VictoriaMetrics/app/vmagent/remotewrite/pendingseries.go
Ted Possible 0206a01d03
Exemplar support (#5982)
This code adds Exemplars to VMagent and the promscrape parser adhering
to OpenMetrics Specifications. This will allow forwarding of exemplars
to Prometheus and other third party apps that support OpenMetrics specs.

---------

Signed-off-by: Ted Possible <ted_possible@cable.comcast.com>
(cherry picked from commit 5a3abfa041)
2024-05-10 13:14:17 +02:00

325 lines
9.6 KiB
Go

package remotewrite
import (
"flag"
"sync"
"sync/atomic"
"time"
"github.com/VictoriaMetrics/VictoriaMetrics/lib/bytesutil"
"github.com/VictoriaMetrics/VictoriaMetrics/lib/cgroup"
"github.com/VictoriaMetrics/VictoriaMetrics/lib/decimal"
"github.com/VictoriaMetrics/VictoriaMetrics/lib/encoding/zstd"
"github.com/VictoriaMetrics/VictoriaMetrics/lib/fasttime"
"github.com/VictoriaMetrics/VictoriaMetrics/lib/flagutil"
"github.com/VictoriaMetrics/VictoriaMetrics/lib/logger"
"github.com/VictoriaMetrics/VictoriaMetrics/lib/persistentqueue"
"github.com/VictoriaMetrics/VictoriaMetrics/lib/prompbmarshal"
"github.com/VictoriaMetrics/VictoriaMetrics/lib/promrelabel"
"github.com/VictoriaMetrics/VictoriaMetrics/lib/timeutil"
"github.com/VictoriaMetrics/metrics"
"github.com/golang/snappy"
)
var (
flushInterval = flag.Duration("remoteWrite.flushInterval", time.Second, "Interval for flushing the data to remote storage. "+
"This option takes effect only when less than 10K data points per second are pushed to -remoteWrite.url")
maxUnpackedBlockSize = flagutil.NewBytes("remoteWrite.maxBlockSize", 8*1024*1024, "The maximum block size to send to remote storage. Bigger blocks may improve performance at the cost of the increased memory usage. See also -remoteWrite.maxRowsPerBlock")
maxRowsPerBlock = flag.Int("remoteWrite.maxRowsPerBlock", 10000, "The maximum number of samples to send in each block to remote storage. Higher number may improve performance at the cost of the increased memory usage. See also -remoteWrite.maxBlockSize")
vmProtoCompressLevel = flag.Int("remoteWrite.vmProtoCompressLevel", 0, "The compression level for VictoriaMetrics remote write protocol. "+
"Higher values reduce network traffic at the cost of higher CPU usage. Negative values reduce CPU usage at the cost of increased network traffic. "+
"See https://docs.victoriametrics.com/vmagent/#victoriametrics-remote-write-protocol")
)
type pendingSeries struct {
mu sync.Mutex
wr writeRequest
stopCh chan struct{}
periodicFlusherWG sync.WaitGroup
}
func newPendingSeries(fq *persistentqueue.FastQueue, isVMRemoteWrite bool, significantFigures, roundDigits int) *pendingSeries {
var ps pendingSeries
ps.wr.fq = fq
ps.wr.isVMRemoteWrite = isVMRemoteWrite
ps.wr.significantFigures = significantFigures
ps.wr.roundDigits = roundDigits
ps.stopCh = make(chan struct{})
ps.periodicFlusherWG.Add(1)
go func() {
defer ps.periodicFlusherWG.Done()
ps.periodicFlusher()
}()
return &ps
}
func (ps *pendingSeries) MustStop() {
close(ps.stopCh)
ps.periodicFlusherWG.Wait()
}
func (ps *pendingSeries) TryPush(tss []prompbmarshal.TimeSeries) bool {
ps.mu.Lock()
ok := ps.wr.tryPush(tss)
ps.mu.Unlock()
return ok
}
func (ps *pendingSeries) periodicFlusher() {
flushSeconds := int64(flushInterval.Seconds())
if flushSeconds <= 0 {
flushSeconds = 1
}
d := timeutil.AddJitterToDuration(*flushInterval)
ticker := time.NewTicker(d)
defer ticker.Stop()
for {
select {
case <-ps.stopCh:
ps.mu.Lock()
ps.wr.mustFlushOnStop()
ps.mu.Unlock()
return
case <-ticker.C:
if fasttime.UnixTimestamp()-ps.wr.lastFlushTime.Load() < uint64(flushSeconds) {
continue
}
}
ps.mu.Lock()
_ = ps.wr.tryFlush()
ps.mu.Unlock()
}
}
type writeRequest struct {
lastFlushTime atomic.Uint64
// The queue to send blocks to.
fq *persistentqueue.FastQueue
// Whether to encode the write request with VictoriaMetrics remote write protocol.
isVMRemoteWrite bool
// How many significant figures must be left before sending the writeRequest to fq.
significantFigures int
// How many decimal digits after point must be left before sending the writeRequest to fq.
roundDigits int
wr prompbmarshal.WriteRequest
tss []prompbmarshal.TimeSeries
labels []prompbmarshal.Label
samples []prompbmarshal.Sample
exemplars []prompbmarshal.Exemplar
// buf holds labels data
buf []byte
}
func (wr *writeRequest) reset() {
// Do not reset lastFlushTime, fq, isVMRemoteWrite, significantFigures and roundDigits, since they are re-used.
wr.wr.Timeseries = nil
clear(wr.tss)
wr.tss = wr.tss[:0]
promrelabel.CleanLabels(wr.labels)
wr.labels = wr.labels[:0]
wr.samples = wr.samples[:0]
wr.exemplars = wr.exemplars[:0]
wr.buf = wr.buf[:0]
}
// mustFlushOnStop force pushes wr data into wr.fq
//
// This is needed in order to properly save in-memory data to persistent queue on graceful shutdown.
func (wr *writeRequest) mustFlushOnStop() {
wr.wr.Timeseries = wr.tss
if !tryPushWriteRequest(&wr.wr, wr.mustWriteBlock, wr.isVMRemoteWrite) {
logger.Panicf("BUG: final flush must always return true")
}
wr.reset()
}
func (wr *writeRequest) mustWriteBlock(block []byte) bool {
wr.fq.MustWriteBlockIgnoreDisabledPQ(block)
return true
}
func (wr *writeRequest) tryFlush() bool {
wr.wr.Timeseries = wr.tss
wr.lastFlushTime.Store(fasttime.UnixTimestamp())
if !tryPushWriteRequest(&wr.wr, wr.fq.TryWriteBlock, wr.isVMRemoteWrite) {
return false
}
wr.reset()
return true
}
func adjustSampleValues(samples []prompbmarshal.Sample, significantFigures, roundDigits int) {
if n := significantFigures; n > 0 {
for i := range samples {
s := &samples[i]
s.Value = decimal.RoundToSignificantFigures(s.Value, n)
}
}
if n := roundDigits; n < 100 {
for i := range samples {
s := &samples[i]
s.Value = decimal.RoundToDecimalDigits(s.Value, n)
}
}
}
func (wr *writeRequest) tryPush(src []prompbmarshal.TimeSeries) bool {
tssDst := wr.tss
maxSamplesPerBlock := *maxRowsPerBlock
// Allow up to 10x of labels per each block on average.
maxLabelsPerBlock := 10 * maxSamplesPerBlock
for i := range src {
if len(wr.samples) >= maxSamplesPerBlock || len(wr.labels) >= maxLabelsPerBlock {
wr.tss = tssDst
if !wr.tryFlush() {
return false
}
tssDst = wr.tss
}
tsSrc := &src[i]
adjustSampleValues(tsSrc.Samples, wr.significantFigures, wr.roundDigits)
tssDst = append(tssDst, prompbmarshal.TimeSeries{})
wr.copyTimeSeries(&tssDst[len(tssDst)-1], tsSrc)
}
wr.tss = tssDst
return true
}
func (wr *writeRequest) copyTimeSeries(dst, src *prompbmarshal.TimeSeries) {
labelsDst := wr.labels
labelsLen := len(wr.labels)
samplesDst := wr.samples
exemplarsDst := wr.exemplars
buf := wr.buf
for i := range src.Labels {
labelsDst = append(labelsDst, prompbmarshal.Label{})
dstLabel := &labelsDst[len(labelsDst)-1]
srcLabel := &src.Labels[i]
buf = append(buf, srcLabel.Name...)
dstLabel.Name = bytesutil.ToUnsafeString(buf[len(buf)-len(srcLabel.Name):])
buf = append(buf, srcLabel.Value...)
dstLabel.Value = bytesutil.ToUnsafeString(buf[len(buf)-len(srcLabel.Value):])
}
dst.Labels = labelsDst[labelsLen:]
samplesDst = append(samplesDst, src.Samples...)
dst.Samples = samplesDst[len(samplesDst)-len(src.Samples):]
exemplarsDst = append(exemplarsDst, src.Exemplars...)
dst.Exemplars = exemplarsDst[len(exemplarsDst)-len(src.Exemplars):]
wr.samples = samplesDst
wr.labels = labelsDst
wr.exemplars = exemplarsDst
wr.buf = buf
}
// marshalConcurrency limits the maximum number of concurrent workers, which marshal and compress WriteRequest.
var marshalConcurrencyCh = make(chan struct{}, cgroup.AvailableCPUs())
func tryPushWriteRequest(wr *prompbmarshal.WriteRequest, tryPushBlock func(block []byte) bool, isVMRemoteWrite bool) bool {
if len(wr.Timeseries) == 0 {
// Nothing to push
return true
}
marshalConcurrencyCh <- struct{}{}
bb := writeRequestBufPool.Get()
bb.B = wr.MarshalProtobuf(bb.B[:0])
if len(bb.B) <= maxUnpackedBlockSize.IntN() {
zb := compressBufPool.Get()
if isVMRemoteWrite {
zb.B = zstd.CompressLevel(zb.B[:0], bb.B, *vmProtoCompressLevel)
} else {
zb.B = snappy.Encode(zb.B[:cap(zb.B)], bb.B)
}
writeRequestBufPool.Put(bb)
<-marshalConcurrencyCh
if len(zb.B) <= persistentqueue.MaxBlockSize {
zbLen := len(zb.B)
ok := tryPushBlock(zb.B)
compressBufPool.Put(zb)
if ok {
blockSizeRows.Update(float64(len(wr.Timeseries)))
blockSizeBytes.Update(float64(zbLen))
}
return ok
}
compressBufPool.Put(zb)
} else {
writeRequestBufPool.Put(bb)
<-marshalConcurrencyCh
}
// Too big block. Recursively split it into smaller parts if possible.
if len(wr.Timeseries) == 1 {
// A single time series left. Recursively split its samples into smaller parts if possible.
samples := wr.Timeseries[0].Samples
exemplars := wr.Timeseries[0].Exemplars
if len(samples) == 1 {
logger.Warnf("dropping a sample for metric with too long labels exceeding -remoteWrite.maxBlockSize=%d bytes", maxUnpackedBlockSize.N)
return true
}
n := len(samples) / 2
wr.Timeseries[0].Samples = samples[:n]
if !tryPushWriteRequest(wr, tryPushBlock, isVMRemoteWrite) {
wr.Timeseries[0].Samples = samples
return false
}
wr.Timeseries[0].Samples = samples[n:]
// We do not want to send exemplars twice
wr.Timeseries[0].Exemplars = nil
if !tryPushWriteRequest(wr, tryPushBlock, isVMRemoteWrite) {
wr.Timeseries[0].Samples = samples
wr.Timeseries[0].Exemplars = exemplars
return false
}
wr.Timeseries[0].Samples = samples
wr.Timeseries[0].Exemplars = exemplars
return true
}
timeseries := wr.Timeseries
n := len(timeseries) / 2
wr.Timeseries = timeseries[:n]
if !tryPushWriteRequest(wr, tryPushBlock, isVMRemoteWrite) {
wr.Timeseries = timeseries
return false
}
wr.Timeseries = timeseries[n:]
if !tryPushWriteRequest(wr, tryPushBlock, isVMRemoteWrite) {
wr.Timeseries = timeseries
return false
}
wr.Timeseries = timeseries
return true
}
var (
blockSizeBytes = metrics.NewHistogram(`vmagent_remotewrite_block_size_bytes`)
blockSizeRows = metrics.NewHistogram(`vmagent_remotewrite_block_size_rows`)
)
var (
writeRequestBufPool bytesutil.ByteBufferPool
compressBufPool bytesutil.ByteBufferPool
)