nil {
return nil, fmt.Errorf("cannot find metric names: %w", err)
}
sort.Strings(metricNames)
qt.Printf("sort %d metric names", len(metricNames))
return metricNames, nil
}
// ProcessSearchQuery performs sq until the given deadline.
//
// Results.RunParallel or Results.Cancel must be called on the returned Results.
func ProcessSearchQuery(qt *querytracer.Tracer, sq *storage.SearchQuery, deadline searchutils.Deadline) (*Results, error) {
qt = qt.NewChild("fetch matching series: %s", sq)
defer qt.Done()
if deadline.Exceeded() {
return nil, fmt.Errorf("timeout exceeded before starting the query processing: %s", deadline.String())
}
// Setup search.
tr := sq.GetTimeRange()
if err := vmstorage.CheckTimeRange(tr); err != nil {
return nil, err
}
tfss, err := setupTfss(qt, tr, sq.TagFilterss, sq.MaxMetrics, deadline)
if err != nil {
return nil, err
}
vmstorage.WG.Add(1)
defer vmstorage.WG.Done()
sr := getStorageSearch()
startTime := time.Now()
maxSeriesCount := sr.Init(qt, vmstorage.Storage, tfss, tr, sq.MaxMetrics, deadline.Deadline())
indexSearchDuration.UpdateDuration(startTime)
type blockRefs struct {
brs []blockRef
}
blocksRead := 0
samples := 0
tbf := getTmpBlocksFile()
var buf []byte
var metricNamePrev []byte
// metricNamesBuf is used for holding all the loaded unique metric names at m and orderedMetricNames.
// It should reduce pressure on Go GC by reducing the number of string allocations
// when constructing metricName string from byte slice.
metricNamesBufCap := maxSeriesCount * 100
if metricNamesBufCap > maxFastAllocBlockSize {
metricNamesBufCap = maxFastAllocBlockSize
}
metricNamesBuf := make([]byte, 0, metricNamesBufCap)
// brssPool is used for holding all the blockRefs objects across all the loaded time series.
// It should reduce pressure on Go GC by reducing the number of blockRefs allocations.
brssPool := make([]blockRefs, 0, maxSeriesCount)
// brsPool is used for holding the most of blockRefs.brs slices across all the loaded time series.
// It should reduce pressure on Go GC by reducing the number of allocations for blockRefs.brs slices.
brsPoolCap := uintptr(maxSeriesCount)
if brsPoolCap > maxFastAllocBlockSize/unsafe.Sizeof(blockRef{}) {
brsPoolCap = maxFastAllocBlockSize / unsafe.Sizeof(blockRef{})
}
brsPool := make([]blockRef, 0, brsPoolCap)
// m maps from metricName to the index of blockRefs inside brssPool
m := make(map[string]int, maxSeriesCount)
// orderedMetricNames contains the list of loaded unique metric names
// in the load order. This order is important for triggering sequential data reading.
orderedMetricNames := make([]string, 0, maxSeriesCount)
var brsIdx int
for sr.NextMetricBlock() {
blocksRead++
if deadline.Exceeded() {
putTmpBlocksFile(tbf)
putStorageSearch(sr)
return nil, fmt.Errorf("timeout exceeded while fetching data block #%d from storage: %s", blocksRead, deadline.String())
}
br := sr.MetricBlockRef.BlockRef
samples += br.RowsCount()
if *maxSamplesPerQuery > 0 && samples > *maxSamplesPerQuery {
putTmpBlocksFile(tbf)
putStorageSearch(sr)
return nil, fmt.Errorf("cannot select more than -search.maxSamplesPerQuery=%d samples; possible solutions: increase the -search.maxSamplesPerQuery; "+
"reduce time range for the query; use more specific label filters in order to select fewer series", *maxSamplesPerQuery)
}
buf = br.Marshal(buf[:0])
addr, err := tbf.WriteBlockRefData(buf)
if err != nil {
putTmpBlocksFile(tbf)
putStorageSearch(sr)
return nil, fmt.Errorf("cannot write %d bytes to temporary file: %w", len(buf), err)
}
metricName := sr.MetricBlockRef.MetricName
if metricNamePrev == nil || string(metricName) != string(metricNamePrev) {
idx, ok := m[string(metricName)]
if !ok {
if cap(brssPool) > len(brssPool) {
brssPool = brssPool[:len(brssPool)+1]
} else {
brssPool = append(brssPool, blockRefs{})
}
idx = len(brssPool) - 1
}
brsIdx = idx
metricNamePrev = append(metricNamePrev[:0], metricName...)
}
brs := &brssPool[brsIdx]
partRef := br.PartRef()
if uintptr(cap(brsPool)) >= maxFastAllocBlockSize/unsafe.Sizeof(blockRef{}) && len(brsPool) == cap(brsPool) {
// Allocate a new brsPool in order to avoid slow allocation of an object
// bigger than maxFastAllocBlockSize bytes at append() below.
brsPool = make([]blockRef, 0, maxFastAllocBlockSize/unsafe.Sizeof(blockRef{}))
}
if canAppendToBlockRefPool(brsPool, brs.brs) {
// It is safe appending blockRef to brsPool, since there are no other items added there yet.
brsPool = append(brsPool, blockRef{
partRef: partRef,
addr: addr,
})
brs.brs = brsPool[len(brsPool)-len(brs.brs)-1 : len(brsPool) : len(brsPool)]
} else {
// It is unsafe appending blockRef to brsPool, since there are other items added there.
// So just append it to brs.brs.
brs.brs = append(brs.brs, blockRef{
partRef: partRef,
addr: addr,
})
}
if len(brs.brs) == 1 {
if cap(metricNamesBuf) >= maxFastAllocBlockSize && len(metricNamesBuf)+len(metricName) > cap(metricNamesBuf) {
// Allocate a new metricNamesBuf in order to avoid slow allocation of byte slice
// bigger than maxFastAllocBlockSize bytes at append() below.
metricNamesBuf = make([]byte, 0, maxFastAllocBlockSize)
}
metricNamesBufLen := len(metricNamesBuf)
metricNamesBuf = append(metricNamesBuf, metricName...)
metricNameStr := bytesutil.ToUnsafeString(metricNamesBuf[metricNamesBufLen:])
orderedMetricNames = append(orderedMetricNames, metricNameStr)
m[metricNameStr] = brsIdx
}
}
if err := sr.Error(); err != nil {
putTmpBlocksFile(tbf)
putStorageSearch(sr)
if errors.Is(err, storage.ErrDeadlineExceeded) {
return nil, fmt.Errorf("timeout exceeded during the query: %s", deadline.String())
}
return nil, fmt.Errorf("search error after reading %d data blocks: %w", blocksRead, err)
}
if err := tbf.Finalize(); err != nil {
putTmpBlocksFile(tbf)
putStorageSearch(sr)
return nil, fmt.Errorf("cannot finalize temporary file: %w", err)
}
qt.Printf("fetch unique series=%d, blocks=%d, samples=%d, bytes=%d", len(m), blocksRead, samples, tbf.Len())
var rss Results
rss.tr = tr
rss.deadline = deadline
pts := make([]packedTimeseries, len(orderedMetricNames))
for i, metricName := range orderedMetricNames {
pts[i] = packedTimeseries{
metricName: metricName,
brs: brssPool[m[metricName]].brs,
}
}
rss.packedTimeseries = pts
rss.sr = sr
rss.tbf = tbf
return &rss, nil
}
var indexSearchDuration = metrics.NewHistogram(`vm_index_search_duration_seconds`)
type blockRef struct {
partRef storage.PartRef
addr tmpBlockAddr
}
// canAppendToBlockRefPool returns true if a points to the pool and the last item in a is the last item in the pool.
//
// In this case it is safe appending an item to the pool and then updating the a, so it refers to the extended slice.
//
// True is also returned if a is nil, since in this case it is safe appending an item to the pool and pointing a
// to the last item in the pool.
func canAppendToBlockRefPool(pool, a []blockRef) bool {
if a == nil {
return true
}
if len(a) > len(pool) {
// a doesn't belong to pool
return false
}
return getBlockRefsEnd(pool) == getBlockRefsEnd(a)
}
func getBlockRefsEnd(a []blockRef) uintptr {
return uintptr(unsafe.Pointer(unsafe.SliceData(a))) + uintptr(len(a))*unsafe.Sizeof(blockRef{})
}
func setupTfss(qt *querytracer.Tracer, tr storage.TimeRange, tagFilterss [][]storage.TagFilter, maxMetrics int, deadline searchutils.Deadline) ([]*storage.TagFilters, error) {
tfss := make([]*storage.TagFilters, 0, len(tagFilterss))
for _, tagFilters := range tagFilterss {
tfs := storage.NewTagFilters()
for i := range tagFilters {
tf := &tagFilters[i]
if string(tf.Key) == "__graphite__" {
query := tf.Value
paths, err := vmstorage.SearchGraphitePaths(qt, tr, query, maxMetrics, deadline.Deadline())
if err != nil {
return nil, fmt.Errorf("error when searching for Graphite paths for query %q: %w", query, err)
}
if len(paths) >= maxMetrics {
return nil, fmt.Errorf("more than %d time series match Graphite query %q; "+
"either narrow down the query or increase the corresponding -search.max* command-line flag value; "+
"see https://docs.victoriametrics.com/#resource-usage-limits", maxMetrics, query)
}
tfs.AddGraphiteQuery(query, paths, tf.IsNegative)
continue
}
if err := tfs.Add(tf.Key, tf.Value, tf.IsNegative, tf.IsRegexp); err != nil {
return nil, fmt.Errorf("cannot parse tag filter %s: %w", tf, err)
}
}
tfss = append(tfss, tfs)
}
return tfss, nil
}
func applyGraphiteRegexpFilter(filter string, ss []string) ([]string, error) {
// Anchor filter regexp to the beginning of the string as Graphite does.
// See https://github.com/graphite-project/graphite-web/blob/3ad279df5cb90b211953e39161df416e54a84948/webapp/graphite/tags/localdatabase.py#L157
filter = "^(?:" + filter + ")"
re, err := metricsql.CompileRegexp(filter)
if err != nil {
return nil, fmt.Errorf("cannot parse regexp filter=%q: %w", filter, err)
}
dst := ss[:0]
for _, s := range ss {
if re.MatchString(s) {
dst = append(dst, s)
}
}
return dst, nil
}
// Go uses fast allocations for block sizes up to 32Kb.
//
// See https://github.com/golang/go/blob/704401ffa06c60e059c9e6e4048045b4ff42530a/src/runtime/malloc.go#L11
const maxFastAllocBlockSize = 32 * 1024