42 KiB
sort | weight | title | menu | aliases | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
98 | 98 | Streaming aggregation |
|
|
Streaming aggregation
vmagent and single-node VictoriaMetrics can aggregate incoming samples in streaming mode by time and by labels before data is written to remote storage (or local storage for single-node VictoriaMetrics). The aggregation is applied to all the metrics received via any supported data ingestion protocol and/or scraped from Prometheus-compatible targets after applying all the configured relabeling stages.
Stream aggregation ignores timestamps associated with the input samples. It expects that the ingested samples have timestamps close to the current time.
Stream aggregation is configured via the following command-line flags:
-remoteWrite.streamAggr.config
at vmagent. This flag can be specified individually per each-remoteWrite.url
. This allows writing different aggregates to different remote storage destinations.-streamAggr.config
at single-node VictoriaMetrics.
These flags must point to a file containing stream aggregation config.
The file may contain %{ENV_VAR}
placeholders which are substituted by the corresponding ENV_VAR
environment variable values.
By default, the following data is written to the storage when stream aggregation is enabled:
- the aggregated samples;
- the raw input samples, which didn't match any
match
option in the provided config.
This behaviour can be changed via the following command-line flags:
-remoteWrite.streamAggr.keepInput
at vmagent and-streamAggr.keepInput
at single-node VictoriaMetrics. If one of these flags is set, then all the input samples are written to the storage alongside the aggregated samples. The-remoteWrite.streamAggr.keepInput
flag can be specified individually per each-remoteWrite.url
.-remoteWrite.streamAggr.dropInput
at vmagent and-streamAggr.dropInput
at single-node VictoriaMetrics. If one of these flags are set, then all the input samples are dropped, while only the aggregated samples are written to the storage. The-remoteWrite.streamAggr.dropInput
flag can be specified individually per each-remoteWrite.url
.
Deduplication
By default, all the input samples are aggregated. Sometimes it is needed to de-duplicate samples for the same time series before the aggregation. For example, if the samples are received from replicated sources. In this case the de-duplication can be enabled via the following options:
-remoteWrite.streamAggr.dedupInterval
command-line flag at vmagent. This flag can be specified individually per each-remoteWrite.url
. This allows setting different de-duplication intervals per each configured remote storage.-streamAggr.dedupInterval
command-line flag at single-node VictoriaMetrics.dedup_interval
option per each aggregate config.
De-duplicatation is performed after performing the input relabeling with input_relabel_configs
- see these docs.
Use cases
Stream aggregation can be used in the following cases:
- Statsd alternative
- Recording rules alternative
- Reducing the number of stored samples
- Reducing the number of stored series
Statsd alternative
Stream aggregation can be used as statsd alternative in the following cases:
- Counting input samples
- Summing input metrics
- Quantiles over input metrics
- Histograms over input metrics
- Aggregating histograms
Currently, streaming aggregation is available only for supported data ingestion protocols and not available for Statsd metrics format.
Recording rules alternative
Sometimes alerting queries may require non-trivial amounts of CPU, RAM,
disk IO and network bandwidth at metrics storage side. For example, if http_request_duration_seconds
histogram is generated by thousands
of application instances, then the alerting query histogram_quantile(0.99, sum(increase(http_request_duration_seconds_bucket[5m])) without (instance)) > 0.5
can become slow, since it needs to scan too big number of unique time series
with http_request_duration_seconds_bucket
name. This alerting query can be speed up by pre-calculating
the sum(increase(http_request_duration_seconds_bucket[5m])) without (instance)
via recording rule.
But this recording rule may take too much time to execute too. In this case the slow recording rule can be substituted
with the following stream aggregation config:
- match: 'http_request_duration_seconds_bucket'
interval: 5m
without: [instance]
outputs: [total]
This stream aggregation generates http_request_duration_seconds_bucket:5m_without_instance_total
output series according to output metric naming.
Then these series can be used in alerting rules:
histogram_quantile(0.99, last_over_time(http_request_duration_seconds_bucket:5m_without_instance_total[5m])) > 0.5
This query is executed much faster than the original query, because it needs to scan much lower number of time series.
See the list of aggregate output, which can be specified at output
field.
See also aggregating by labels.
Field interval
is recommended to be set to a value at least several times higher than your metrics collect interval.
Reducing the number of stored samples
If per-series samples are ingested at high frequency, then this may result in high disk space usage, since too much data must be stored to disk. This also may result in slow queries, since too much data must be processed during queries.
This can be fixed with the stream aggregation by increasing the interval between per-series samples stored in the database.
For example, the following stream aggregation config reduces the frequency of input samples to one sample per 5 minutes per each input time series (this operation is also known as downsampling):
# Aggregate metrics ending with _total with `total` output.
# See https://docs.victoriametrics.com/stream-aggregation.html#aggregation-outputs
- match: '{__name__=~".+_total"}'
interval: 5m
outputs: [total]
# Downsample other metrics with `count_samples`, `sum_samples`, `min` and `max` outputs
# See https://docs.victoriametrics.com/stream-aggregation.html#aggregation-outputs
- match: '{__name__!~".+_total"}'
interval: 5m
outputs: [count_samples, sum_samples, min, max]
The aggregated output metrics have the following names according to output metric naming:
# For input metrics ending with _total
some_metric_total:5m_total
# For input metrics not ending with _total
some_metric:5m_count_samples
some_metric:5m_sum_samples
some_metric:5m_min
some_metric:5m_max
See the list of aggregate output, which can be specified at output
field.
See also aggregating histograms and aggregating by labels.
Reducing the number of stored series
Sometimes applications may generate too many time series.
For example, the http_requests_total
metric may have path
or user
label with too big number of unique values.
In this case the following stream aggregation can be used for reducing the number metrics stored in VictoriaMetrics:
- match: 'http_requests_total'
interval: 30s
without: [path, user]
outputs: [total]
This config specifies labels, which must be removed from the aggregate output, in the without
list.
See these docs for more details.
The aggregated output metric has the following name according to output metric naming:
http_requests_total:30s_without_path_user_total
See the list of aggregate output, which can be specified at output
field.
See also aggregating histograms.
Counting input samples
If the monitored application generates event-based metrics, then it may be useful to count the number of such metrics at stream aggregation level.
For example, if an advertising server generates hits{some="labels"} 1
and clicks{some="labels"} 1
metrics
per each incoming hit and click, then the following stream aggregation config
can be used for counting these metrics per every 30 second interval:
- match: '{__name__=~"hits|clicks"}'
interval: 30s
outputs: [count_samples]
This config generates the following output metrics for hits
and clicks
input metrics
according to output metric naming:
hits:30s_count_samples count1
clicks:30s_count_samples count2
See the list of aggregate output, which can be specified at output
field.
See also aggregating by labels.
Summing input metrics
If the monitored application calculates some events and then sends the calculated number of events to VictoriaMetrics at irregular intervals or at too high frequency, then stream aggregation can be used for summing such events and writing the aggregate sums to the storage at regular intervals.
For example, if an advertising server generates hits{some="labels} N
and clicks{some="labels"} M
metrics
at irregular intervals, then the following stream aggregation config
can be used for summing these metrics per every minute:
- match: '{__name__=~"hits|clicks"}'
interval: 1m
outputs: [sum_samples]
This config generates the following output metrics according to output metric naming:
hits:1m_sum_samples sum1
clicks:1m_sum_samples sum2
See the list of aggregate output, which can be specified at output
field.
See also aggregating by labels.
Quantiles over input metrics
If the monitored application generates measurement metrics per each request, then it may be useful to calculate the pre-defined set of percentiles over these measurements.
For example, if the monitored application generates request_duration_seconds N
and response_size_bytes M
metrics
per each incoming request, then the following stream aggregation config
can be used for calculating 50th and 99th percentiles for these metrics every 30 seconds:
- match:
- request_duration_seconds
- response_size_bytes
interval: 30s
outputs: ["quantiles(0.50, 0.99)"]
This config generates the following output metrics according to output metric naming:
request_duration_seconds:30s_quantiles{quantile="0.50"} value1
request_duration_seconds:30s_quantiles{quantile="0.99"} value2
response_size_bytes:30s_quantiles{quantile="0.50"} value1
response_size_bytes:30s_quantiles{quantile="0.99"} value2
See the list of aggregate output, which can be specified at output
field.
See also histograms over input metrics and aggregating by labels.
Histograms over input metrics
If the monitored application generates measurement metrics per each request, then it may be useful to calculate a histogram over these metrics.
For example, if the monitored application generates request_duration_seconds N
and response_size_bytes M
metrics
per each incoming request, then the following stream aggregation config
can be used for calculating VictoriaMetrics histogram buckets
for these metrics every 60 seconds:
- match:
- request_duration_seconds
- response_size_bytes
interval: 60s
outputs: [histogram_bucket]
This config generates the following output metrics according to output metric naming.
request_duration_seconds:60s_histogram_bucket{vmrange="start1...end1"} count1
request_duration_seconds:60s_histogram_bucket{vmrange="start2...end2"} count2
...
request_duration_seconds:60s_histogram_bucket{vmrange="startN...endN"} countN
response_size_bytes:60s_histogram_bucket{vmrange="start1...end1"} count1
response_size_bytes:60s_histogram_bucket{vmrange="start2...end2"} count2
...
response_size_bytes:60s_histogram_bucket{vmrange="startN...endN"} countN
The resulting histogram buckets can be queried with MetricsQL in the following ways:
-
An estimated 50th and 99th percentiles of the request duration over the last hour:
histogram_quantiles("quantile", 0.50, 0.99, sum(increase(request_duration_seconds:60s_histogram_bucket[1h])) by (vmrange))
This query uses histogram_quantiles function.
-
An estimated standard deviation of the request duration over the last hour:
histogram_stddev(sum(increase(request_duration_seconds:60s_histogram_bucket[1h])) by (vmrange))
This query uses histogram_stddev function.
-
An estimated share of requests with the duration smaller than
0.5s
over the last hour:histogram_share(0.5, sum(increase(request_duration_seconds:60s_histogram_bucket[1h])) by (vmrange))
This query uses histogram_share function.
See the list of aggregate output, which can be specified at output
field.
See also quantiles over input metrics and aggregating by labels.
Aggregating histograms
Histogram is a set of counter
metrics with different vmrange
or le
labels. As they're counters, the applicable aggregation output is
total:
- match: 'http_request_duration_seconds_bucket'
interval: 1m
without: [instance]
outputs: [total]
This config generates the following output metrics according to output metric naming:
http_request_duration_seconds_bucket:1m_without_instance_total{le="0.1"} value1
http_request_duration_seconds_bucket:1m_without_instance_total{le="0.2"} value2
http_request_duration_seconds_bucket:1m_without_instance_total{le="0.4"} value3
http_request_duration_seconds_bucket:1m_without_instance_total{le="1"} value4
http_request_duration_seconds_bucket:1m_without_instance_total{le="3"} value5
http_request_duration_seconds_bucket:1m_without_instance_total{le="+Inf" value6
The resulting metrics can be passed to histogram_quantile function:
histogram_quantile(0.9, sum(rate(http_request_duration_seconds_bucket:1m_without_instance_total[5m])) by(le))
Please note, histograms can be aggregated if their le
labels are configured identically.
VictoriaMetrics histogram buckets
have no such requirement.
See the list of aggregate output, which can be specified at output
field.
See also histograms over input metrics and quantiles over input metrics.
Output metric names
Output metric names for stream aggregation are constructed according to the following pattern:
<metric_name>:<interval>[_by_<by_labels>][_without_<without_labels>]_<output>
<metric_name>
is the original metric name.<interval>
is the interval specified in the stream aggregation config.<by_labels>
is_
-delimited sorted list ofby
labels specified in the stream aggregation config. If theby
list is missing in the config, then the_by_<by_labels>
part isn't included in the output metric name.<without_labels>
is an optional_
-delimited sorted list ofwithout
labels specified in the stream aggregation config. If thewithout
list is missing in the config, then the_without_<without_labels>
part isn't included in the output metric name.<output>
is the aggregate used for constructing the output metric. The aggregate name is taken from theoutputs
list at the corresponding stream aggregation config.
Both input and output metric names can be modified if needed via relabeling according to these docs.
It is possible to leave the original metric name after the aggregation by specifying keep_metric_names: true
option at stream aggregation config.
The keep_metric_names
option can be used if only a single output is set in outputs
list.
Relabeling
It is possible to apply arbitrary relabeling to input and output metrics
during stream aggregation via input_relabel_configs
and output_relabel_configs
options in stream aggregation config.
Relabeling rules inside input_relabel_configs
are applied to samples matching the match
filters.
Relabeling rules inside output_relabel_configs
are applied to aggregated samples before sending them to the remote storage.
For example, the following config removes the :1m_sum_samples
suffix added to the output metric name:
- interval: 1m
outputs: [sum_samples]
output_relabel_configs:
- source_labels: [__name__]
target_label: __name__
regex: "(.+):.+"
Another option to remove the suffix, which is added by stream aggregation, is to add keep_metric_names: true
to the config:
- interval: 1m
outputs: [sum_samples]
keep_metric_names: true
Aggregation outputs
The aggregations are calculated during the interval
specified in the config
and then sent to the storage once per interval
. The aggregated samples are named according to output metric naming.
If by
and without
lists are specified in the config,
then the aggregation by labels is performed additionally to aggregation by interval
.
On vmagent shutdown or configuration reload unfinished aggregated states are discarded,
as they might produce lower values than user expects. It is possible to specify flush_on_shutdown: true
setting in
aggregation config to make vmagent to send unfinished states to the remote storage.
Below are aggregation functions that can be put in the outputs
list at stream aggregation config:
- avg
- count_samples
- count_series
- increase
- increase_prometheus
- histogram_bucket
- last
- max
- min
- stddev
- stdvar
- sum_samples
- total
- total_prometheus
- unique_samples
- quantiles
avg
avg
returns the average over input sample values.
avg
makes sense only for aggregating gauges.
The results of avg
is equal to the following MetricsQL query:
sum(sum_over_time(some_metric[interval])) / sum(count_over_time(some_metric[interval]))
For example, see below time series produced by config with aggregation interval 1m
and by: ["instance"]
and the regular query:
See also min, max, sum_samples and count_samples.
count_samples
count_samples
counts the number of input samples over the given interval
.
The results of count_samples
is equal to the following MetricsQL query:
sum(count_over_time(some_metric[interval]))
See also count_series and sum_samples.
count_series
count_series
counts the number of unique time series over the given interval
.
The results of count_series
is equal to the following MetricsQL query:
count(last_over_time(some_metric[interval]))
See also count_samples and unique_samples.
increase
increase
returns the increase of input time series over the given 'interval'.
increase
makes sense only for aggregating counters.
The results of increase
is equal to the following MetricsQL query:
sum(increase_pure(some_counter[interval]))
increase
assumes that all the counters start from 0. For example, if the fist seen sample for new time series
is 10
, then increase
assumes that the time series has been increased by 10
. If you need ignoring the first sample for new time series,
then take a look at increase_prometheus.
For example, see below time series produced by config with aggregation interval 1m
and by: ["instance"]
and the regular query:
increase
can be used as an alternative for rate function.
For example, if increase
is calculated for some_counter
with interval: 5m
, then rate
can be calculated
by dividing the resulting aggregation by 5m
:
some_counter:5m_increase / 5m
This is similar to rate(some_counter[5m])
.
Please note, opposite to rate, increase
aggregations can be
combined safely afterwards. This is helpful when the aggregation is calculated by more than one vmagent.
Aggregating irregular and sporadic metrics (received from Lambdas or Cloud Functions) can be controlled via staleness_inteval.
See also increase_prometheus and total.
increase_prometheus
increase_prometheus
returns the increase of input time series over the given interval
.
increase_prometheus
makes sense only for aggregating counters.
The results of increase_prometheus
is equal to the following MetricsQL query:
sum(increase_prometheus(some_counter[interval]))
increase_prometheus
skips the first seen sample value per each time series.
If you need taking into account the first sample per time series, then take a look at increase.
See also increase, total and total_prometheus.
histogram_bucket
histogram_bucket
returns VictoriaMetrics histogram buckets
for the input sample values over the given interval
.
histogram_bucket
makes sense only for aggregating gauges.
See how to aggregate regular histograms here.
The results of histogram_bucket
is equal to the following MetricsQL query:
sum(histogram_over_time(some_histogram_bucket[interval])) by (vmrange)
See also quantiles, min, max and avg.
last
last
returns the last input sample value over the given interval
.
The results of last
is roughly equal to the the following MetricsQL query:
last_over_time(some_metric[interval])
max
max
returns the maximum input sample value over the given interval
.
The results of max
is equal to the following MetricsQL query:
max(max_over_time(some_metric[interval]))
For example, see below time series produced by config with aggregation interval 1m
and the regular query:
min
min
returns the minimum input sample value over the given interval
.
The results of min
is equal to the following MetricsQL query:
min(min_over_time(some_metric[interval]))
For example, see below time series produced by config with aggregation interval 1m
and the regular query:
stddev
stddev
returns standard deviation for the input sample values
over the given interval
.
stddev
makes sense only for aggregating gauges.
The results of stddev
is roughly equal to the following MetricsQL query:
histogram_stddev(sum(histogram_over_time(some_metric[interval])) by (vmrange))
stdvar
stdvar
returns standard variance for the input sample values
over the given interval
.
stdvar
makes sense only for aggregating gauges.
The results of stdvar
is roughly equal to the following MetricsQL query:
histogram_stdvar(sum(histogram_over_time(some_metric[interval])) by (vmrange))
For example, see below time series produced by config with aggregation interval 1m
and the regular query:
sum_samples
sum_samples
sums input sample values over the given interval
.
sum_samples
makes sense only for aggregating gauges.
The results of sum_samples
is equal to the following MetricsQL query:
sum(sum_over_time(some_metric[interval]))
For example, see below time series produced by config with aggregation interval 1m
and the regular query:
See also count_samples and count_series.
total
total
generates output counter by summing the input counters over the given interval
.
total
makes sense only for aggregating counters.
The results of total
is roughly equal to the the following MetricsQL query:
sum(running_sum(increase_pure(some_counter)))
total
assumes that all the counters start from 0. For example, if the fist seen sample for new time series
is 10
, then total
assumes that the time series has been increased by 10
. If you need ignoring the first sample for new time series,
then take a look at total_prometheus.
For example, see below time series produced by config with aggregation interval 1m
and by: ["instance"]
and the regular query:
total
is not affected by counter resets -
it continues to increase monotonically with respect to the previous value.
The counters are most often reset when the application is restarted.
For example:
The same behavior occurs when creating or deleting new series in an aggregation group -
total
output increases monotonically considering the values of the series set.
An example of changing a set of series can be restarting a pod in the Kubernetes.
This changes pod name label, but the total
accounts for such a scenario and doesn't reset the state of aggregated metric.
Aggregating irregular and sporadic metrics (received from Lambdas or Cloud Functions) can be controlled via staleness_inteval.
See also total_prometheus, increase and increase_prometheus.
total_prometheus
total_prometheus
generates output counter by summing the input counters over the given interval
.
total_prometheus
makes sense only for aggregating counters.
The results of total_prometheus
is roughly equal to the the following MetricsQL query:
sum(running_sum(increase_prometheus(some_counter)))
total_prometheus
skips the first seen sample value per each time series.
If you need taking into account the first sample per time series, then take a look at total.
total_prometheus
is not affected by counter resets -
it continues to increase monotonically with respect to the previous value.
The counters are most often reset when the application is restarted.
See also total, increase and increase_prometheus.
unique_samples
unique_samples
counts the number of unique sample values over the given interval
.
unique_samples
makes sense only for aggregating gauges.
The results of unique_samples
is equal to the following MetricsQL query:
count(count_values_over_time(some_metric[interval]))
See also sum_samples and count_series.
quantiles
quantiles(phi1, ..., phiN)
returns percentiles for the given phi*
over the input sample values on the given interval
.
phi
must be in the range [0..1]
, where 0
means 0th
percentile, while 1
means 100th
percentile.
quantiles(...)
makes sense only for aggregating gauges.
The results of quantiles(phi1, ..., phiN)
is equal to the following MetricsQL query:
histogram_quantiles("quantile", phi1, ..., phiN, sum(histogram_over_time(some_metric[interval])) by (vmrange))
See also histogram_bucket, min, max and avg.
Aggregating by labels
All the labels for the input metrics are preserved by default in the output metrics. For example,
the input metric foo{app="bar",instance="host1"}
results to the output metric foo:1m_sum_samples{app="bar",instance="host1"}
when the following stream aggregation config is used:
- interval: 1m
outputs: [sum_samples]
The input labels can be removed via without
list specified in the config. For example, the following config
removes the instance
label from output metrics by summing input samples across all the instances:
- interval: 1m
without: [instance]
outputs: [sum_samples]
In this case the foo{app="bar",instance="..."}
input metrics are transformed into foo:1m_without_instance_sum_samples{app="bar"}
output metric according to output metric naming.
It is possible specifying the exact list of labels in the output metrics via by
list.
For example, the following config sums input samples by the app
label:
- interval: 1m
by: [app]
outputs: [sum_samples]
In this case the foo{app="bar",instance="..."}
input metrics are transformed into foo:1m_by_app_sum_samples{app="bar"}
output metric according to output metric naming.
The labels used in by
and without
lists can be modified via input_relabel_configs
section - see these docs.
See also aggregation outputs.
Stream aggregation config
Below is the format for stream aggregation config file, which may be referred via -remoteWrite.streamAggr.config
command-line flag
at vmagent or via -streamAggr.config
command-line flag
at single-node VictoriaMetrics:
# match is an optional filter for incoming samples to aggregate.
# It can contain arbitrary Prometheus series selector
# according to https://docs.victoriametrics.com/keyConcepts.html#filtering .
# If match isn't set, then all the incoming samples are aggregated.
#
# match also can contain a list of series selectors. Then the incoming samples are aggregated
# if they match at least a single series selector.
#
- match: 'http_request_duration_seconds_bucket{env=~"prod|staging"}'
# interval is the interval for the aggregation.
# The aggregated stats is sent to remote storage once per interval.
#
interval: 1m
# dedup_interval is an optional interval for de-duplication of input samples before the aggregation.
# Samples are de-duplicated on a per-series basis. See https://docs.victoriametrics.com/keyconcepts/#time-series
# and https://docs.victoriametrics.com/#deduplication
# The deduplication is performed after input_relabel_configs relabeling is applied.
# By default the deduplication is disabled.
#
# dedup_interval: 30s
# staleness_interval is an optional interval after which the series state will be reset if no samples have been sent during it.
# This means that:
# - no data point will be written for a resulting time series if it didn't receive any updates during configured interval,
# - if the series receives updates after the configured interval again, then the time series will be calculated from the initial state
# (it's like this series didn't exist until now).
# Increase this parameter if it is expected for matched metrics to be delayed or collected with irregular intervals exceeding the `interval` value.
# By default, it equals to x2 of the `interval` field.
# The parameter is only relevant for outputs: total, increase and histogram_bucket.
#
# staleness_interval: 2m
# flush_on_shutdown defines whether to flush the unfinished aggregation states on process restarts
# or config reloads. It is not recommended changing this setting, unless unfinished aggregations states
# are preferred to missing data points.
# Unfinished aggregation states aren't flushed on shutdown by default.
#
# flush_on_shutdown: false
# without is an optional list of labels, which must be removed from the output aggregation.
# See https://docs.victoriametrics.com/stream-aggregation.html#aggregating-by-labels
#
without: [instance]
# by is an optional list of labels, which must be preserved in the output aggregation.
# See https://docs.victoriametrics.com/stream-aggregation.html#aggregating-by-labels
#
# by: [job, vmrange]
# outputs is the list of aggregations to perform on the input data.
# See https://docs.victoriametrics.com/stream-aggregation.html#aggregation-outputs
#
outputs: [total]
# keep_metric_names instructs keeping the original metric names for the aggregated samples.
# This option can be set only if outputs list contains only a single output.
# By default a special suffix is added to original metric names in the aggregated samples.
# See https://docs.victoriametrics.com/stream-aggregation/#output-metric-names
#
# keep_metric_names: false
# input_relabel_configs is an optional relabeling rules,
# which are applied to the incoming samples after they pass the match filter
# and before being aggregated.
# See https://docs.victoriametrics.com/stream-aggregation.html#relabeling
#
input_relabel_configs:
- target_label: vmaggr
replacement: before
# output_relabel_configs is an optional relabeling rules,
# which are applied to the aggregated output metrics.
#
output_relabel_configs:
- target_label: vmaggr
replacement: after
The file can contain multiple aggregation configs. The aggregation is performed independently per each specified config entry.
Configuration update
vmagent and single-node VictoriaMetrics
support the following approaches for hot reloading stream aggregation configs from -remoteWrite.streamAggr.config
and -streamAggr.config
:
-
By sending
SIGHUP
signal tovmagent
orvictoria-metrics
process:kill -SIGHUP `pidof vmagent`
-
By sending HTTP request to
/-/reload
endpoint (e.g.http://vmagent:8429/-/reload
or `http://victoria-metrics:8428/-/reload).
Cluster mode
If you use vmagent in cluster mode for streaming aggregation
(with -promscrape.cluster.*
parameters or with VMAgent.spec.shardCount > 1
for vmoperator)
then be careful when aggregating metrics via by
, without
or modifying via *_relabel_configs
parameters, since incorrect usage
may result in duplicates and data collision. For example, if more than one vmagent
instance calculates increase
for metric http_requests_total
with by: [path]
directive, then all the vmagent
instances will aggregate samples to the same set of time series with different path
labels.
The proper fix would be to add an unique -remoteWrite.label
per each vmagent
,
so every vmagent
aggregates data into distinct set of time series. These time series then can be aggregated later as needed during querying.
For example, if vmagent
instances run in Docker or Kubernetes, then you can refer POD_NAME
or HOSTNAME
environment variables
as an unique label value per each vmagent
: -remoteWrite.label='vmagent=%{HOSTNAME}
. See these docs
on how to refer environment variables in VictoriaMetrics components.