mirror of
https://github.com/VictoriaMetrics/VictoriaMetrics.git
synced 2024-12-26 04:10:08 +01:00
002c028f22
vmctl: support of the remote read protocol Signed-off-by: hagen1778 <roman@victoriametrics.com> Co-authored-by: hagen1778 <roman@victoriametrics.com>
555 lines
12 KiB
Go
555 lines
12 KiB
Go
// Copyright 2011 The Go Authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style
|
|
// license that can be found in the LICENSE file.
|
|
|
|
package regexp
|
|
|
|
import (
|
|
"io"
|
|
"regexp/syntax"
|
|
"sync"
|
|
)
|
|
|
|
// A queue is a 'sparse array' holding pending threads of execution.
|
|
// See https://research.swtch.com/2008/03/using-uninitialized-memory-for-fun-and.html
|
|
type queue struct {
|
|
sparse []uint32
|
|
dense []entry
|
|
}
|
|
|
|
// An entry is an entry on a queue.
|
|
// It holds both the instruction pc and the actual thread.
|
|
// Some queue entries are just place holders so that the machine
|
|
// knows it has considered that pc. Such entries have t == nil.
|
|
type entry struct {
|
|
pc uint32
|
|
t *thread
|
|
}
|
|
|
|
// A thread is the state of a single path through the machine:
|
|
// an instruction and a corresponding capture array.
|
|
// See https://swtch.com/~rsc/regexp/regexp2.html
|
|
type thread struct {
|
|
inst *syntax.Inst
|
|
cap []int
|
|
}
|
|
|
|
// A machine holds all the state during an NFA simulation for p.
|
|
type machine struct {
|
|
re *Regexp // corresponding Regexp
|
|
p *syntax.Prog // compiled program
|
|
q0, q1 queue // two queues for runq, nextq
|
|
pool []*thread // pool of available threads
|
|
matched bool // whether a match was found
|
|
matchcap []int // capture information for the match
|
|
|
|
inputs inputs
|
|
}
|
|
|
|
type inputs struct {
|
|
// cached inputs, to avoid allocation
|
|
bytes inputBytes
|
|
string inputString
|
|
reader inputReader
|
|
}
|
|
|
|
func (i *inputs) newBytes(b []byte) input {
|
|
i.bytes.str = b
|
|
return &i.bytes
|
|
}
|
|
|
|
func (i *inputs) newString(s string) input {
|
|
i.string.str = s
|
|
return &i.string
|
|
}
|
|
|
|
func (i *inputs) newReader(r io.RuneReader) input {
|
|
i.reader.r = r
|
|
i.reader.atEOT = false
|
|
i.reader.pos = 0
|
|
return &i.reader
|
|
}
|
|
|
|
func (i *inputs) clear() {
|
|
// We need to clear 1 of these.
|
|
// Avoid the expense of clearing the others (pointer write barrier).
|
|
if i.bytes.str != nil {
|
|
i.bytes.str = nil
|
|
} else if i.reader.r != nil {
|
|
i.reader.r = nil
|
|
} else {
|
|
i.string.str = ""
|
|
}
|
|
}
|
|
|
|
func (i *inputs) init(r io.RuneReader, b []byte, s string) (input, int) {
|
|
if r != nil {
|
|
return i.newReader(r), 0
|
|
}
|
|
if b != nil {
|
|
return i.newBytes(b), len(b)
|
|
}
|
|
return i.newString(s), len(s)
|
|
}
|
|
|
|
func (m *machine) init(ncap int) {
|
|
for _, t := range m.pool {
|
|
t.cap = t.cap[:ncap]
|
|
}
|
|
m.matchcap = m.matchcap[:ncap]
|
|
}
|
|
|
|
// alloc allocates a new thread with the given instruction.
|
|
// It uses the free pool if possible.
|
|
func (m *machine) alloc(i *syntax.Inst) *thread {
|
|
var t *thread
|
|
if n := len(m.pool); n > 0 {
|
|
t = m.pool[n-1]
|
|
m.pool = m.pool[:n-1]
|
|
} else {
|
|
t = new(thread)
|
|
t.cap = make([]int, len(m.matchcap), cap(m.matchcap))
|
|
}
|
|
t.inst = i
|
|
return t
|
|
}
|
|
|
|
// A lazyFlag is a lazily-evaluated syntax.EmptyOp,
|
|
// for checking zero-width flags like ^ $ \A \z \B \b.
|
|
// It records the pair of relevant runes and does not
|
|
// determine the implied flags until absolutely necessary
|
|
// (most of the time, that means never).
|
|
type lazyFlag uint64
|
|
|
|
func newLazyFlag(r1, r2 rune) lazyFlag {
|
|
return lazyFlag(uint64(r1)<<32 | uint64(uint32(r2)))
|
|
}
|
|
|
|
func (f lazyFlag) match(op syntax.EmptyOp) bool {
|
|
if op == 0 {
|
|
return true
|
|
}
|
|
r1 := rune(f >> 32)
|
|
if op&syntax.EmptyBeginLine != 0 {
|
|
if r1 != '\n' && r1 >= 0 {
|
|
return false
|
|
}
|
|
op &^= syntax.EmptyBeginLine
|
|
}
|
|
if op&syntax.EmptyBeginText != 0 {
|
|
if r1 >= 0 {
|
|
return false
|
|
}
|
|
op &^= syntax.EmptyBeginText
|
|
}
|
|
if op == 0 {
|
|
return true
|
|
}
|
|
r2 := rune(f)
|
|
if op&syntax.EmptyEndLine != 0 {
|
|
if r2 != '\n' && r2 >= 0 {
|
|
return false
|
|
}
|
|
op &^= syntax.EmptyEndLine
|
|
}
|
|
if op&syntax.EmptyEndText != 0 {
|
|
if r2 >= 0 {
|
|
return false
|
|
}
|
|
op &^= syntax.EmptyEndText
|
|
}
|
|
if op == 0 {
|
|
return true
|
|
}
|
|
if syntax.IsWordChar(r1) != syntax.IsWordChar(r2) {
|
|
op &^= syntax.EmptyWordBoundary
|
|
} else {
|
|
op &^= syntax.EmptyNoWordBoundary
|
|
}
|
|
return op == 0
|
|
}
|
|
|
|
// match runs the machine over the input starting at pos.
|
|
// It reports whether a match was found.
|
|
// If so, m.matchcap holds the submatch information.
|
|
func (m *machine) match(i input, pos int) bool {
|
|
startCond := m.re.cond
|
|
if startCond == ^syntax.EmptyOp(0) { // impossible
|
|
return false
|
|
}
|
|
m.matched = false
|
|
for i := range m.matchcap {
|
|
m.matchcap[i] = -1
|
|
}
|
|
runq, nextq := &m.q0, &m.q1
|
|
r, r1 := endOfText, endOfText
|
|
width, width1 := 0, 0
|
|
r, width = i.step(pos)
|
|
if r != endOfText {
|
|
r1, width1 = i.step(pos + width)
|
|
}
|
|
var flag lazyFlag
|
|
if pos == 0 {
|
|
flag = newLazyFlag(-1, r)
|
|
} else {
|
|
flag = i.context(pos)
|
|
}
|
|
for {
|
|
if len(runq.dense) == 0 {
|
|
if startCond&syntax.EmptyBeginText != 0 && pos != 0 {
|
|
// Anchored match, past beginning of text.
|
|
break
|
|
}
|
|
if m.matched {
|
|
// Have match; finished exploring alternatives.
|
|
break
|
|
}
|
|
if len(m.re.prefix) > 0 && r1 != m.re.prefixRune && i.canCheckPrefix() {
|
|
// Match requires literal prefix; fast search for it.
|
|
advance := i.index(m.re, pos)
|
|
if advance < 0 {
|
|
break
|
|
}
|
|
pos += advance
|
|
r, width = i.step(pos)
|
|
r1, width1 = i.step(pos + width)
|
|
}
|
|
}
|
|
if !m.matched {
|
|
if len(m.matchcap) > 0 {
|
|
m.matchcap[0] = pos
|
|
}
|
|
m.add(runq, uint32(m.p.Start), pos, m.matchcap, &flag, nil)
|
|
}
|
|
flag = newLazyFlag(r, r1)
|
|
m.step(runq, nextq, pos, pos+width, r, &flag)
|
|
if width == 0 {
|
|
break
|
|
}
|
|
if len(m.matchcap) == 0 && m.matched {
|
|
// Found a match and not paying attention
|
|
// to where it is, so any match will do.
|
|
break
|
|
}
|
|
pos += width
|
|
r, width = r1, width1
|
|
if r != endOfText {
|
|
r1, width1 = i.step(pos + width)
|
|
}
|
|
runq, nextq = nextq, runq
|
|
}
|
|
m.clear(nextq)
|
|
return m.matched
|
|
}
|
|
|
|
// clear frees all threads on the thread queue.
|
|
func (m *machine) clear(q *queue) {
|
|
for _, d := range q.dense {
|
|
if d.t != nil {
|
|
m.pool = append(m.pool, d.t)
|
|
}
|
|
}
|
|
q.dense = q.dense[:0]
|
|
}
|
|
|
|
// step executes one step of the machine, running each of the threads
|
|
// on runq and appending new threads to nextq.
|
|
// The step processes the rune c (which may be endOfText),
|
|
// which starts at position pos and ends at nextPos.
|
|
// nextCond gives the setting for the empty-width flags after c.
|
|
func (m *machine) step(runq, nextq *queue, pos, nextPos int, c rune, nextCond *lazyFlag) {
|
|
longest := m.re.longest
|
|
for j := 0; j < len(runq.dense); j++ {
|
|
d := &runq.dense[j]
|
|
t := d.t
|
|
if t == nil {
|
|
continue
|
|
}
|
|
if longest && m.matched && len(t.cap) > 0 && m.matchcap[0] < t.cap[0] {
|
|
m.pool = append(m.pool, t)
|
|
continue
|
|
}
|
|
i := t.inst
|
|
add := false
|
|
switch i.Op {
|
|
default:
|
|
panic("bad inst")
|
|
|
|
case syntax.InstMatch:
|
|
if len(t.cap) > 0 && (!longest || !m.matched || m.matchcap[1] < pos) {
|
|
t.cap[1] = pos
|
|
copy(m.matchcap, t.cap)
|
|
}
|
|
if !longest {
|
|
// First-match mode: cut off all lower-priority threads.
|
|
for _, d := range runq.dense[j+1:] {
|
|
if d.t != nil {
|
|
m.pool = append(m.pool, d.t)
|
|
}
|
|
}
|
|
runq.dense = runq.dense[:0]
|
|
}
|
|
m.matched = true
|
|
|
|
case syntax.InstRune:
|
|
add = i.MatchRune(c)
|
|
case syntax.InstRune1:
|
|
add = c == i.Rune[0]
|
|
case syntax.InstRuneAny:
|
|
add = true
|
|
case syntax.InstRuneAnyNotNL:
|
|
add = c != '\n'
|
|
}
|
|
if add {
|
|
t = m.add(nextq, i.Out, nextPos, t.cap, nextCond, t)
|
|
}
|
|
if t != nil {
|
|
m.pool = append(m.pool, t)
|
|
}
|
|
}
|
|
runq.dense = runq.dense[:0]
|
|
}
|
|
|
|
// add adds an entry to q for pc, unless the q already has such an entry.
|
|
// It also recursively adds an entry for all instructions reachable from pc by following
|
|
// empty-width conditions satisfied by cond. pos gives the current position
|
|
// in the input.
|
|
func (m *machine) add(q *queue, pc uint32, pos int, cap []int, cond *lazyFlag, t *thread) *thread {
|
|
Again:
|
|
if pc == 0 {
|
|
return t
|
|
}
|
|
if j := q.sparse[pc]; j < uint32(len(q.dense)) && q.dense[j].pc == pc {
|
|
return t
|
|
}
|
|
|
|
j := len(q.dense)
|
|
q.dense = q.dense[:j+1]
|
|
d := &q.dense[j]
|
|
d.t = nil
|
|
d.pc = pc
|
|
q.sparse[pc] = uint32(j)
|
|
|
|
i := &m.p.Inst[pc]
|
|
switch i.Op {
|
|
default:
|
|
panic("unhandled")
|
|
case syntax.InstFail:
|
|
// nothing
|
|
case syntax.InstAlt, syntax.InstAltMatch:
|
|
t = m.add(q, i.Out, pos, cap, cond, t)
|
|
pc = i.Arg
|
|
goto Again
|
|
case syntax.InstEmptyWidth:
|
|
if cond.match(syntax.EmptyOp(i.Arg)) {
|
|
pc = i.Out
|
|
goto Again
|
|
}
|
|
case syntax.InstNop:
|
|
pc = i.Out
|
|
goto Again
|
|
case syntax.InstCapture:
|
|
if int(i.Arg) < len(cap) {
|
|
opos := cap[i.Arg]
|
|
cap[i.Arg] = pos
|
|
m.add(q, i.Out, pos, cap, cond, nil)
|
|
cap[i.Arg] = opos
|
|
} else {
|
|
pc = i.Out
|
|
goto Again
|
|
}
|
|
case syntax.InstMatch, syntax.InstRune, syntax.InstRune1, syntax.InstRuneAny, syntax.InstRuneAnyNotNL:
|
|
if t == nil {
|
|
t = m.alloc(i)
|
|
} else {
|
|
t.inst = i
|
|
}
|
|
if len(cap) > 0 && &t.cap[0] != &cap[0] {
|
|
copy(t.cap, cap)
|
|
}
|
|
d.t = t
|
|
t = nil
|
|
}
|
|
return t
|
|
}
|
|
|
|
type onePassMachine struct {
|
|
inputs inputs
|
|
matchcap []int
|
|
}
|
|
|
|
var onePassPool sync.Pool
|
|
|
|
func newOnePassMachine() *onePassMachine {
|
|
m, ok := onePassPool.Get().(*onePassMachine)
|
|
if !ok {
|
|
m = new(onePassMachine)
|
|
}
|
|
return m
|
|
}
|
|
|
|
func freeOnePassMachine(m *onePassMachine) {
|
|
m.inputs.clear()
|
|
onePassPool.Put(m)
|
|
}
|
|
|
|
// doOnePass implements r.doExecute using the one-pass execution engine.
|
|
func (re *Regexp) doOnePass(ir io.RuneReader, ib []byte, is string, pos, ncap int, dstCap []int) []int {
|
|
startCond := re.cond
|
|
if startCond == ^syntax.EmptyOp(0) { // impossible
|
|
return nil
|
|
}
|
|
|
|
m := newOnePassMachine()
|
|
if cap(m.matchcap) < ncap {
|
|
m.matchcap = make([]int, ncap)
|
|
} else {
|
|
m.matchcap = m.matchcap[:ncap]
|
|
}
|
|
|
|
matched := false
|
|
for i := range m.matchcap {
|
|
m.matchcap[i] = -1
|
|
}
|
|
|
|
i, _ := m.inputs.init(ir, ib, is)
|
|
|
|
r, r1 := endOfText, endOfText
|
|
width, width1 := 0, 0
|
|
r, width = i.step(pos)
|
|
if r != endOfText {
|
|
r1, width1 = i.step(pos + width)
|
|
}
|
|
var flag lazyFlag
|
|
if pos == 0 {
|
|
flag = newLazyFlag(-1, r)
|
|
} else {
|
|
flag = i.context(pos)
|
|
}
|
|
pc := re.onepass.Start
|
|
inst := &re.onepass.Inst[pc]
|
|
// If there is a simple literal prefix, skip over it.
|
|
if pos == 0 && flag.match(syntax.EmptyOp(inst.Arg)) &&
|
|
len(re.prefix) > 0 && i.canCheckPrefix() {
|
|
// Match requires literal prefix; fast search for it.
|
|
if !i.hasPrefix(re) {
|
|
goto Return
|
|
}
|
|
pos += len(re.prefix)
|
|
r, width = i.step(pos)
|
|
r1, width1 = i.step(pos + width)
|
|
flag = i.context(pos)
|
|
pc = int(re.prefixEnd)
|
|
}
|
|
for {
|
|
inst = &re.onepass.Inst[pc]
|
|
pc = int(inst.Out)
|
|
switch inst.Op {
|
|
default:
|
|
panic("bad inst")
|
|
case syntax.InstMatch:
|
|
matched = true
|
|
if len(m.matchcap) > 0 {
|
|
m.matchcap[0] = 0
|
|
m.matchcap[1] = pos
|
|
}
|
|
goto Return
|
|
case syntax.InstRune:
|
|
if !inst.MatchRune(r) {
|
|
goto Return
|
|
}
|
|
case syntax.InstRune1:
|
|
if r != inst.Rune[0] {
|
|
goto Return
|
|
}
|
|
case syntax.InstRuneAny:
|
|
// Nothing
|
|
case syntax.InstRuneAnyNotNL:
|
|
if r == '\n' {
|
|
goto Return
|
|
}
|
|
// peek at the input rune to see which branch of the Alt to take
|
|
case syntax.InstAlt, syntax.InstAltMatch:
|
|
pc = int(onePassNext(inst, r))
|
|
continue
|
|
case syntax.InstFail:
|
|
goto Return
|
|
case syntax.InstNop:
|
|
continue
|
|
case syntax.InstEmptyWidth:
|
|
if !flag.match(syntax.EmptyOp(inst.Arg)) {
|
|
goto Return
|
|
}
|
|
continue
|
|
case syntax.InstCapture:
|
|
if int(inst.Arg) < len(m.matchcap) {
|
|
m.matchcap[inst.Arg] = pos
|
|
}
|
|
continue
|
|
}
|
|
if width == 0 {
|
|
break
|
|
}
|
|
flag = newLazyFlag(r, r1)
|
|
pos += width
|
|
r, width = r1, width1
|
|
if r != endOfText {
|
|
r1, width1 = i.step(pos + width)
|
|
}
|
|
}
|
|
|
|
Return:
|
|
if !matched {
|
|
freeOnePassMachine(m)
|
|
return nil
|
|
}
|
|
|
|
dstCap = append(dstCap, m.matchcap...)
|
|
freeOnePassMachine(m)
|
|
return dstCap
|
|
}
|
|
|
|
// doMatch reports whether either r, b or s match the regexp.
|
|
func (re *Regexp) doMatch(r io.RuneReader, b []byte, s string) bool {
|
|
return re.doExecute(r, b, s, 0, 0, nil) != nil
|
|
}
|
|
|
|
// doExecute finds the leftmost match in the input, appends the position
|
|
// of its subexpressions to dstCap and returns dstCap.
|
|
//
|
|
// nil is returned if no matches are found and non-nil if matches are found.
|
|
func (re *Regexp) doExecute(r io.RuneReader, b []byte, s string, pos int, ncap int, dstCap []int) []int {
|
|
if dstCap == nil {
|
|
// Make sure 'return dstCap' is non-nil.
|
|
dstCap = arrayNoInts[:0:0]
|
|
}
|
|
|
|
if r == nil && len(b)+len(s) < re.minInputLen {
|
|
return nil
|
|
}
|
|
|
|
if re.onepass != nil {
|
|
return re.doOnePass(r, b, s, pos, ncap, dstCap)
|
|
}
|
|
if r == nil && len(b)+len(s) < re.maxBitStateLen {
|
|
return re.backtrack(b, s, pos, ncap, dstCap)
|
|
}
|
|
|
|
m := re.get()
|
|
i, _ := m.inputs.init(r, b, s)
|
|
|
|
m.init(ncap)
|
|
if !m.match(i, pos) {
|
|
re.put(m)
|
|
return nil
|
|
}
|
|
|
|
dstCap = append(dstCap, m.matchcap...)
|
|
re.put(m)
|
|
return dstCap
|
|
}
|
|
|
|
// arrayNoInts is returned by doExecute match if nil dstCap is passed
|
|
// to it with ncap=0.
|
|
var arrayNoInts [0]int
|