VictoriaMetrics/lib/logstorage/pipe_top.go
Aliaksandr Valialkin a350be48b6
lib/logstorage: do not count dictionary values which have no matching logs in count_uniq stats function
Create blockResultColumn.forEachDictValue* helper functions for visiting matching
dictionary values. These helper functions should prevent from counting dictionary values
without matching logs in the future.

This is a follow-up for 0c0f013a60
Updates https://github.com/VictoriaMetrics/VictoriaMetrics/issues/7152
2024-10-01 13:34:45 +02:00

493 lines
11 KiB
Go

package logstorage
import (
"fmt"
"slices"
"sort"
"strings"
"sync/atomic"
"unsafe"
"github.com/VictoriaMetrics/VictoriaMetrics/lib/bytesutil"
"github.com/VictoriaMetrics/VictoriaMetrics/lib/encoding"
"github.com/VictoriaMetrics/VictoriaMetrics/lib/logger"
"github.com/VictoriaMetrics/VictoriaMetrics/lib/memory"
)
// pipeTopDefaultLimit is the default number of entries pipeTop returns.
const pipeTopDefaultLimit = 10
// pipeTop processes '| top ...' queries.
//
// See https://docs.victoriametrics.com/victorialogs/logsql/#top-pipe
type pipeTop struct {
// fields contains field names for returning top values for.
byFields []string
// limit is the number of top (byFields) sets to return.
limit uint64
// limitStr is string representation of the limit.
limitStr string
// if hitsFieldName isn't empty, then the number of hits per each unique value is returned in this field.
hitsFieldName string
}
func (pt *pipeTop) String() string {
s := "top"
if pt.limit != pipeTopDefaultLimit {
s += " " + pt.limitStr
}
if len(pt.byFields) > 0 {
s += " by (" + fieldNamesString(pt.byFields) + ")"
}
return s
}
func (pt *pipeTop) canLiveTail() bool {
return false
}
func (pt *pipeTop) updateNeededFields(neededFields, unneededFields fieldsSet) {
neededFields.reset()
unneededFields.reset()
if len(pt.byFields) == 0 {
neededFields.add("*")
} else {
neededFields.addFields(pt.byFields)
}
}
func (pt *pipeTop) optimize() {
// nothing to do
}
func (pt *pipeTop) hasFilterInWithQuery() bool {
return false
}
func (pt *pipeTop) initFilterInValues(_ map[string][]string, _ getFieldValuesFunc) (pipe, error) {
return pt, nil
}
func (pt *pipeTop) newPipeProcessor(workersCount int, stopCh <-chan struct{}, cancel func(), ppNext pipeProcessor) pipeProcessor {
maxStateSize := int64(float64(memory.Allowed()) * 0.2)
shards := make([]pipeTopProcessorShard, workersCount)
for i := range shards {
shards[i] = pipeTopProcessorShard{
pipeTopProcessorShardNopad: pipeTopProcessorShardNopad{
pt: pt,
},
}
}
ptp := &pipeTopProcessor{
pt: pt,
stopCh: stopCh,
cancel: cancel,
ppNext: ppNext,
shards: shards,
maxStateSize: maxStateSize,
}
ptp.stateSizeBudget.Store(maxStateSize)
return ptp
}
type pipeTopProcessor struct {
pt *pipeTop
stopCh <-chan struct{}
cancel func()
ppNext pipeProcessor
shards []pipeTopProcessorShard
maxStateSize int64
stateSizeBudget atomic.Int64
}
type pipeTopProcessorShard struct {
pipeTopProcessorShardNopad
// The padding prevents false sharing on widespread platforms with 128 mod (cache line size) = 0 .
_ [128 - unsafe.Sizeof(pipeTopProcessorShardNopad{})%128]byte
}
type pipeTopProcessorShardNopad struct {
// pt points to the parent pipeTop.
pt *pipeTop
// m holds per-row hits.
m map[string]*uint64
// keyBuf is a temporary buffer for building keys for m.
keyBuf []byte
// columnValues is a temporary buffer for the processed column values.
columnValues [][]string
// stateSizeBudget is the remaining budget for the whole state size for the shard.
// The per-shard budget is provided in chunks from the parent pipeTopProcessor.
stateSizeBudget int
}
// writeBlock writes br to shard.
func (shard *pipeTopProcessorShard) writeBlock(br *blockResult) {
byFields := shard.pt.byFields
if len(byFields) == 0 {
// Take into account all the columns in br.
keyBuf := shard.keyBuf
cs := br.getColumns()
for i := 0; i < br.rowsLen; i++ {
keyBuf = keyBuf[:0]
for _, c := range cs {
v := c.getValueAtRow(br, i)
keyBuf = encoding.MarshalBytes(keyBuf, bytesutil.ToUnsafeBytes(c.name))
keyBuf = encoding.MarshalBytes(keyBuf, bytesutil.ToUnsafeBytes(v))
}
shard.updateState(bytesutil.ToUnsafeString(keyBuf), 1)
}
shard.keyBuf = keyBuf
return
}
if len(byFields) == 1 {
// Fast path for a single field.
c := br.getColumnByName(byFields[0])
if c.isConst {
v := c.valuesEncoded[0]
shard.updateState(v, uint64(br.rowsLen))
return
}
if c.valueType == valueTypeDict {
c.forEachDictValueWithHits(br, shard.updateState)
return
}
values := c.getValues(br)
for _, v := range values {
shard.updateState(v, 1)
}
return
}
// Take into account only the selected columns.
columnValues := shard.columnValues[:0]
for _, f := range byFields {
c := br.getColumnByName(f)
values := c.getValues(br)
columnValues = append(columnValues, values)
}
shard.columnValues = columnValues
keyBuf := shard.keyBuf
for i := 0; i < br.rowsLen; i++ {
keyBuf = keyBuf[:0]
for _, values := range columnValues {
keyBuf = encoding.MarshalBytes(keyBuf, bytesutil.ToUnsafeBytes(values[i]))
}
shard.updateState(bytesutil.ToUnsafeString(keyBuf), 1)
}
shard.keyBuf = keyBuf
}
func (shard *pipeTopProcessorShard) updateState(v string, hits uint64) {
m := shard.getM()
pHits, ok := m[v]
if !ok {
vCopy := strings.Clone(v)
hits := uint64(0)
pHits = &hits
m[vCopy] = pHits
shard.stateSizeBudget -= len(vCopy) + int(unsafe.Sizeof(vCopy)+unsafe.Sizeof(hits)+unsafe.Sizeof(pHits))
}
*pHits += hits
}
func (shard *pipeTopProcessorShard) getM() map[string]*uint64 {
if shard.m == nil {
shard.m = make(map[string]*uint64)
}
return shard.m
}
func (ptp *pipeTopProcessor) writeBlock(workerID uint, br *blockResult) {
if br.rowsLen == 0 {
return
}
shard := &ptp.shards[workerID]
for shard.stateSizeBudget < 0 {
// steal some budget for the state size from the global budget.
remaining := ptp.stateSizeBudget.Add(-stateSizeBudgetChunk)
if remaining < 0 {
// The state size is too big. Stop processing data in order to avoid OOM crash.
if remaining+stateSizeBudgetChunk >= 0 {
// Notify worker goroutines to stop calling writeBlock() in order to save CPU time.
ptp.cancel()
}
return
}
shard.stateSizeBudget += stateSizeBudgetChunk
}
shard.writeBlock(br)
}
func (ptp *pipeTopProcessor) flush() error {
if n := ptp.stateSizeBudget.Load(); n <= 0 {
return fmt.Errorf("cannot calculate [%s], since it requires more than %dMB of memory", ptp.pt.String(), ptp.maxStateSize/(1<<20))
}
// merge state across shards
shards := ptp.shards
m := shards[0].getM()
shards = shards[1:]
for i := range shards {
if needStop(ptp.stopCh) {
return nil
}
for k, pHitsSrc := range shards[i].getM() {
pHits, ok := m[k]
if !ok {
m[k] = pHitsSrc
} else {
*pHits += *pHitsSrc
}
}
}
// select top entries with the biggest number of hits
entries := make([]pipeTopEntry, 0, len(m))
for k, pHits := range m {
entries = append(entries, pipeTopEntry{
k: k,
hits: *pHits,
})
}
sort.Slice(entries, func(i, j int) bool {
a, b := &entries[i], &entries[j]
if a.hits == b.hits {
return a.k < b.k
}
return a.hits > b.hits
})
if uint64(len(entries)) > ptp.pt.limit {
entries = entries[:ptp.pt.limit]
}
// write result
wctx := &pipeTopWriteContext{
ptp: ptp,
}
byFields := ptp.pt.byFields
var rowFields []Field
addHitsField := func(dst []Field, hits uint64) []Field {
hitsStr := string(marshalUint64String(nil, hits))
dst = append(dst, Field{
Name: ptp.pt.hitsFieldName,
Value: hitsStr,
})
return dst
}
if len(byFields) == 0 {
for _, e := range entries {
if needStop(ptp.stopCh) {
return nil
}
rowFields = rowFields[:0]
keyBuf := bytesutil.ToUnsafeBytes(e.k)
for len(keyBuf) > 0 {
name, nSize := encoding.UnmarshalBytes(keyBuf)
if nSize <= 0 {
logger.Panicf("BUG: cannot unmarshal field name")
}
keyBuf = keyBuf[nSize:]
value, nSize := encoding.UnmarshalBytes(keyBuf)
if nSize <= 0 {
logger.Panicf("BUG: cannot unmarshal field value")
}
keyBuf = keyBuf[nSize:]
rowFields = append(rowFields, Field{
Name: bytesutil.ToUnsafeString(name),
Value: bytesutil.ToUnsafeString(value),
})
}
rowFields = addHitsField(rowFields, e.hits)
wctx.writeRow(rowFields)
}
} else if len(byFields) == 1 {
fieldName := byFields[0]
for _, e := range entries {
if needStop(ptp.stopCh) {
return nil
}
rowFields = append(rowFields[:0], Field{
Name: fieldName,
Value: e.k,
})
rowFields = addHitsField(rowFields, e.hits)
wctx.writeRow(rowFields)
}
} else {
for _, e := range entries {
if needStop(ptp.stopCh) {
return nil
}
rowFields = rowFields[:0]
keyBuf := bytesutil.ToUnsafeBytes(e.k)
fieldIdx := 0
for len(keyBuf) > 0 {
value, nSize := encoding.UnmarshalBytes(keyBuf)
if nSize <= 0 {
logger.Panicf("BUG: cannot unmarshal field value")
}
keyBuf = keyBuf[nSize:]
rowFields = append(rowFields, Field{
Name: byFields[fieldIdx],
Value: bytesutil.ToUnsafeString(value),
})
fieldIdx++
}
rowFields = addHitsField(rowFields, e.hits)
wctx.writeRow(rowFields)
}
}
wctx.flush()
return nil
}
type pipeTopEntry struct {
k string
hits uint64
}
type pipeTopWriteContext struct {
ptp *pipeTopProcessor
rcs []resultColumn
br blockResult
// rowsCount is the number of rows in the current block
rowsCount int
// valuesLen is the total length of values in the current block
valuesLen int
}
func (wctx *pipeTopWriteContext) writeRow(rowFields []Field) {
rcs := wctx.rcs
areEqualColumns := len(rcs) == len(rowFields)
if areEqualColumns {
for i, f := range rowFields {
if rcs[i].name != f.Name {
areEqualColumns = false
break
}
}
}
if !areEqualColumns {
// send the current block to ppNext and construct a block with new set of columns
wctx.flush()
rcs = wctx.rcs[:0]
for _, f := range rowFields {
rcs = appendResultColumnWithName(rcs, f.Name)
}
wctx.rcs = rcs
}
for i, f := range rowFields {
v := f.Value
rcs[i].addValue(v)
wctx.valuesLen += len(v)
}
wctx.rowsCount++
if wctx.valuesLen >= 1_000_000 {
wctx.flush()
}
}
func (wctx *pipeTopWriteContext) flush() {
rcs := wctx.rcs
br := &wctx.br
wctx.valuesLen = 0
// Flush rcs to ppNext
br.setResultColumns(rcs, wctx.rowsCount)
wctx.rowsCount = 0
wctx.ptp.ppNext.writeBlock(0, br)
br.reset()
for i := range rcs {
rcs[i].resetValues()
}
}
func parsePipeTop(lex *lexer) (*pipeTop, error) {
if !lex.isKeyword("top") {
return nil, fmt.Errorf("expecting 'top'; got %q", lex.token)
}
lex.nextToken()
limit := uint64(pipeTopDefaultLimit)
limitStr := ""
if isNumberPrefix(lex.token) {
limitF, s, err := parseNumber(lex)
if err != nil {
return nil, fmt.Errorf("cannot parse N in 'top': %w", err)
}
if limitF < 1 {
return nil, fmt.Errorf("N in 'top %s' must be integer bigger than 0", s)
}
limit = uint64(limitF)
limitStr = s
}
var byFields []string
if lex.isKeyword("by", "(") {
if lex.isKeyword("by") {
lex.nextToken()
}
bfs, err := parseFieldNamesInParens(lex)
if err != nil {
return nil, fmt.Errorf("cannot parse 'by' clause in 'top': %w", err)
}
if slices.Contains(bfs, "*") {
bfs = nil
}
byFields = bfs
}
hitsFieldName := "hits"
for slices.Contains(byFields, hitsFieldName) {
hitsFieldName += "s"
}
pt := &pipeTop{
byFields: byFields,
limit: limit,
limitStr: limitStr,
hitsFieldName: hitsFieldName,
}
return pt, nil
}