VictoriaMetrics/app/vmagent/remotewrite/pendingseries.go
Aliaksandr Valialkin cd152693c6
Revert "Exemplar support (#5982)"
This reverts commit 5a3abfa041.

Reason for revert: exemplars aren't in wide use because they have numerous issues which prevent their adoption (see below).
Adding support for examplars into VictoriaMetrics introduces non-trivial code changes. These code changes need to be supported forever
once the release of VictoriaMetrics with exemplar support is published. That's why I don't think this is a good feature despite
that the source code of the reverted commit has an excellent quality. See https://docs.victoriametrics.com/goals/ .

Issues with Prometheus exemplars:

- Prometheus still has only experimental support for exemplars after more than three years since they were introduced.
  It stores exemplars in memory, so they are lost after Prometheus restart. This doesn't look like production-ready feature.
  See 0a2f3b3794/content/docs/instrumenting/exposition_formats.md (L153-L159)
  and https://prometheus.io/docs/prometheus/latest/feature_flags/#exemplars-storage

- It is very non-trivial to expose exemplars alongside metrics in your application, since the official Prometheus SDKs
  for metrics' exposition ( https://prometheus.io/docs/instrumenting/clientlibs/ ) either have very hard-to-use API
  for exposing histograms or do not have this API at all. For example, try figuring out how to expose exemplars
  via https://pkg.go.dev/github.com/prometheus/client_golang@v1.19.1/prometheus .

- It looks like exemplars are supported for Histogram metric types only -
  see https://pkg.go.dev/github.com/prometheus/client_golang@v1.19.1/prometheus#Timer.ObserveDurationWithExemplar .
  Exemplars aren't supported for Counter, Gauge and Summary metric types.

- Grafana has very poor support for Prometheus exemplars. It looks like it supports exemplars only when the query
  contains histogram_quantile() function. It queries exemplars via special Prometheus API -
  https://prometheus.io/docs/prometheus/latest/querying/api/#querying-exemplars - (which is still marked as experimental, btw.)
  and then displays all the returned exemplars on the graph as special dots. The issue is that this doesn't work
  in production in most cases when the histogram_quantile() is calculated over thousands of histogram buckets
  exposed by big number of application instances. Every histogram bucket may expose an exemplar on every timestamp shown on the graph.
  This makes the graph unusable, since it is litterally filled with thousands of exemplar dots.
  Neither Prometheus API nor Grafana doesn't provide the ability to filter out unneeded exemplars.

- Exemplars are usually connected to traces. While traces are good for some

I doubt exemplars will become production-ready in the near future because of the issues outlined above.

Alternative to exemplars:

Exemplars are marketed as a silver bullet for the correlation between metrics, traces and logs -
just click the exemplar dot on some graph in Grafana and instantly see the corresponding trace or log entry!
This doesn't work as expected in production as shown above. Are there better solutions, which work in production?
Yes - just use time-based and label-based correlation between metrics, traces and logs. Assign the same `job`
and `instance` labels to metrics, logs and traces, so you can quickly find the needed trace or log entry
by these labes on the time range with the anomaly on metrics' graph.

Updates https://github.com/VictoriaMetrics/VictoriaMetrics/pull/5982
2024-07-03 16:09:18 +02:00

312 lines
9.2 KiB
Go

package remotewrite
import (
"flag"
"sync"
"sync/atomic"
"time"
"github.com/VictoriaMetrics/VictoriaMetrics/lib/bytesutil"
"github.com/VictoriaMetrics/VictoriaMetrics/lib/cgroup"
"github.com/VictoriaMetrics/VictoriaMetrics/lib/decimal"
"github.com/VictoriaMetrics/VictoriaMetrics/lib/encoding/zstd"
"github.com/VictoriaMetrics/VictoriaMetrics/lib/fasttime"
"github.com/VictoriaMetrics/VictoriaMetrics/lib/flagutil"
"github.com/VictoriaMetrics/VictoriaMetrics/lib/logger"
"github.com/VictoriaMetrics/VictoriaMetrics/lib/persistentqueue"
"github.com/VictoriaMetrics/VictoriaMetrics/lib/prompbmarshal"
"github.com/VictoriaMetrics/VictoriaMetrics/lib/promrelabel"
"github.com/VictoriaMetrics/VictoriaMetrics/lib/timeutil"
"github.com/VictoriaMetrics/metrics"
"github.com/golang/snappy"
)
var (
flushInterval = flag.Duration("remoteWrite.flushInterval", time.Second, "Interval for flushing the data to remote storage. "+
"This option takes effect only when less than 10K data points per second are pushed to -remoteWrite.url")
maxUnpackedBlockSize = flagutil.NewBytes("remoteWrite.maxBlockSize", 8*1024*1024, "The maximum block size to send to remote storage. Bigger blocks may improve performance at the cost of the increased memory usage. See also -remoteWrite.maxRowsPerBlock")
maxRowsPerBlock = flag.Int("remoteWrite.maxRowsPerBlock", 10000, "The maximum number of samples to send in each block to remote storage. Higher number may improve performance at the cost of the increased memory usage. See also -remoteWrite.maxBlockSize")
vmProtoCompressLevel = flag.Int("remoteWrite.vmProtoCompressLevel", 0, "The compression level for VictoriaMetrics remote write protocol. "+
"Higher values reduce network traffic at the cost of higher CPU usage. Negative values reduce CPU usage at the cost of increased network traffic. "+
"See https://docs.victoriametrics.com/vmagent/#victoriametrics-remote-write-protocol")
)
type pendingSeries struct {
mu sync.Mutex
wr writeRequest
stopCh chan struct{}
periodicFlusherWG sync.WaitGroup
}
func newPendingSeries(fq *persistentqueue.FastQueue, isVMRemoteWrite bool, significantFigures, roundDigits int) *pendingSeries {
var ps pendingSeries
ps.wr.fq = fq
ps.wr.isVMRemoteWrite = isVMRemoteWrite
ps.wr.significantFigures = significantFigures
ps.wr.roundDigits = roundDigits
ps.stopCh = make(chan struct{})
ps.periodicFlusherWG.Add(1)
go func() {
defer ps.periodicFlusherWG.Done()
ps.periodicFlusher()
}()
return &ps
}
func (ps *pendingSeries) MustStop() {
close(ps.stopCh)
ps.periodicFlusherWG.Wait()
}
func (ps *pendingSeries) TryPush(tss []prompbmarshal.TimeSeries) bool {
ps.mu.Lock()
ok := ps.wr.tryPush(tss)
ps.mu.Unlock()
return ok
}
func (ps *pendingSeries) periodicFlusher() {
flushSeconds := int64(flushInterval.Seconds())
if flushSeconds <= 0 {
flushSeconds = 1
}
d := timeutil.AddJitterToDuration(*flushInterval)
ticker := time.NewTicker(d)
defer ticker.Stop()
for {
select {
case <-ps.stopCh:
ps.mu.Lock()
ps.wr.mustFlushOnStop()
ps.mu.Unlock()
return
case <-ticker.C:
if fasttime.UnixTimestamp()-ps.wr.lastFlushTime.Load() < uint64(flushSeconds) {
continue
}
}
ps.mu.Lock()
_ = ps.wr.tryFlush()
ps.mu.Unlock()
}
}
type writeRequest struct {
lastFlushTime atomic.Uint64
// The queue to send blocks to.
fq *persistentqueue.FastQueue
// Whether to encode the write request with VictoriaMetrics remote write protocol.
isVMRemoteWrite bool
// How many significant figures must be left before sending the writeRequest to fq.
significantFigures int
// How many decimal digits after point must be left before sending the writeRequest to fq.
roundDigits int
wr prompbmarshal.WriteRequest
tss []prompbmarshal.TimeSeries
labels []prompbmarshal.Label
samples []prompbmarshal.Sample
// buf holds labels data
buf []byte
}
func (wr *writeRequest) reset() {
// Do not reset lastFlushTime, fq, isVMRemoteWrite, significantFigures and roundDigits, since they are re-used.
wr.wr.Timeseries = nil
clear(wr.tss)
wr.tss = wr.tss[:0]
promrelabel.CleanLabels(wr.labels)
wr.labels = wr.labels[:0]
wr.samples = wr.samples[:0]
wr.buf = wr.buf[:0]
}
// mustFlushOnStop force pushes wr data into wr.fq
//
// This is needed in order to properly save in-memory data to persistent queue on graceful shutdown.
func (wr *writeRequest) mustFlushOnStop() {
wr.wr.Timeseries = wr.tss
if !tryPushWriteRequest(&wr.wr, wr.mustWriteBlock, wr.isVMRemoteWrite) {
logger.Panicf("BUG: final flush must always return true")
}
wr.reset()
}
func (wr *writeRequest) mustWriteBlock(block []byte) bool {
wr.fq.MustWriteBlockIgnoreDisabledPQ(block)
return true
}
func (wr *writeRequest) tryFlush() bool {
wr.wr.Timeseries = wr.tss
wr.lastFlushTime.Store(fasttime.UnixTimestamp())
if !tryPushWriteRequest(&wr.wr, wr.fq.TryWriteBlock, wr.isVMRemoteWrite) {
return false
}
wr.reset()
return true
}
func adjustSampleValues(samples []prompbmarshal.Sample, significantFigures, roundDigits int) {
if n := significantFigures; n > 0 {
for i := range samples {
s := &samples[i]
s.Value = decimal.RoundToSignificantFigures(s.Value, n)
}
}
if n := roundDigits; n < 100 {
for i := range samples {
s := &samples[i]
s.Value = decimal.RoundToDecimalDigits(s.Value, n)
}
}
}
func (wr *writeRequest) tryPush(src []prompbmarshal.TimeSeries) bool {
tssDst := wr.tss
maxSamplesPerBlock := *maxRowsPerBlock
// Allow up to 10x of labels per each block on average.
maxLabelsPerBlock := 10 * maxSamplesPerBlock
for i := range src {
if len(wr.samples) >= maxSamplesPerBlock || len(wr.labels) >= maxLabelsPerBlock {
wr.tss = tssDst
if !wr.tryFlush() {
return false
}
tssDst = wr.tss
}
tsSrc := &src[i]
adjustSampleValues(tsSrc.Samples, wr.significantFigures, wr.roundDigits)
tssDst = append(tssDst, prompbmarshal.TimeSeries{})
wr.copyTimeSeries(&tssDst[len(tssDst)-1], tsSrc)
}
wr.tss = tssDst
return true
}
func (wr *writeRequest) copyTimeSeries(dst, src *prompbmarshal.TimeSeries) {
labelsDst := wr.labels
labelsLen := len(wr.labels)
samplesDst := wr.samples
buf := wr.buf
for i := range src.Labels {
labelsDst = append(labelsDst, prompbmarshal.Label{})
dstLabel := &labelsDst[len(labelsDst)-1]
srcLabel := &src.Labels[i]
buf = append(buf, srcLabel.Name...)
dstLabel.Name = bytesutil.ToUnsafeString(buf[len(buf)-len(srcLabel.Name):])
buf = append(buf, srcLabel.Value...)
dstLabel.Value = bytesutil.ToUnsafeString(buf[len(buf)-len(srcLabel.Value):])
}
dst.Labels = labelsDst[labelsLen:]
samplesDst = append(samplesDst, src.Samples...)
dst.Samples = samplesDst[len(samplesDst)-len(src.Samples):]
wr.samples = samplesDst
wr.labels = labelsDst
wr.buf = buf
}
// marshalConcurrency limits the maximum number of concurrent workers, which marshal and compress WriteRequest.
var marshalConcurrencyCh = make(chan struct{}, cgroup.AvailableCPUs())
func tryPushWriteRequest(wr *prompbmarshal.WriteRequest, tryPushBlock func(block []byte) bool, isVMRemoteWrite bool) bool {
if len(wr.Timeseries) == 0 {
// Nothing to push
return true
}
marshalConcurrencyCh <- struct{}{}
bb := writeRequestBufPool.Get()
bb.B = wr.MarshalProtobuf(bb.B[:0])
if len(bb.B) <= maxUnpackedBlockSize.IntN() {
zb := compressBufPool.Get()
if isVMRemoteWrite {
zb.B = zstd.CompressLevel(zb.B[:0], bb.B, *vmProtoCompressLevel)
} else {
zb.B = snappy.Encode(zb.B[:cap(zb.B)], bb.B)
}
writeRequestBufPool.Put(bb)
<-marshalConcurrencyCh
if len(zb.B) <= persistentqueue.MaxBlockSize {
zbLen := len(zb.B)
ok := tryPushBlock(zb.B)
compressBufPool.Put(zb)
if ok {
blockSizeRows.Update(float64(len(wr.Timeseries)))
blockSizeBytes.Update(float64(zbLen))
}
return ok
}
compressBufPool.Put(zb)
} else {
writeRequestBufPool.Put(bb)
<-marshalConcurrencyCh
}
// Too big block. Recursively split it into smaller parts if possible.
if len(wr.Timeseries) == 1 {
// A single time series left. Recursively split its samples into smaller parts if possible.
samples := wr.Timeseries[0].Samples
if len(samples) == 1 {
logger.Warnf("dropping a sample for metric with too long labels exceeding -remoteWrite.maxBlockSize=%d bytes", maxUnpackedBlockSize.N)
return true
}
n := len(samples) / 2
wr.Timeseries[0].Samples = samples[:n]
if !tryPushWriteRequest(wr, tryPushBlock, isVMRemoteWrite) {
wr.Timeseries[0].Samples = samples
return false
}
wr.Timeseries[0].Samples = samples[n:]
if !tryPushWriteRequest(wr, tryPushBlock, isVMRemoteWrite) {
wr.Timeseries[0].Samples = samples
return false
}
wr.Timeseries[0].Samples = samples
return true
}
timeseries := wr.Timeseries
n := len(timeseries) / 2
wr.Timeseries = timeseries[:n]
if !tryPushWriteRequest(wr, tryPushBlock, isVMRemoteWrite) {
wr.Timeseries = timeseries
return false
}
wr.Timeseries = timeseries[n:]
if !tryPushWriteRequest(wr, tryPushBlock, isVMRemoteWrite) {
wr.Timeseries = timeseries
return false
}
wr.Timeseries = timeseries
return true
}
var (
blockSizeBytes = metrics.NewHistogram(`vmagent_remotewrite_block_size_bytes`)
blockSizeRows = metrics.NewHistogram(`vmagent_remotewrite_block_size_rows`)
)
var (
writeRequestBufPool bytesutil.ByteBufferPool
compressBufPool bytesutil.ByteBufferPool
)