VictoriaMetrics/app/vmselect/netstorage/netstorage.go
Aliaksandr Valialkin a350d1e81c
lib/storage: return marshaled metric names from SearchMetricNames
Previously SearchMetricNames was returning unmarshaled metric names.
This wasn't great for vmstorage, which should spend additional CPU time
for marshaling the metric names before sending them to vmselect.

While at it, remove possible duplicate metric names, which could occur when
multiple samples for new time series are ingested via concurrent requests.

Also sort the metric names before returning them to the client.
This simplifies debugging of the returned metric names across repeated requests to /api/v1/series
2022-06-28 18:17:15 +03:00

1119 lines
33 KiB
Go

package netstorage
import (
"container/heap"
"errors"
"flag"
"fmt"
"regexp"
"sort"
"sync"
"sync/atomic"
"time"
"github.com/VictoriaMetrics/VictoriaMetrics/app/vmselect/searchutils"
"github.com/VictoriaMetrics/VictoriaMetrics/app/vmstorage"
"github.com/VictoriaMetrics/VictoriaMetrics/lib/bytesutil"
"github.com/VictoriaMetrics/VictoriaMetrics/lib/cgroup"
"github.com/VictoriaMetrics/VictoriaMetrics/lib/fasttime"
"github.com/VictoriaMetrics/VictoriaMetrics/lib/logger"
"github.com/VictoriaMetrics/VictoriaMetrics/lib/querytracer"
"github.com/VictoriaMetrics/VictoriaMetrics/lib/storage"
"github.com/VictoriaMetrics/metrics"
"github.com/valyala/fastrand"
)
var (
maxTagKeysPerSearch = flag.Int("search.maxTagKeys", 100e3, "The maximum number of tag keys returned from /api/v1/labels")
maxTagValuesPerSearch = flag.Int("search.maxTagValues", 100e3, "The maximum number of tag values returned from /api/v1/label/<label_name>/values")
maxTagValueSuffixesPerSearch = flag.Int("search.maxTagValueSuffixesPerSearch", 100e3, "The maximum number of tag value suffixes returned from /metrics/find")
maxSamplesPerSeries = flag.Int("search.maxSamplesPerSeries", 30e6, "The maximum number of raw samples a single query can scan per each time series. This option allows limiting memory usage")
maxSamplesPerQuery = flag.Int("search.maxSamplesPerQuery", 1e9, "The maximum number of raw samples a single query can process across all time series. This protects from heavy queries, which select unexpectedly high number of raw samples. See also -search.maxSamplesPerSeries")
)
// Result is a single timeseries result.
//
// ProcessSearchQuery returns Result slice.
type Result struct {
// The name of the metric.
MetricName storage.MetricName
// Values are sorted by Timestamps.
Values []float64
Timestamps []int64
}
func (r *Result) reset() {
r.MetricName.Reset()
r.Values = r.Values[:0]
r.Timestamps = r.Timestamps[:0]
}
// Results holds results returned from ProcessSearchQuery.
type Results struct {
tr storage.TimeRange
deadline searchutils.Deadline
packedTimeseries []packedTimeseries
sr *storage.Search
tbf *tmpBlocksFile
}
// Len returns the number of results in rss.
func (rss *Results) Len() int {
return len(rss.packedTimeseries)
}
// Cancel cancels rss work.
func (rss *Results) Cancel() {
rss.mustClose()
}
func (rss *Results) mustClose() {
putStorageSearch(rss.sr)
rss.sr = nil
putTmpBlocksFile(rss.tbf)
rss.tbf = nil
}
type timeseriesWork struct {
mustStop *uint32
rss *Results
pts *packedTimeseries
f func(rs *Result, workerID uint) error
doneCh chan error
rowsProcessed int
}
func (tsw *timeseriesWork) reset() {
tsw.mustStop = nil
tsw.rss = nil
tsw.pts = nil
tsw.f = nil
if n := len(tsw.doneCh); n > 0 {
logger.Panicf("BUG: tsw.doneCh must be empty during reset; it contains %d items instead", n)
}
tsw.rowsProcessed = 0
}
func getTimeseriesWork() *timeseriesWork {
v := tswPool.Get()
if v == nil {
v = &timeseriesWork{
doneCh: make(chan error, 1),
}
}
return v.(*timeseriesWork)
}
func putTimeseriesWork(tsw *timeseriesWork) {
tsw.reset()
tswPool.Put(tsw)
}
var tswPool sync.Pool
func scheduleTimeseriesWork(workChs []chan *timeseriesWork, tsw *timeseriesWork) {
if len(workChs) == 1 {
// Fast path for a single worker
workChs[0] <- tsw
return
}
attempts := 0
for {
idx := fastrand.Uint32n(uint32(len(workChs)))
select {
case workChs[idx] <- tsw:
return
default:
attempts++
if attempts >= len(workChs) {
workChs[idx] <- tsw
return
}
}
}
}
func (tsw *timeseriesWork) do(r *Result, workerID uint) error {
if atomic.LoadUint32(tsw.mustStop) != 0 {
return nil
}
rss := tsw.rss
if rss.deadline.Exceeded() {
atomic.StoreUint32(tsw.mustStop, 1)
return fmt.Errorf("timeout exceeded during query execution: %s", rss.deadline.String())
}
if err := tsw.pts.Unpack(r, rss.tbf, rss.tr); err != nil {
atomic.StoreUint32(tsw.mustStop, 1)
return fmt.Errorf("error during time series unpacking: %w", err)
}
if len(r.Timestamps) > 0 {
if err := tsw.f(r, workerID); err != nil {
atomic.StoreUint32(tsw.mustStop, 1)
return err
}
}
tsw.rowsProcessed = len(r.Values)
return nil
}
func timeseriesWorker(ch <-chan *timeseriesWork, workerID uint) {
v := resultPool.Get()
if v == nil {
v = &result{}
}
r := v.(*result)
for tsw := range ch {
err := tsw.do(&r.rs, workerID)
tsw.doneCh <- err
}
currentTime := fasttime.UnixTimestamp()
if cap(r.rs.Values) > 1024*1024 && 4*len(r.rs.Values) < cap(r.rs.Values) && currentTime-r.lastResetTime > 10 {
// Reset r.rs in order to preseve memory usage after processing big time series with millions of rows.
r.rs = Result{}
r.lastResetTime = currentTime
}
resultPool.Put(r)
}
type result struct {
rs Result
lastResetTime uint64
}
var resultPool sync.Pool
// RunParallel runs f in parallel for all the results from rss.
//
// f shouldn't hold references to rs after returning.
// workerID is the id of the worker goroutine that calls f.
// Data processing is immediately stopped if f returns non-nil error.
//
// rss becomes unusable after the call to RunParallel.
func (rss *Results) RunParallel(qt *querytracer.Tracer, f func(rs *Result, workerID uint) error) error {
qt = qt.NewChild("parallel process of fetched data")
defer rss.mustClose()
// Spin up local workers.
//
// Do not use a global workChs with a global pool of workers, since it may lead to a deadlock in the following case:
// - RunParallel is called with f, which blocks without forward progress.
// - All the workers in the global pool became blocked in f.
// - workChs is filled up, so it cannot accept new work items from other RunParallel calls.
workers := len(rss.packedTimeseries)
if workers > gomaxprocs {
workers = gomaxprocs
}
if workers < 1 {
workers = 1
}
workChs := make([]chan *timeseriesWork, workers)
var workChsWG sync.WaitGroup
for i := 0; i < workers; i++ {
workChs[i] = make(chan *timeseriesWork, 16)
workChsWG.Add(1)
go func(workerID int) {
defer workChsWG.Done()
timeseriesWorker(workChs[workerID], uint(workerID))
}(i)
}
// Feed workers with work.
tsws := make([]*timeseriesWork, len(rss.packedTimeseries))
var mustStop uint32
for i := range rss.packedTimeseries {
tsw := getTimeseriesWork()
tsw.rss = rss
tsw.pts = &rss.packedTimeseries[i]
tsw.f = f
tsw.mustStop = &mustStop
scheduleTimeseriesWork(workChs, tsw)
tsws[i] = tsw
}
seriesProcessedTotal := len(rss.packedTimeseries)
rss.packedTimeseries = rss.packedTimeseries[:0]
// Wait until work is complete.
var firstErr error
rowsProcessedTotal := 0
for _, tsw := range tsws {
if err := <-tsw.doneCh; err != nil && firstErr == nil {
// Return just the first error, since other errors are likely duplicate the first error.
firstErr = err
}
rowsProcessedTotal += tsw.rowsProcessed
putTimeseriesWork(tsw)
}
perQueryRowsProcessed.Update(float64(rowsProcessedTotal))
perQuerySeriesProcessed.Update(float64(seriesProcessedTotal))
// Shut down local workers
for _, workCh := range workChs {
close(workCh)
}
workChsWG.Wait()
qt.Donef("series=%d, samples=%d", seriesProcessedTotal, rowsProcessedTotal)
return firstErr
}
var perQueryRowsProcessed = metrics.NewHistogram(`vm_per_query_rows_processed_count`)
var perQuerySeriesProcessed = metrics.NewHistogram(`vm_per_query_series_processed_count`)
var gomaxprocs = cgroup.AvailableCPUs()
type packedTimeseries struct {
metricName string
brs []blockRef
}
type unpackWorkItem struct {
br blockRef
tr storage.TimeRange
}
type unpackWork struct {
tbf *tmpBlocksFile
ws []unpackWorkItem
sbs []*sortBlock
doneCh chan error
}
func (upw *unpackWork) reset() {
upw.tbf = nil
ws := upw.ws
for i := range ws {
w := &ws[i]
w.br = blockRef{}
w.tr = storage.TimeRange{}
}
upw.ws = upw.ws[:0]
sbs := upw.sbs
for i := range sbs {
sbs[i] = nil
}
upw.sbs = upw.sbs[:0]
if n := len(upw.doneCh); n > 0 {
logger.Panicf("BUG: upw.doneCh must be empty; it contains %d items now", n)
}
}
func (upw *unpackWork) unpack(tmpBlock *storage.Block) {
for _, w := range upw.ws {
sb := getSortBlock()
if err := sb.unpackFrom(tmpBlock, upw.tbf, w.br, w.tr); err != nil {
putSortBlock(sb)
upw.doneCh <- fmt.Errorf("cannot unpack block: %w", err)
return
}
upw.sbs = append(upw.sbs, sb)
}
upw.doneCh <- nil
}
func getUnpackWork() *unpackWork {
v := unpackWorkPool.Get()
if v != nil {
return v.(*unpackWork)
}
return &unpackWork{
doneCh: make(chan error, 1),
}
}
func putUnpackWork(upw *unpackWork) {
upw.reset()
unpackWorkPool.Put(upw)
}
var unpackWorkPool sync.Pool
func scheduleUnpackWork(workChs []chan *unpackWork, uw *unpackWork) {
if len(workChs) == 1 {
// Fast path for a single worker
workChs[0] <- uw
return
}
attempts := 0
for {
idx := fastrand.Uint32n(uint32(len(workChs)))
select {
case workChs[idx] <- uw:
return
default:
attempts++
if attempts >= len(workChs) {
workChs[idx] <- uw
return
}
}
}
}
func unpackWorker(ch <-chan *unpackWork) {
v := tmpBlockPool.Get()
if v == nil {
v = &storage.Block{}
}
tmpBlock := v.(*storage.Block)
for upw := range ch {
upw.unpack(tmpBlock)
}
tmpBlockPool.Put(v)
}
var tmpBlockPool sync.Pool
// unpackBatchSize is the maximum number of blocks that may be unpacked at once by a single goroutine.
//
// It is better to load a single goroutine for up to one second on a system with many CPU cores
// in order to reduce inter-CPU memory ping-pong.
// A single goroutine can unpack up to 40 millions of rows per second, while a single block contains up to 8K rows.
// So the batch size should be 40M / 8K = 5K.
var unpackBatchSize = 5000
// Unpack unpacks pts to dst.
func (pts *packedTimeseries) Unpack(dst *Result, tbf *tmpBlocksFile, tr storage.TimeRange) error {
dst.reset()
if err := dst.MetricName.Unmarshal(bytesutil.ToUnsafeBytes(pts.metricName)); err != nil {
return fmt.Errorf("cannot unmarshal metricName %q: %w", pts.metricName, err)
}
// Spin up local workers.
// Do not use global workers pool, since it increases inter-CPU memory ping-poing,
// which reduces the scalability on systems with many CPU cores.
brsLen := len(pts.brs)
workers := brsLen / unpackBatchSize
if workers > gomaxprocs {
workers = gomaxprocs
}
if workers < 1 {
workers = 1
}
workChs := make([]chan *unpackWork, workers)
var workChsWG sync.WaitGroup
for i := 0; i < workers; i++ {
// Use unbuffered channel on purpose, since there are high chances
// that only a single unpackWork is needed to unpack.
// The unbuffered channel should reduce inter-CPU ping-pong in this case,
// which should improve the performance in a system with many CPU cores.
workChs[i] = make(chan *unpackWork)
workChsWG.Add(1)
go func(workerID int) {
defer workChsWG.Done()
unpackWorker(workChs[workerID])
}(i)
}
// Feed workers with work
upws := make([]*unpackWork, 0, 1+brsLen/unpackBatchSize)
upw := getUnpackWork()
upw.tbf = tbf
for _, br := range pts.brs {
if len(upw.ws) >= unpackBatchSize {
scheduleUnpackWork(workChs, upw)
upws = append(upws, upw)
upw = getUnpackWork()
upw.tbf = tbf
}
upw.ws = append(upw.ws, unpackWorkItem{
br: br,
tr: tr,
})
}
scheduleUnpackWork(workChs, upw)
upws = append(upws, upw)
pts.brs = pts.brs[:0]
// Wait until work is complete
samples := 0
sbs := make([]*sortBlock, 0, brsLen)
var firstErr error
for _, upw := range upws {
if err := <-upw.doneCh; err != nil && firstErr == nil {
// Return the first error only, since other errors are likely the same.
firstErr = err
}
if firstErr == nil {
for _, sb := range upw.sbs {
samples += len(sb.Timestamps)
}
if *maxSamplesPerSeries <= 0 || samples < *maxSamplesPerSeries {
sbs = append(sbs, upw.sbs...)
} else {
firstErr = fmt.Errorf("cannot process more than %d samples per series; either increase -search.maxSamplesPerSeries "+
"or reduce time range for the query", *maxSamplesPerSeries)
}
}
if firstErr != nil {
for _, sb := range upw.sbs {
putSortBlock(sb)
}
}
putUnpackWork(upw)
}
// Shut down local workers
for _, workCh := range workChs {
close(workCh)
}
workChsWG.Wait()
if firstErr != nil {
return firstErr
}
dedupInterval := storage.GetDedupInterval()
mergeSortBlocks(dst, sbs, dedupInterval)
return nil
}
func getSortBlock() *sortBlock {
v := sbPool.Get()
if v == nil {
return &sortBlock{}
}
return v.(*sortBlock)
}
func putSortBlock(sb *sortBlock) {
sb.reset()
sbPool.Put(sb)
}
var sbPool sync.Pool
var metricRowsSkipped = metrics.NewCounter(`vm_metric_rows_skipped_total{name="vmselect"}`)
func mergeSortBlocks(dst *Result, sbh sortBlocksHeap, dedupInterval int64) {
// Skip empty sort blocks, since they cannot be passed to heap.Init.
src := sbh
sbh = sbh[:0]
for _, sb := range src {
if len(sb.Timestamps) == 0 {
putSortBlock(sb)
continue
}
sbh = append(sbh, sb)
}
if len(sbh) == 0 {
return
}
heap.Init(&sbh)
for {
top := sbh[0]
heap.Pop(&sbh)
if len(sbh) == 0 {
dst.Timestamps = append(dst.Timestamps, top.Timestamps[top.NextIdx:]...)
dst.Values = append(dst.Values, top.Values[top.NextIdx:]...)
putSortBlock(top)
break
}
sbNext := sbh[0]
tsNext := sbNext.Timestamps[sbNext.NextIdx]
idxNext := len(top.Timestamps)
if top.Timestamps[idxNext-1] > tsNext {
idxNext = top.NextIdx
for top.Timestamps[idxNext] <= tsNext {
idxNext++
}
}
dst.Timestamps = append(dst.Timestamps, top.Timestamps[top.NextIdx:idxNext]...)
dst.Values = append(dst.Values, top.Values[top.NextIdx:idxNext]...)
if idxNext < len(top.Timestamps) {
top.NextIdx = idxNext
heap.Push(&sbh, top)
} else {
// Return top to the pool.
putSortBlock(top)
}
}
timestamps, values := storage.DeduplicateSamples(dst.Timestamps, dst.Values, dedupInterval)
dedups := len(dst.Timestamps) - len(timestamps)
dedupsDuringSelect.Add(dedups)
dst.Timestamps = timestamps
dst.Values = values
}
var dedupsDuringSelect = metrics.NewCounter(`vm_deduplicated_samples_total{type="select"}`)
type sortBlock struct {
Timestamps []int64
Values []float64
NextIdx int
}
func (sb *sortBlock) reset() {
sb.Timestamps = sb.Timestamps[:0]
sb.Values = sb.Values[:0]
sb.NextIdx = 0
}
func (sb *sortBlock) unpackFrom(tmpBlock *storage.Block, tbf *tmpBlocksFile, br blockRef, tr storage.TimeRange) error {
tmpBlock.Reset()
brReal := tbf.MustReadBlockRefAt(br.partRef, br.addr)
brReal.MustReadBlock(tmpBlock)
if err := tmpBlock.UnmarshalData(); err != nil {
return fmt.Errorf("cannot unmarshal block: %w", err)
}
sb.Timestamps, sb.Values = tmpBlock.AppendRowsWithTimeRangeFilter(sb.Timestamps[:0], sb.Values[:0], tr)
skippedRows := tmpBlock.RowsCount() - len(sb.Timestamps)
metricRowsSkipped.Add(skippedRows)
return nil
}
type sortBlocksHeap []*sortBlock
func (sbh sortBlocksHeap) Len() int {
return len(sbh)
}
func (sbh sortBlocksHeap) Less(i, j int) bool {
a := sbh[i]
b := sbh[j]
return a.Timestamps[a.NextIdx] < b.Timestamps[b.NextIdx]
}
func (sbh sortBlocksHeap) Swap(i, j int) {
sbh[i], sbh[j] = sbh[j], sbh[i]
}
func (sbh *sortBlocksHeap) Push(x interface{}) {
*sbh = append(*sbh, x.(*sortBlock))
}
func (sbh *sortBlocksHeap) Pop() interface{} {
a := *sbh
v := a[len(a)-1]
*sbh = a[:len(a)-1]
return v
}
// DeleteSeries deletes time series matching the given tagFilterss.
func DeleteSeries(qt *querytracer.Tracer, sq *storage.SearchQuery, deadline searchutils.Deadline) (int, error) {
qt = qt.NewChild("delete series: %s", sq)
defer qt.Done()
tr := storage.TimeRange{
MinTimestamp: sq.MinTimestamp,
MaxTimestamp: sq.MaxTimestamp,
}
tfss, err := setupTfss(qt, tr, sq.TagFilterss, sq.MaxMetrics, deadline)
if err != nil {
return 0, err
}
return vmstorage.DeleteMetrics(qt, tfss)
}
// LabelNames returns label names matching the given sq until the given deadline.
func LabelNames(qt *querytracer.Tracer, sq *storage.SearchQuery, maxLabelNames int, deadline searchutils.Deadline) ([]string, error) {
qt = qt.NewChild("get labels: %s", sq)
defer qt.Done()
if deadline.Exceeded() {
return nil, fmt.Errorf("timeout exceeded before starting the query processing: %s", deadline.String())
}
if maxLabelNames > *maxTagKeysPerSearch || maxLabelNames <= 0 {
maxLabelNames = *maxTagKeysPerSearch
}
tr := storage.TimeRange{
MinTimestamp: sq.MinTimestamp,
MaxTimestamp: sq.MaxTimestamp,
}
tfss, err := setupTfss(qt, tr, sq.TagFilterss, sq.MaxMetrics, deadline)
if err != nil {
return nil, err
}
labels, err := vmstorage.SearchLabelNamesWithFiltersOnTimeRange(qt, tfss, tr, maxLabelNames, sq.MaxMetrics, deadline.Deadline())
if err != nil {
return nil, fmt.Errorf("error during labels search on time range: %w", err)
}
// Sort labels like Prometheus does
sort.Strings(labels)
qt.Printf("sort %d labels", len(labels))
return labels, nil
}
// GraphiteTags returns Graphite tags until the given deadline.
func GraphiteTags(qt *querytracer.Tracer, filter string, limit int, deadline searchutils.Deadline) ([]string, error) {
qt = qt.NewChild("get graphite tags: filter=%s, limit=%d", filter, limit)
defer qt.Done()
if deadline.Exceeded() {
return nil, fmt.Errorf("timeout exceeded before starting the query processing: %s", deadline.String())
}
sq := storage.NewSearchQuery(0, 0, nil, 0)
labels, err := LabelNames(qt, sq, 0, deadline)
if err != nil {
return nil, err
}
// Substitute "__name__" with "name" for Graphite compatibility
for i := range labels {
if labels[i] != "__name__" {
continue
}
// Prevent from duplicate `name` tag.
// See https://github.com/VictoriaMetrics/VictoriaMetrics/issues/942
if hasString(labels, "name") {
labels = append(labels[:i], labels[i+1:]...)
} else {
labels[i] = "name"
sort.Strings(labels)
}
break
}
if len(filter) > 0 {
labels, err = applyGraphiteRegexpFilter(filter, labels)
if err != nil {
return nil, err
}
}
if limit > 0 && limit < len(labels) {
labels = labels[:limit]
}
return labels, nil
}
func hasString(a []string, s string) bool {
for _, x := range a {
if x == s {
return true
}
}
return false
}
// LabelValues returns label values matching the given labelName and sq until the given deadline.
func LabelValues(qt *querytracer.Tracer, labelName string, sq *storage.SearchQuery, maxLabelValues int, deadline searchutils.Deadline) ([]string, error) {
qt = qt.NewChild("get values for label %s: %s", labelName, sq)
defer qt.Done()
if deadline.Exceeded() {
return nil, fmt.Errorf("timeout exceeded before starting the query processing: %s", deadline.String())
}
if maxLabelValues > *maxTagValuesPerSearch || maxLabelValues <= 0 {
maxLabelValues = *maxTagValuesPerSearch
}
tr := storage.TimeRange{
MinTimestamp: sq.MinTimestamp,
MaxTimestamp: sq.MaxTimestamp,
}
tfss, err := setupTfss(qt, tr, sq.TagFilterss, sq.MaxMetrics, deadline)
if err != nil {
return nil, err
}
labelValues, err := vmstorage.SearchLabelValuesWithFiltersOnTimeRange(qt, labelName, tfss, tr, maxLabelValues, sq.MaxMetrics, deadline.Deadline())
if err != nil {
return nil, fmt.Errorf("error during label values search on time range for labelName=%q: %w", labelName, err)
}
// Sort labelValues like Prometheus does
sort.Strings(labelValues)
qt.Printf("sort %d label values", len(labelValues))
return labelValues, nil
}
// GraphiteTagValues returns tag values for the given tagName until the given deadline.
func GraphiteTagValues(qt *querytracer.Tracer, tagName, filter string, limit int, deadline searchutils.Deadline) ([]string, error) {
qt = qt.NewChild("get graphite tag values for tagName=%s, filter=%s, limit=%d", tagName, filter, limit)
defer qt.Done()
if deadline.Exceeded() {
return nil, fmt.Errorf("timeout exceeded before starting the query processing: %s", deadline.String())
}
if tagName == "name" {
tagName = ""
}
sq := storage.NewSearchQuery(0, 0, nil, 0)
tagValues, err := LabelValues(qt, tagName, sq, 0, deadline)
if err != nil {
return nil, err
}
if len(filter) > 0 {
tagValues, err = applyGraphiteRegexpFilter(filter, tagValues)
if err != nil {
return nil, err
}
}
if limit > 0 && limit < len(tagValues) {
tagValues = tagValues[:limit]
}
return tagValues, nil
}
// TagValueSuffixes returns tag value suffixes for the given tagKey and the given tagValuePrefix.
//
// It can be used for implementing https://graphite-api.readthedocs.io/en/latest/api.html#metrics-find
func TagValueSuffixes(qt *querytracer.Tracer, tr storage.TimeRange, tagKey, tagValuePrefix string, delimiter byte, deadline searchutils.Deadline) ([]string, error) {
qt = qt.NewChild("get tag value suffixes for tagKey=%s, tagValuePrefix=%s, timeRange=%s", tagKey, tagValuePrefix, &tr)
defer qt.Done()
if deadline.Exceeded() {
return nil, fmt.Errorf("timeout exceeded before starting the query processing: %s", deadline.String())
}
suffixes, err := vmstorage.SearchTagValueSuffixes(qt, tr, []byte(tagKey), []byte(tagValuePrefix), delimiter, *maxTagValueSuffixesPerSearch, deadline.Deadline())
if err != nil {
return nil, fmt.Errorf("error during search for suffixes for tagKey=%q, tagValuePrefix=%q, delimiter=%c on time range %s: %w",
tagKey, tagValuePrefix, delimiter, tr.String(), err)
}
if len(suffixes) >= *maxTagValueSuffixesPerSearch {
return nil, fmt.Errorf("more than -search.maxTagValueSuffixesPerSearch=%d tag value suffixes found for tagKey=%q, tagValuePrefix=%q, delimiter=%c on time range %s; "+
"either narrow down the query or increase -search.maxTagValueSuffixesPerSearch command-line flag value",
*maxTagValueSuffixesPerSearch, tagKey, tagValuePrefix, delimiter, tr.String())
}
return suffixes, nil
}
// TSDBStatus returns tsdb status according to https://prometheus.io/docs/prometheus/latest/querying/api/#tsdb-stats
//
// It accepts aribtrary filters on time series in sq.
func TSDBStatus(qt *querytracer.Tracer, sq *storage.SearchQuery, focusLabel string, topN int, deadline searchutils.Deadline) (*storage.TSDBStatus, error) {
qt = qt.NewChild("get tsdb stats: %s, focusLabel=%q, topN=%d", sq, focusLabel, topN)
defer qt.Done()
if deadline.Exceeded() {
return nil, fmt.Errorf("timeout exceeded before starting the query processing: %s", deadline.String())
}
tr := storage.TimeRange{
MinTimestamp: sq.MinTimestamp,
MaxTimestamp: sq.MaxTimestamp,
}
tfss, err := setupTfss(qt, tr, sq.TagFilterss, sq.MaxMetrics, deadline)
if err != nil {
return nil, err
}
date := uint64(tr.MinTimestamp) / (3600 * 24 * 1000)
status, err := vmstorage.GetTSDBStatus(qt, tfss, date, focusLabel, topN, sq.MaxMetrics, deadline.Deadline())
if err != nil {
return nil, fmt.Errorf("error during tsdb status request: %w", err)
}
return status, nil
}
// SeriesCount returns the number of unique series.
func SeriesCount(qt *querytracer.Tracer, deadline searchutils.Deadline) (uint64, error) {
qt = qt.NewChild("get series count")
defer qt.Done()
if deadline.Exceeded() {
return 0, fmt.Errorf("timeout exceeded before starting the query processing: %s", deadline.String())
}
n, err := vmstorage.GetSeriesCount(deadline.Deadline())
if err != nil {
return 0, fmt.Errorf("error during series count request: %w", err)
}
return n, nil
}
func getStorageSearch() *storage.Search {
v := ssPool.Get()
if v == nil {
return &storage.Search{}
}
return v.(*storage.Search)
}
func putStorageSearch(sr *storage.Search) {
sr.MustClose()
ssPool.Put(sr)
}
var ssPool sync.Pool
// ExportBlocks searches for time series matching sq and calls f for each found block.
//
// f is called in parallel from multiple goroutines.
// Data processing is immediately stopped if f returns non-nil error.
// It is the responsibility of f to call b.UnmarshalData before reading timestamps and values from the block.
// It is the responsibility of f to filter blocks according to the given tr.
func ExportBlocks(qt *querytracer.Tracer, sq *storage.SearchQuery, deadline searchutils.Deadline, f func(mn *storage.MetricName, b *storage.Block, tr storage.TimeRange) error) error {
qt = qt.NewChild("export blocks: %s", sq)
defer qt.Done()
if deadline.Exceeded() {
return fmt.Errorf("timeout exceeded before starting data export: %s", deadline.String())
}
tr := storage.TimeRange{
MinTimestamp: sq.MinTimestamp,
MaxTimestamp: sq.MaxTimestamp,
}
if err := vmstorage.CheckTimeRange(tr); err != nil {
return err
}
tfss, err := setupTfss(qt, tr, sq.TagFilterss, sq.MaxMetrics, deadline)
if err != nil {
return err
}
vmstorage.WG.Add(1)
defer vmstorage.WG.Done()
sr := getStorageSearch()
defer putStorageSearch(sr)
startTime := time.Now()
sr.Init(qt, vmstorage.Storage, tfss, tr, sq.MaxMetrics, deadline.Deadline())
indexSearchDuration.UpdateDuration(startTime)
// Start workers that call f in parallel on available CPU cores.
gomaxprocs := cgroup.AvailableCPUs()
workCh := make(chan *exportWork, gomaxprocs*8)
var (
errGlobal error
errGlobalLock sync.Mutex
mustStop uint32
)
var wg sync.WaitGroup
wg.Add(gomaxprocs)
for i := 0; i < gomaxprocs; i++ {
go func() {
defer wg.Done()
for xw := range workCh {
if err := f(&xw.mn, &xw.b, tr); err != nil {
errGlobalLock.Lock()
if errGlobal != nil {
errGlobal = err
atomic.StoreUint32(&mustStop, 1)
}
errGlobalLock.Unlock()
}
xw.reset()
exportWorkPool.Put(xw)
}
}()
}
// Feed workers with work
blocksRead := 0
samples := 0
for sr.NextMetricBlock() {
blocksRead++
if deadline.Exceeded() {
return fmt.Errorf("timeout exceeded while fetching data block #%d from storage: %s", blocksRead, deadline.String())
}
if atomic.LoadUint32(&mustStop) != 0 {
break
}
xw := exportWorkPool.Get().(*exportWork)
if err := xw.mn.Unmarshal(sr.MetricBlockRef.MetricName); err != nil {
return fmt.Errorf("cannot unmarshal metricName for block #%d: %w", blocksRead, err)
}
br := sr.MetricBlockRef.BlockRef
br.MustReadBlock(&xw.b)
samples += br.RowsCount()
workCh <- xw
}
close(workCh)
// Wait for workers to finish.
wg.Wait()
qt.Printf("export blocks=%d, samples=%d", blocksRead, samples)
// Check errors.
err = sr.Error()
if err == nil {
err = errGlobal
}
if err != nil {
if errors.Is(err, storage.ErrDeadlineExceeded) {
return fmt.Errorf("timeout exceeded during the query: %s", deadline.String())
}
return fmt.Errorf("search error after reading %d data blocks: %w", blocksRead, err)
}
return nil
}
type exportWork struct {
mn storage.MetricName
b storage.Block
}
func (xw *exportWork) reset() {
xw.mn.Reset()
xw.b.Reset()
}
var exportWorkPool = &sync.Pool{
New: func() interface{} {
return &exportWork{}
},
}
// SearchMetricNames returns all the metric names matching sq until the given deadline.
//
// The returned metric names must be unmarshaled via storage.MetricName.UnmarshalString().
func SearchMetricNames(qt *querytracer.Tracer, sq *storage.SearchQuery, deadline searchutils.Deadline) ([]string, error) {
qt = qt.NewChild("fetch metric names: %s", sq)
defer qt.Done()
if deadline.Exceeded() {
return nil, fmt.Errorf("timeout exceeded before starting to search metric names: %s", deadline.String())
}
// Setup search.
tr := storage.TimeRange{
MinTimestamp: sq.MinTimestamp,
MaxTimestamp: sq.MaxTimestamp,
}
if err := vmstorage.CheckTimeRange(tr); err != nil {
return nil, err
}
tfss, err := setupTfss(qt, tr, sq.TagFilterss, sq.MaxMetrics, deadline)
if err != nil {
return nil, err
}
metricNames, err := vmstorage.SearchMetricNames(qt, tfss, tr, sq.MaxMetrics, deadline.Deadline())
if err != nil {
return nil, fmt.Errorf("cannot find metric names: %w", err)
}
sort.Strings(metricNames)
qt.Printf("sort %d metric names", len(metricNames))
return metricNames, nil
}
// ProcessSearchQuery performs sq until the given deadline.
//
// Results.RunParallel or Results.Cancel must be called on the returned Results.
func ProcessSearchQuery(qt *querytracer.Tracer, sq *storage.SearchQuery, deadline searchutils.Deadline) (*Results, error) {
qt = qt.NewChild("fetch matching series: %s", sq)
defer qt.Done()
if deadline.Exceeded() {
return nil, fmt.Errorf("timeout exceeded before starting the query processing: %s", deadline.String())
}
// Setup search.
tr := storage.TimeRange{
MinTimestamp: sq.MinTimestamp,
MaxTimestamp: sq.MaxTimestamp,
}
if err := vmstorage.CheckTimeRange(tr); err != nil {
return nil, err
}
tfss, err := setupTfss(qt, tr, sq.TagFilterss, sq.MaxMetrics, deadline)
if err != nil {
return nil, err
}
vmstorage.WG.Add(1)
defer vmstorage.WG.Done()
sr := getStorageSearch()
startTime := time.Now()
maxSeriesCount := sr.Init(qt, vmstorage.Storage, tfss, tr, sq.MaxMetrics, deadline.Deadline())
indexSearchDuration.UpdateDuration(startTime)
m := make(map[string][]blockRef, maxSeriesCount)
orderedMetricNames := make([]string, 0, maxSeriesCount)
blocksRead := 0
samples := 0
tbf := getTmpBlocksFile()
var buf []byte
for sr.NextMetricBlock() {
blocksRead++
if deadline.Exceeded() {
putTmpBlocksFile(tbf)
putStorageSearch(sr)
return nil, fmt.Errorf("timeout exceeded while fetching data block #%d from storage: %s", blocksRead, deadline.String())
}
br := sr.MetricBlockRef.BlockRef
samples += br.RowsCount()
if *maxSamplesPerQuery > 0 && samples > *maxSamplesPerQuery {
putTmpBlocksFile(tbf)
putStorageSearch(sr)
return nil, fmt.Errorf("cannot select more than -search.maxSamplesPerQuery=%d samples; possible solutions: to increase the -search.maxSamplesPerQuery; to reduce time range for the query; to use more specific label filters in order to select lower number of series", *maxSamplesPerQuery)
}
buf = br.Marshal(buf[:0])
addr, err := tbf.WriteBlockRefData(buf)
if err != nil {
putTmpBlocksFile(tbf)
putStorageSearch(sr)
return nil, fmt.Errorf("cannot write %d bytes to temporary file: %w", len(buf), err)
}
metricName := sr.MetricBlockRef.MetricName
brs := m[string(metricName)]
brs = append(brs, blockRef{
partRef: br.PartRef(),
addr: addr,
})
if len(brs) > 1 {
m[string(metricName)] = brs
} else {
// An optimization for big number of time series with long metricName values:
// use only a single copy of metricName for both orderedMetricNames and m.
orderedMetricNames = append(orderedMetricNames, string(metricName))
m[orderedMetricNames[len(orderedMetricNames)-1]] = brs
}
}
if err := sr.Error(); err != nil {
putTmpBlocksFile(tbf)
putStorageSearch(sr)
if errors.Is(err, storage.ErrDeadlineExceeded) {
return nil, fmt.Errorf("timeout exceeded during the query: %s", deadline.String())
}
return nil, fmt.Errorf("search error after reading %d data blocks: %w", blocksRead, err)
}
if err := tbf.Finalize(); err != nil {
putTmpBlocksFile(tbf)
putStorageSearch(sr)
return nil, fmt.Errorf("cannot finalize temporary file: %w", err)
}
qt.Printf("fetch unique series=%d, blocks=%d, samples=%d, bytes=%d", len(m), blocksRead, samples, tbf.Len())
var rss Results
rss.tr = tr
rss.deadline = deadline
pts := make([]packedTimeseries, len(orderedMetricNames))
for i, metricName := range orderedMetricNames {
pts[i] = packedTimeseries{
metricName: metricName,
brs: m[metricName],
}
}
rss.packedTimeseries = pts
rss.sr = sr
rss.tbf = tbf
return &rss, nil
}
var indexSearchDuration = metrics.NewHistogram(`vm_index_search_duration_seconds`)
type blockRef struct {
partRef storage.PartRef
addr tmpBlockAddr
}
func setupTfss(qt *querytracer.Tracer, tr storage.TimeRange, tagFilterss [][]storage.TagFilter, maxMetrics int, deadline searchutils.Deadline) ([]*storage.TagFilters, error) {
tfss := make([]*storage.TagFilters, 0, len(tagFilterss))
for _, tagFilters := range tagFilterss {
tfs := storage.NewTagFilters()
for i := range tagFilters {
tf := &tagFilters[i]
if string(tf.Key) == "__graphite__" {
query := tf.Value
paths, err := vmstorage.SearchGraphitePaths(qt, tr, query, maxMetrics, deadline.Deadline())
if err != nil {
return nil, fmt.Errorf("error when searching for Graphite paths for query %q: %w", query, err)
}
if len(paths) >= maxMetrics {
return nil, fmt.Errorf("more than %d time series match Graphite query %q; "+
"either narrow down the query or increase the corresponding -search.max* command-line flag value", maxMetrics, query)
}
tfs.AddGraphiteQuery(query, paths, tf.IsNegative)
continue
}
if err := tfs.Add(tf.Key, tf.Value, tf.IsNegative, tf.IsRegexp); err != nil {
return nil, fmt.Errorf("cannot parse tag filter %s: %w", tf, err)
}
}
tfss = append(tfss, tfs)
}
return tfss, nil
}
func applyGraphiteRegexpFilter(filter string, ss []string) ([]string, error) {
// Anchor filter regexp to the beginning of the string as Graphite does.
// See https://github.com/graphite-project/graphite-web/blob/3ad279df5cb90b211953e39161df416e54a84948/webapp/graphite/tags/localdatabase.py#L157
filter = "^(?:" + filter + ")"
re, err := regexp.Compile(filter)
if err != nil {
return nil, fmt.Errorf("cannot parse regexp filter=%q: %w", filter, err)
}
dst := ss[:0]
for _, s := range ss {
if re.MatchString(s) {
dst = append(dst, s)
}
}
return dst, nil
}