VictoriaMetrics/app/vmselect/promql/eval.go

870 lines
24 KiB
Go

package promql
import (
"flag"
"fmt"
"math"
"runtime"
"sync"
"github.com/VictoriaMetrics/VictoriaMetrics/app/vmselect/netstorage"
"github.com/VictoriaMetrics/VictoriaMetrics/lib/bytesutil"
"github.com/VictoriaMetrics/VictoriaMetrics/lib/logger"
"github.com/VictoriaMetrics/VictoriaMetrics/lib/memory"
"github.com/VictoriaMetrics/VictoriaMetrics/lib/storage"
"github.com/VictoriaMetrics/metrics"
"github.com/VictoriaMetrics/metricsql"
)
var (
disableCache = flag.Bool("search.disableCache", false, "Whether to disable response caching. This may be useful during data backfilling")
maxPointsPerTimeseries = flag.Int("search.maxPointsPerTimeseries", 30e3, "The maximum points per a single timeseries returned from the search")
)
// The minimum number of points per timeseries for enabling time rounding.
// This improves cache hit ratio for frequently requested queries over
// big time ranges.
const minTimeseriesPointsForTimeRounding = 50
// ValidateMaxPointsPerTimeseries checks the maximum number of points that
// may be returned per each time series.
//
// The number mustn't exceed -search.maxPointsPerTimeseries.
func ValidateMaxPointsPerTimeseries(start, end, step int64) error {
points := (end-start)/step + 1
if uint64(points) > uint64(*maxPointsPerTimeseries) {
return fmt.Errorf(`too many points for the given step=%d, start=%d and end=%d: %d; cannot exceed -search.maxPointsPerTimeseries=%d`,
step, start, end, uint64(points), *maxPointsPerTimeseries)
}
return nil
}
// AdjustStartEnd adjusts start and end values, so response caching may be enabled.
//
// See EvalConfig.mayCache for details.
func AdjustStartEnd(start, end, step int64) (int64, int64) {
if *disableCache {
// Do not adjust start and end values when cache is disabled.
// See https://github.com/VictoriaMetrics/VictoriaMetrics/issues/563
return start, end
}
points := (end-start)/step + 1
if points < minTimeseriesPointsForTimeRounding {
// Too small number of points for rounding.
return start, end
}
// Round start and end to values divisible by step in order
// to enable response caching (see EvalConfig.mayCache).
start, end = alignStartEnd(start, end, step)
// Make sure that the new number of points is the same as the initial number of points.
newPoints := (end-start)/step + 1
for newPoints > points {
end -= step
newPoints--
}
return start, end
}
func alignStartEnd(start, end, step int64) (int64, int64) {
// Round start to the nearest smaller value divisible by step.
start -= start % step
// Round end to the nearest bigger value divisible by step.
adjust := end % step
if adjust > 0 {
end += step - adjust
}
return start, end
}
// EvalConfig is the configuration required for query evaluation via Exec
type EvalConfig struct {
Start int64
End int64
Step int64
// QuotedRemoteAddr contains quoted remote address.
QuotedRemoteAddr string
Deadline netstorage.Deadline
MayCache bool
// LookbackDelta is analog to `-query.lookback-delta` from Prometheus.
LookbackDelta int64
timestamps []int64
timestampsOnce sync.Once
}
// newEvalConfig returns new EvalConfig copy from src.
func newEvalConfig(src *EvalConfig) *EvalConfig {
var ec EvalConfig
ec.Start = src.Start
ec.End = src.End
ec.Step = src.Step
ec.Deadline = src.Deadline
ec.MayCache = src.MayCache
ec.LookbackDelta = src.LookbackDelta
// do not copy src.timestamps - they must be generated again.
return &ec
}
func (ec *EvalConfig) validate() {
if ec.Start > ec.End {
logger.Panicf("BUG: start cannot exceed end; got %d vs %d", ec.Start, ec.End)
}
if ec.Step <= 0 {
logger.Panicf("BUG: step must be greater than 0; got %d", ec.Step)
}
}
func (ec *EvalConfig) mayCache() bool {
if *disableCache {
return false
}
if !ec.MayCache {
return false
}
if ec.Start%ec.Step != 0 {
return false
}
if ec.End%ec.Step != 0 {
return false
}
return true
}
func (ec *EvalConfig) getSharedTimestamps() []int64 {
ec.timestampsOnce.Do(ec.timestampsInit)
return ec.timestamps
}
func (ec *EvalConfig) timestampsInit() {
ec.timestamps = getTimestamps(ec.Start, ec.End, ec.Step)
}
func getTimestamps(start, end, step int64) []int64 {
// Sanity checks.
if step <= 0 {
logger.Panicf("BUG: Step must be bigger than 0; got %d", step)
}
if start > end {
logger.Panicf("BUG: Start cannot exceed End; got %d vs %d", start, end)
}
if err := ValidateMaxPointsPerTimeseries(start, end, step); err != nil {
logger.Panicf("BUG: %s; this must be validated before the call to getTimestamps", err)
}
// Prepare timestamps.
points := 1 + (end-start)/step
timestamps := make([]int64, points)
for i := range timestamps {
timestamps[i] = start
start += step
}
return timestamps
}
func evalExpr(ec *EvalConfig, e metricsql.Expr) ([]*timeseries, error) {
if me, ok := e.(*metricsql.MetricExpr); ok {
re := &metricsql.RollupExpr{
Expr: me,
}
rv, err := evalRollupFunc(ec, "default_rollup", rollupDefault, e, re, nil)
if err != nil {
return nil, fmt.Errorf(`cannot evaluate %q: %w`, me.AppendString(nil), err)
}
return rv, nil
}
if re, ok := e.(*metricsql.RollupExpr); ok {
rv, err := evalRollupFunc(ec, "default_rollup", rollupDefault, e, re, nil)
if err != nil {
return nil, fmt.Errorf(`cannot evaluate %q: %w`, re.AppendString(nil), err)
}
return rv, nil
}
if fe, ok := e.(*metricsql.FuncExpr); ok {
nrf := getRollupFunc(fe.Name)
if nrf == nil {
args, err := evalExprs(ec, fe.Args)
if err != nil {
return nil, err
}
tf := getTransformFunc(fe.Name)
if tf == nil {
return nil, fmt.Errorf(`unknown func %q`, fe.Name)
}
tfa := &transformFuncArg{
ec: ec,
fe: fe,
args: args,
}
rv, err := tf(tfa)
if err != nil {
return nil, fmt.Errorf(`cannot evaluate %q: %w`, fe.AppendString(nil), err)
}
return rv, nil
}
args, re, err := evalRollupFuncArgs(ec, fe)
if err != nil {
return nil, err
}
rf, err := nrf(args)
if err != nil {
return nil, err
}
rv, err := evalRollupFunc(ec, fe.Name, rf, e, re, nil)
if err != nil {
return nil, fmt.Errorf(`cannot evaluate %q: %w`, fe.AppendString(nil), err)
}
return rv, nil
}
if ae, ok := e.(*metricsql.AggrFuncExpr); ok {
if callbacks := getIncrementalAggrFuncCallbacks(ae.Name); callbacks != nil {
fe, nrf := tryGetArgRollupFuncWithMetricExpr(ae)
if fe != nil {
// There is an optimized path for calculating metricsql.AggrFuncExpr over rollupFunc over metricsql.MetricExpr.
// The optimized path saves RAM for aggregates over big number of time series.
args, re, err := evalRollupFuncArgs(ec, fe)
if err != nil {
return nil, err
}
rf, err := nrf(args)
if err != nil {
return nil, err
}
iafc := newIncrementalAggrFuncContext(ae, callbacks)
return evalRollupFunc(ec, fe.Name, rf, e, re, iafc)
}
}
args, err := evalExprs(ec, ae.Args)
if err != nil {
return nil, err
}
af := getAggrFunc(ae.Name)
if af == nil {
return nil, fmt.Errorf(`unknown func %q`, ae.Name)
}
afa := &aggrFuncArg{
ae: ae,
args: args,
ec: ec,
}
rv, err := af(afa)
if err != nil {
return nil, fmt.Errorf(`cannot evaluate %q: %w`, ae.AppendString(nil), err)
}
return rv, nil
}
if be, ok := e.(*metricsql.BinaryOpExpr); ok {
left, err := evalExpr(ec, be.Left)
if err != nil {
return nil, err
}
right, err := evalExpr(ec, be.Right)
if err != nil {
return nil, err
}
bf := getBinaryOpFunc(be.Op)
if bf == nil {
return nil, fmt.Errorf(`unknown binary op %q`, be.Op)
}
bfa := &binaryOpFuncArg{
be: be,
left: left,
right: right,
}
rv, err := bf(bfa)
if err != nil {
return nil, fmt.Errorf(`cannot evaluate %q: %w`, be.AppendString(nil), err)
}
return rv, nil
}
if ne, ok := e.(*metricsql.NumberExpr); ok {
rv := evalNumber(ec, ne.N)
return rv, nil
}
if se, ok := e.(*metricsql.StringExpr); ok {
rv := evalString(ec, se.S)
return rv, nil
}
return nil, fmt.Errorf("unexpected expression %q", e.AppendString(nil))
}
func tryGetArgRollupFuncWithMetricExpr(ae *metricsql.AggrFuncExpr) (*metricsql.FuncExpr, newRollupFunc) {
if len(ae.Args) != 1 {
return nil, nil
}
e := ae.Args[0]
// Make sure e contains one of the following:
// - metricExpr
// - metricExpr[d]
// - rollupFunc(metricExpr)
// - rollupFunc(metricExpr[d])
if me, ok := e.(*metricsql.MetricExpr); ok {
// e = metricExpr
if me.IsEmpty() {
return nil, nil
}
fe := &metricsql.FuncExpr{
Name: "default_rollup",
Args: []metricsql.Expr{me},
}
nrf := getRollupFunc(fe.Name)
return fe, nrf
}
if re, ok := e.(*metricsql.RollupExpr); ok {
if me, ok := re.Expr.(*metricsql.MetricExpr); !ok || me.IsEmpty() || re.ForSubquery() {
return nil, nil
}
// e = metricExpr[d]
fe := &metricsql.FuncExpr{
Name: "default_rollup",
Args: []metricsql.Expr{re},
}
nrf := getRollupFunc(fe.Name)
return fe, nrf
}
fe, ok := e.(*metricsql.FuncExpr)
if !ok {
return nil, nil
}
nrf := getRollupFunc(fe.Name)
if nrf == nil {
return nil, nil
}
rollupArgIdx := getRollupArgIdx(fe.Name)
if rollupArgIdx >= len(fe.Args) {
// Incorrect number of args for rollup func.
return nil, nil
}
arg := fe.Args[rollupArgIdx]
if me, ok := arg.(*metricsql.MetricExpr); ok {
if me.IsEmpty() {
return nil, nil
}
// e = rollupFunc(metricExpr)
return &metricsql.FuncExpr{
Name: fe.Name,
Args: []metricsql.Expr{me},
}, nrf
}
if re, ok := arg.(*metricsql.RollupExpr); ok {
if me, ok := re.Expr.(*metricsql.MetricExpr); !ok || me.IsEmpty() || re.ForSubquery() {
return nil, nil
}
// e = rollupFunc(metricExpr[d])
return fe, nrf
}
return nil, nil
}
func evalExprs(ec *EvalConfig, es []metricsql.Expr) ([][]*timeseries, error) {
var rvs [][]*timeseries
for _, e := range es {
rv, err := evalExpr(ec, e)
if err != nil {
return nil, err
}
rvs = append(rvs, rv)
}
return rvs, nil
}
func evalRollupFuncArgs(ec *EvalConfig, fe *metricsql.FuncExpr) ([]interface{}, *metricsql.RollupExpr, error) {
var re *metricsql.RollupExpr
rollupArgIdx := getRollupArgIdx(fe.Name)
if len(fe.Args) <= rollupArgIdx {
return nil, nil, fmt.Errorf("expecting at least %d args to %q; got %d args; expr: %q", rollupArgIdx+1, fe.Name, len(fe.Args), fe.AppendString(nil))
}
args := make([]interface{}, len(fe.Args))
for i, arg := range fe.Args {
if i == rollupArgIdx {
re = getRollupExprArg(arg)
args[i] = re
continue
}
ts, err := evalExpr(ec, arg)
if err != nil {
return nil, nil, fmt.Errorf("cannot evaluate arg #%d for %q: %w", i+1, fe.AppendString(nil), err)
}
args[i] = ts
}
return args, re, nil
}
func getRollupExprArg(arg metricsql.Expr) *metricsql.RollupExpr {
re, ok := arg.(*metricsql.RollupExpr)
if !ok {
// Wrap non-rollup arg into metricsql.RollupExpr.
return &metricsql.RollupExpr{
Expr: arg,
}
}
if !re.ForSubquery() {
// Return standard rollup if it doesn't contain subquery.
return re
}
me, ok := re.Expr.(*metricsql.MetricExpr)
if !ok {
// arg contains subquery.
return re
}
// Convert me[w:step] -> default_rollup(me)[w:step]
reNew := *re
reNew.Expr = &metricsql.FuncExpr{
Name: "default_rollup",
Args: []metricsql.Expr{
&metricsql.RollupExpr{Expr: me},
},
}
return &reNew
}
func evalRollupFunc(ec *EvalConfig, name string, rf rollupFunc, expr metricsql.Expr, re *metricsql.RollupExpr, iafc *incrementalAggrFuncContext) ([]*timeseries, error) {
ecNew := ec
var offset int64
if len(re.Offset) > 0 {
var err error
offset, err = metricsql.DurationValue(re.Offset, ec.Step)
if err != nil {
return nil, err
}
ecNew = newEvalConfig(ecNew)
ecNew.Start -= offset
ecNew.End -= offset
if ecNew.MayCache {
start, end := AdjustStartEnd(ecNew.Start, ecNew.End, ecNew.Step)
offset += ecNew.Start - start
ecNew.Start = start
ecNew.End = end
}
}
if name == "rollup_candlestick" {
// Automatically apply `offset -step` to `rollup_candlestick` function
// in order to obtain expected OHLC results.
// See https://github.com/VictoriaMetrics/VictoriaMetrics/issues/309#issuecomment-582113462
step := ecNew.Step
ecNew = newEvalConfig(ecNew)
ecNew.Start += step
ecNew.End += step
offset -= step
}
var rvs []*timeseries
var err error
if me, ok := re.Expr.(*metricsql.MetricExpr); ok {
rvs, err = evalRollupFuncWithMetricExpr(ecNew, name, rf, expr, me, iafc, re.Window)
} else {
if iafc != nil {
logger.Panicf("BUG: iafc must be nil for rollup %q over subquery %q", name, re.AppendString(nil))
}
rvs, err = evalRollupFuncWithSubquery(ecNew, name, rf, expr, re)
}
if err != nil {
return nil, err
}
if offset != 0 && len(rvs) > 0 {
// Make a copy of timestamps, since they may be used in other values.
srcTimestamps := rvs[0].Timestamps
dstTimestamps := append([]int64{}, srcTimestamps...)
for i := range dstTimestamps {
dstTimestamps[i] += offset
}
for _, ts := range rvs {
ts.Timestamps = dstTimestamps
}
}
return rvs, nil
}
func evalRollupFuncWithSubquery(ec *EvalConfig, name string, rf rollupFunc, expr metricsql.Expr, re *metricsql.RollupExpr) ([]*timeseries, error) {
// TODO: determine whether to use rollupResultCacheV here.
var step int64
if len(re.Step) > 0 {
var err error
step, err = metricsql.PositiveDurationValue(re.Step, ec.Step)
if err != nil {
return nil, err
}
} else {
step = ec.Step
}
var window int64
if len(re.Window) > 0 {
var err error
window, err = metricsql.PositiveDurationValue(re.Window, ec.Step)
if err != nil {
return nil, err
}
}
ecSQ := newEvalConfig(ec)
ecSQ.Start -= window + maxSilenceInterval + step
ecSQ.End += step
ecSQ.Step = step
if err := ValidateMaxPointsPerTimeseries(ecSQ.Start, ecSQ.End, ecSQ.Step); err != nil {
return nil, err
}
// unconditionally align start and end args to step for subquery as Prometheus does.
ecSQ.Start, ecSQ.End = alignStartEnd(ecSQ.Start, ecSQ.End, ecSQ.Step)
tssSQ, err := evalExpr(ecSQ, re.Expr)
if err != nil {
return nil, err
}
if len(tssSQ) == 0 {
if name == "absent_over_time" {
tss := evalNumber(ec, 1)
return tss, nil
}
return nil, nil
}
sharedTimestamps := getTimestamps(ec.Start, ec.End, ec.Step)
preFunc, rcs, err := getRollupConfigs(name, rf, expr, ec.Start, ec.End, ec.Step, window, ec.LookbackDelta, sharedTimestamps)
if err != nil {
return nil, err
}
tss := make([]*timeseries, 0, len(tssSQ)*len(rcs))
var tssLock sync.Mutex
removeMetricGroup := !rollupFuncsKeepMetricGroup[name]
doParallel(tssSQ, func(tsSQ *timeseries, values []float64, timestamps []int64) ([]float64, []int64) {
values, timestamps = removeNanValues(values[:0], timestamps[:0], tsSQ.Values, tsSQ.Timestamps)
preFunc(values, timestamps)
for _, rc := range rcs {
if tsm := newTimeseriesMap(name, sharedTimestamps, &tsSQ.MetricName); tsm != nil {
rc.DoTimeseriesMap(tsm, values, timestamps)
tssLock.Lock()
tss = tsm.AppendTimeseriesTo(tss)
tssLock.Unlock()
continue
}
var ts timeseries
doRollupForTimeseries(rc, &ts, &tsSQ.MetricName, values, timestamps, sharedTimestamps, removeMetricGroup)
tssLock.Lock()
tss = append(tss, &ts)
tssLock.Unlock()
}
return values, timestamps
})
return tss, nil
}
func doParallel(tss []*timeseries, f func(ts *timeseries, values []float64, timestamps []int64) ([]float64, []int64)) {
concurrency := runtime.GOMAXPROCS(-1)
if concurrency > len(tss) {
concurrency = len(tss)
}
workCh := make(chan *timeseries, concurrency)
var wg sync.WaitGroup
wg.Add(concurrency)
for i := 0; i < concurrency; i++ {
go func() {
defer wg.Done()
var tmpValues []float64
var tmpTimestamps []int64
for ts := range workCh {
tmpValues, tmpTimestamps = f(ts, tmpValues, tmpTimestamps)
}
}()
}
for _, ts := range tss {
workCh <- ts
}
close(workCh)
wg.Wait()
}
func removeNanValues(dstValues []float64, dstTimestamps []int64, values []float64, timestamps []int64) ([]float64, []int64) {
hasNan := false
for _, v := range values {
if math.IsNaN(v) {
hasNan = true
}
}
if !hasNan {
// Fast path - no NaNs.
dstValues = append(dstValues, values...)
dstTimestamps = append(dstTimestamps, timestamps...)
return dstValues, dstTimestamps
}
// Slow path - remove NaNs.
for i, v := range values {
if math.IsNaN(v) {
continue
}
dstValues = append(dstValues, v)
dstTimestamps = append(dstTimestamps, timestamps[i])
}
return dstValues, dstTimestamps
}
var (
rollupResultCacheFullHits = metrics.NewCounter(`vm_rollup_result_cache_full_hits_total`)
rollupResultCachePartialHits = metrics.NewCounter(`vm_rollup_result_cache_partial_hits_total`)
rollupResultCacheMiss = metrics.NewCounter(`vm_rollup_result_cache_miss_total`)
)
func evalRollupFuncWithMetricExpr(ec *EvalConfig, name string, rf rollupFunc,
expr metricsql.Expr, me *metricsql.MetricExpr, iafc *incrementalAggrFuncContext, windowStr string) ([]*timeseries, error) {
if me.IsEmpty() {
return evalNumber(ec, nan), nil
}
var window int64
if len(windowStr) > 0 {
var err error
window, err = metricsql.PositiveDurationValue(windowStr, ec.Step)
if err != nil {
return nil, err
}
}
// Search for partial results in cache.
tssCached, start := rollupResultCacheV.Get(ec, expr, window)
if start > ec.End {
// The result is fully cached.
rollupResultCacheFullHits.Inc()
return tssCached, nil
}
if start > ec.Start {
rollupResultCachePartialHits.Inc()
} else {
rollupResultCacheMiss.Inc()
}
// Obtain rollup configs before fetching data from db,
// so type errors can be caught earlier.
sharedTimestamps := getTimestamps(start, ec.End, ec.Step)
preFunc, rcs, err := getRollupConfigs(name, rf, expr, start, ec.End, ec.Step, window, ec.LookbackDelta, sharedTimestamps)
if err != nil {
return nil, err
}
// Fetch the remaining part of the result.
tfs := toTagFilters(me.LabelFilters)
minTimestamp := start - maxSilenceInterval
if window > ec.Step {
minTimestamp -= window
} else {
minTimestamp -= ec.Step
}
sq := &storage.SearchQuery{
MinTimestamp: minTimestamp,
MaxTimestamp: ec.End,
TagFilterss: [][]storage.TagFilter{tfs},
}
rss, err := netstorage.ProcessSearchQuery(sq, true, ec.Deadline)
if err != nil {
return nil, err
}
rssLen := rss.Len()
if rssLen == 0 {
rss.Cancel()
var tss []*timeseries
if name == "absent_over_time" {
tss = getAbsentTimeseries(ec, me)
}
// Add missing points until ec.End.
// Do not cache the result, since missing points
// may be backfilled in the future.
tss = mergeTimeseries(tssCached, tss, start, ec)
return tss, nil
}
// Verify timeseries fit available memory after the rollup.
// Take into account points from tssCached.
pointsPerTimeseries := 1 + (ec.End-ec.Start)/ec.Step
timeseriesLen := rssLen
if iafc != nil {
// Incremental aggregates require holding only GOMAXPROCS timeseries in memory.
timeseriesLen = runtime.GOMAXPROCS(-1)
if iafc.ae.Modifier.Op != "" {
if iafc.ae.Limit > 0 {
// There is an explicit limit on the number of output time series.
timeseriesLen *= iafc.ae.Limit
} else {
// Increase the number of timeseries for non-empty group list: `aggr() by (something)`,
// since each group can have own set of time series in memory.
timeseriesLen *= 1000
}
}
// The maximum number of output time series is limited by rssLen.
if timeseriesLen > rssLen {
timeseriesLen = rssLen
}
}
rollupPoints := mulNoOverflow(pointsPerTimeseries, int64(timeseriesLen*len(rcs)))
rollupMemorySize := mulNoOverflow(rollupPoints, 16)
rml := getRollupMemoryLimiter()
if !rml.Get(uint64(rollupMemorySize)) {
rss.Cancel()
return nil, fmt.Errorf("not enough memory for processing %d data points across %d time series with %d points in each time series; "+
"total available memory for concurrent requests: %d bytes; "+
"possible solutions are: reducing the number of matching time series; switching to node with more RAM; "+
"increasing -memory.allowedPercent; increasing `step` query arg (%gs)",
rollupPoints, timeseriesLen*len(rcs), pointsPerTimeseries, rml.MaxSize, float64(ec.Step)/1e3)
}
defer rml.Put(uint64(rollupMemorySize))
// Evaluate rollup
removeMetricGroup := !rollupFuncsKeepMetricGroup[name]
var tss []*timeseries
if iafc != nil {
tss, err = evalRollupWithIncrementalAggregate(name, iafc, rss, rcs, preFunc, sharedTimestamps, removeMetricGroup)
} else {
tss, err = evalRollupNoIncrementalAggregate(name, rss, rcs, preFunc, sharedTimestamps, removeMetricGroup)
}
if err != nil {
return nil, err
}
tss = mergeTimeseries(tssCached, tss, start, ec)
rollupResultCacheV.Put(ec, expr, window, tss)
return tss, nil
}
var (
rollupMemoryLimiter memoryLimiter
rollupMemoryLimiterOnce sync.Once
)
func getRollupMemoryLimiter() *memoryLimiter {
rollupMemoryLimiterOnce.Do(func() {
rollupMemoryLimiter.MaxSize = uint64(memory.Allowed()) / 4
})
return &rollupMemoryLimiter
}
func evalRollupWithIncrementalAggregate(name string, iafc *incrementalAggrFuncContext, rss *netstorage.Results, rcs []*rollupConfig,
preFunc func(values []float64, timestamps []int64), sharedTimestamps []int64, removeMetricGroup bool) ([]*timeseries, error) {
err := rss.RunParallel(func(rs *netstorage.Result, workerID uint) {
preFunc(rs.Values, rs.Timestamps)
ts := getTimeseries()
defer putTimeseries(ts)
for _, rc := range rcs {
if tsm := newTimeseriesMap(name, sharedTimestamps, &rs.MetricName); tsm != nil {
rc.DoTimeseriesMap(tsm, rs.Values, rs.Timestamps)
for _, ts := range tsm.m {
iafc.updateTimeseries(ts, workerID)
}
continue
}
ts.Reset()
doRollupForTimeseries(rc, ts, &rs.MetricName, rs.Values, rs.Timestamps, sharedTimestamps, removeMetricGroup)
iafc.updateTimeseries(ts, workerID)
// ts.Timestamps points to sharedTimestamps. Zero it, so it can be re-used.
ts.Timestamps = nil
ts.denyReuse = false
}
})
if err != nil {
return nil, err
}
tss := iafc.finalizeTimeseries()
return tss, nil
}
func evalRollupNoIncrementalAggregate(name string, rss *netstorage.Results, rcs []*rollupConfig,
preFunc func(values []float64, timestamps []int64), sharedTimestamps []int64, removeMetricGroup bool) ([]*timeseries, error) {
tss := make([]*timeseries, 0, rss.Len()*len(rcs))
var tssLock sync.Mutex
err := rss.RunParallel(func(rs *netstorage.Result, workerID uint) {
preFunc(rs.Values, rs.Timestamps)
for _, rc := range rcs {
if tsm := newTimeseriesMap(name, sharedTimestamps, &rs.MetricName); tsm != nil {
rc.DoTimeseriesMap(tsm, rs.Values, rs.Timestamps)
tssLock.Lock()
tss = tsm.AppendTimeseriesTo(tss)
tssLock.Unlock()
continue
}
var ts timeseries
doRollupForTimeseries(rc, &ts, &rs.MetricName, rs.Values, rs.Timestamps, sharedTimestamps, removeMetricGroup)
tssLock.Lock()
tss = append(tss, &ts)
tssLock.Unlock()
}
})
if err != nil {
return nil, err
}
return tss, nil
}
func doRollupForTimeseries(rc *rollupConfig, tsDst *timeseries, mnSrc *storage.MetricName, valuesSrc []float64, timestampsSrc []int64,
sharedTimestamps []int64, removeMetricGroup bool) {
tsDst.MetricName.CopyFrom(mnSrc)
if len(rc.TagValue) > 0 {
tsDst.MetricName.AddTag("rollup", rc.TagValue)
}
if removeMetricGroup {
tsDst.MetricName.ResetMetricGroup()
}
tsDst.Values = rc.Do(tsDst.Values[:0], valuesSrc, timestampsSrc)
tsDst.Timestamps = sharedTimestamps
tsDst.denyReuse = true
}
var bbPool bytesutil.ByteBufferPool
func evalNumber(ec *EvalConfig, n float64) []*timeseries {
var ts timeseries
ts.denyReuse = true
timestamps := ec.getSharedTimestamps()
values := make([]float64, len(timestamps))
for i := range timestamps {
values[i] = n
}
ts.Values = values
ts.Timestamps = timestamps
return []*timeseries{&ts}
}
func evalString(ec *EvalConfig, s string) []*timeseries {
rv := evalNumber(ec, nan)
rv[0].MetricName.MetricGroup = append(rv[0].MetricName.MetricGroup[:0], s...)
return rv
}
func evalTime(ec *EvalConfig) []*timeseries {
rv := evalNumber(ec, nan)
timestamps := rv[0].Timestamps
values := rv[0].Values
for i, ts := range timestamps {
values[i] = float64(ts) / 1e3
}
return rv
}
func mulNoOverflow(a, b int64) int64 {
if math.MaxInt64/b < a {
// Overflow
return math.MaxInt64
}
return a * b
}
func toTagFilters(lfs []metricsql.LabelFilter) []storage.TagFilter {
tfs := make([]storage.TagFilter, len(lfs))
for i := range lfs {
toTagFilter(&tfs[i], &lfs[i])
}
return tfs
}
func toTagFilter(dst *storage.TagFilter, src *metricsql.LabelFilter) {
if src.Label != "__name__" {
dst.Key = []byte(src.Label)
} else {
// This is required for storage.Search.
dst.Key = nil
}
dst.Value = []byte(src.Value)
dst.IsRegexp = src.IsRegexp
dst.IsNegative = src.IsNegative
}