mirror of
https://github.com/VictoriaMetrics/VictoriaMetrics.git
synced 2024-11-27 02:46:47 +01:00
9e16329b2f
This is a follow-up for 4856a4cf5a
192 lines
5.1 KiB
Go
192 lines
5.1 KiB
Go
package promql
|
|
|
|
import (
|
|
"fmt"
|
|
"math"
|
|
"reflect"
|
|
"runtime"
|
|
"sync"
|
|
"testing"
|
|
|
|
"github.com/VictoriaMetrics/VictoriaMetrics/app/vmselect/netstorage"
|
|
"github.com/VictoriaMetrics/metricsql"
|
|
)
|
|
|
|
func TestIncrementalAggr(t *testing.T) {
|
|
defaultTimestamps := []int64{100e3, 200e3, 300e3, 400e3}
|
|
values := [][]float64{
|
|
{1, nan, 2, nan},
|
|
{3, nan, nan, 4},
|
|
{nan, nan, 5, 6},
|
|
{7, nan, 8, 9},
|
|
{4, nan, nan, nan},
|
|
{2, nan, 3, 2},
|
|
{0, nan, 1, 1},
|
|
}
|
|
tssSrc := make([]*timeseries, len(values))
|
|
for i, vs := range values {
|
|
ts := ×eries{
|
|
Timestamps: defaultTimestamps,
|
|
Values: vs,
|
|
}
|
|
tssSrc[i] = ts
|
|
}
|
|
|
|
copyTimeseries := func(tssSrc []*timeseries) []*timeseries {
|
|
tssDst := make([]*timeseries, len(tssSrc))
|
|
for i, tsSrc := range tssSrc {
|
|
var tsDst timeseries
|
|
tsDst.CopyFromShallowTimestamps(tsSrc)
|
|
tssDst[i] = &tsDst
|
|
}
|
|
return tssDst
|
|
}
|
|
|
|
f := func(name string, valuesExpected []float64) {
|
|
t.Helper()
|
|
callbacks := getIncrementalAggrFuncCallbacks(name)
|
|
ae := &metricsql.AggrFuncExpr{
|
|
Name: name,
|
|
}
|
|
tssExpected := []*timeseries{{
|
|
Timestamps: defaultTimestamps,
|
|
Values: valuesExpected,
|
|
}}
|
|
// run the test multiple times to make sure there are no side effects on concurrency
|
|
for i := 0; i < 10; i++ {
|
|
iafc := newIncrementalAggrFuncContext(ae, callbacks)
|
|
tssSrcCopy := copyTimeseries(tssSrc)
|
|
if err := testIncrementalParallelAggr(iafc, tssSrcCopy, tssExpected); err != nil {
|
|
t.Fatalf("unexpected error on iteration %d: %s", i, err)
|
|
}
|
|
}
|
|
}
|
|
|
|
t.Run("sum", func(t *testing.T) {
|
|
t.Parallel()
|
|
valuesExpected := []float64{17, nan, 19, 22}
|
|
f("sum", valuesExpected)
|
|
})
|
|
t.Run("min", func(t *testing.T) {
|
|
t.Parallel()
|
|
valuesExpected := []float64{0, nan, 1, 1}
|
|
f("min", valuesExpected)
|
|
})
|
|
t.Run("max", func(t *testing.T) {
|
|
t.Parallel()
|
|
valuesExpected := []float64{7, nan, 8, 9}
|
|
f("max", valuesExpected)
|
|
})
|
|
t.Run("avg", func(t *testing.T) {
|
|
t.Parallel()
|
|
valuesExpected := []float64{2.8333333333333335, nan, 3.8, 4.4}
|
|
f("avg", valuesExpected)
|
|
})
|
|
t.Run("count", func(t *testing.T) {
|
|
t.Parallel()
|
|
valuesExpected := []float64{6, nan, 5, 5}
|
|
f("count", valuesExpected)
|
|
})
|
|
t.Run("sum2", func(t *testing.T) {
|
|
t.Parallel()
|
|
valuesExpected := []float64{79, nan, 103, 138}
|
|
f("sum2", valuesExpected)
|
|
})
|
|
t.Run("geomean", func(t *testing.T) {
|
|
t.Parallel()
|
|
valuesExpected := []float64{0, nan, 2.9925557394776896, 3.365865436338599}
|
|
f("geomean", valuesExpected)
|
|
})
|
|
}
|
|
|
|
func testIncrementalParallelAggr(iafc *incrementalAggrFuncContext, tssSrc, tssExpected []*timeseries) error {
|
|
workersCount := netstorage.MaxWorkers()
|
|
tsCh := make(chan *timeseries)
|
|
var wg sync.WaitGroup
|
|
wg.Add(workersCount)
|
|
for i := 0; i < workersCount; i++ {
|
|
go func(workerID uint) {
|
|
defer wg.Done()
|
|
for ts := range tsCh {
|
|
runtime.Gosched() // allow other goroutines performing the work
|
|
iafc.updateTimeseries(ts, workerID)
|
|
}
|
|
}(uint(i))
|
|
}
|
|
for _, ts := range tssSrc {
|
|
tsCh <- ts
|
|
}
|
|
close(tsCh)
|
|
wg.Wait()
|
|
tssActual := iafc.finalizeTimeseries()
|
|
if err := expectTimeseriesEqual(tssActual, tssExpected); err != nil {
|
|
return fmt.Errorf("%w; tssActual=%v, tssExpected=%v", err, tssActual, tssExpected)
|
|
}
|
|
return nil
|
|
}
|
|
|
|
func expectTimeseriesEqual(actual, expected []*timeseries) error {
|
|
if len(actual) != len(expected) {
|
|
return fmt.Errorf("unexpected number of time series; got %d; want %d", len(actual), len(expected))
|
|
}
|
|
mActual := timeseriesToMap(actual)
|
|
mExpected := timeseriesToMap(expected)
|
|
if len(mActual) != len(mExpected) {
|
|
return fmt.Errorf("unexpected number of time series after converting to map; got %d; want %d", len(mActual), len(mExpected))
|
|
}
|
|
for k, tsExpected := range mExpected {
|
|
tsActual := mActual[k]
|
|
if tsActual == nil {
|
|
return fmt.Errorf("missing time series for key=%q", k)
|
|
}
|
|
if err := expectTsEqual(tsActual, tsExpected); err != nil {
|
|
return err
|
|
}
|
|
}
|
|
return nil
|
|
}
|
|
|
|
func timeseriesToMap(tss []*timeseries) map[string]*timeseries {
|
|
m := make(map[string]*timeseries, len(tss))
|
|
for _, ts := range tss {
|
|
k := ts.MetricName.Marshal(nil)
|
|
m[string(k)] = ts
|
|
}
|
|
return m
|
|
}
|
|
|
|
func expectTsEqual(actual, expected *timeseries) error {
|
|
mnActual := actual.MetricName.Marshal(nil)
|
|
mnExpected := expected.MetricName.Marshal(nil)
|
|
if string(mnActual) != string(mnExpected) {
|
|
return fmt.Errorf("unexpected metric name; got %q; want %q", mnActual, mnExpected)
|
|
}
|
|
if !reflect.DeepEqual(actual.Timestamps, expected.Timestamps) {
|
|
return fmt.Errorf("unexpected timestamps; got %v; want %v", actual.Timestamps, expected.Timestamps)
|
|
}
|
|
if err := compareValues(actual.Values, expected.Values); err != nil {
|
|
return fmt.Errorf("%w; actual %v; expected %v", err, actual.Values, expected.Values)
|
|
}
|
|
return nil
|
|
}
|
|
|
|
func compareValues(vs1, vs2 []float64) error {
|
|
if len(vs1) != len(vs2) {
|
|
return fmt.Errorf("unexpected number of values; got %d; want %d", len(vs1), len(vs2))
|
|
}
|
|
for i, v1 := range vs1 {
|
|
v2 := vs2[i]
|
|
if math.IsNaN(v1) {
|
|
if !math.IsNaN(v2) {
|
|
return fmt.Errorf("unexpected value; got %v; want %v", v1, v2)
|
|
}
|
|
continue
|
|
}
|
|
eps := math.Abs(v1 - v2)
|
|
if eps > 1e-14 {
|
|
return fmt.Errorf("unexpected value; got %v; want %v", v1, v2)
|
|
}
|
|
}
|
|
return nil
|
|
}
|