mirror of
https://github.com/VictoriaMetrics/VictoriaMetrics.git
synced 2024-11-23 12:31:07 +01:00
7.9 KiB
7.9 KiB
VictoriaMetrics supports standard PromQL including subqueries. Additionally it supports useful extensions mentioned below. Try these extensions on an editable Grafana dashboard.
WITH
templates. This feature simplifies writing and managing complex queries. Go toWITH
templates playground and try it.- Metric names and metric labels may contain escaped chars. For instance,
foo\-bar{baz\=aa="b"}
is valid expression. It returns time series with namefoo-bar
containing labelbaz=aa
with valueb
. Additionally,\xXX
escape sequence is supported, whereXX
is hexadecimal representation of escaped char. offset
, range duration and step value for range vector may refer to the current step aka$__interval
value from Grafana. For instance,rate(metric[10i] offset 5i)
would return per-second rate over a range covering 10 previous steps with the offset of 5 steps.default
binary operator.q1 default q2
substitutesNaN
values fromq1
with the corresponding values fromq2
.if
binary operator.q1 if q2
removes values fromq1
forNaN
values fromq2
.ifnot
binary operator.q1 ifnot q2
removes values fromq1
for non-NaN
values fromq2
.offset
may be put anywere in the query. For instance,sum(foo) offset 24h
.- Trailing commas on all the lists are allowed - label filters, function args and with expressions. For instance, the following queries are valid:
m{foo="bar",}
,f(a, b,)
,WITH (x=y,) x
. This simplifies maintenance of multi-line queries. - String literals may be concatenated. This is useful with
WITH
templates:WITH (commonPrefix="long_metric_prefix_") {__name__=commonPrefix+"suffix1"} / {__name__=commonPrefix+"suffix2"}
. - Range duration in functions such as rate may be omitted. VictoriaMetrics automatically selects range duration depending on the current step used for building the graph. For instance, the following query is valid in VictoriaMetrics:
rate(node_network_receive_bytes_total)
. - Range duration and offset may be fractional. For instance,
rate(node_network_receive_bytes_total[1.5m] offset 0.5d)
. - Comments starting with
#
and ending with newline. For instance,up # this is a comment for 'up' metric
. - Rollup functions -
rollup(m[d])
,rollup_rate(m[d])
,rollup_deriv(m[d])
,rollup_increase(m[d])
,rollup_delta(m[d])
- returnmin
,max
andavg
values for all them
data points overd
duration. rollup_candlestick(m[d])
- returnsopen
,close
,low
andhigh
values (OHLC) for all them
data points overd
duration. This function is useful for financial applications.union(q1, ... qN)
function for building multiple graphs forq1
, ...qN
subqueries with a single query. Theunion
function name may be skipped - the following queries are equivalent:union(q1, q2)
and(q1, q2)
.ru(freeResources, maxResources)
function for returning resource utilization percentage in the range0% - 100%
. For instance,ru(node_memory_MemFree_bytes, node_memory_MemTotal_bytes)
returns memory utilization over node_exporter metrics.ttf(slowlyChangingFreeResources)
function for returning the time in seconds when the givenslowlyChangingFreeResources
expression reaches zero. For instance,ttf(node_filesystem_avail_byte)
returns the time to storage space exhaustion. This function may be useful for capacity planning.- Functions for label manipulation:
alias(q, name)
for setting metric name across all the time seriesq
.label_set(q, label1, value1, ... labelN, valueN)
for setting the given values for the given labels onq
.label_del(q, label1, ... labelN)
for deleting the given labels fromq
.label_keep(q, label1, ... labelN)
for deleting all the labels except the given labels fromq
.label_copy(q, src_label1, dst_label1, ... src_labelN, dst_labelN)
for copying label values fromsrc_*
todst_*
.label_move(q, src_label1, dst_label1, ... src_labelN, dst_labelN)
for moving label values fromsrc_*
todst_*
.label_transform(q, label, regexp, replacement)
for replacing all theregexp
occurences withreplacement
in thelabel
values fromq
.label_value(q, label)
- returns numeric values for the givenlabel
fromq
.
step()
function for returning the step in seconds used in the query.start()
andend()
functions for returning the start and end timestamps of the[start ... end]
range used in the query.integrate(m[d])
for returning integral over the given durationd
for the given metricm
.ideriv(m)
- for calculatinginstant
derivative form
.deriv_fast(m[d])
- for calculatingfast
derivative form
based on the first and the last points from durationd
.running_
functions -running_sum
,running_min
,running_max
,running_avg
- for calculating running values on the selected time range.range_
functions -range_sum
,range_min
,range_max
,range_avg
,range_first
,range_last
,range_median
,range_quantile
- for calculating global value over the selected time range.smooth_exponential(q, sf)
- smoothsq
using exponential moving average with the given smooth factorsf
.remove_resets(q)
- removes counter resets fromq
.lag(q[d])
- returns lag between the current timestamp and the timestamp from the previous data point inq
overd
.lifetime(q[d])
- returns lifetime ofq
overd
in seconds. It is expected thatd
exceeds the lifetime ofq
.scrape_interval(q[d])
- returns the average interval in seconds between data points ofq
overd
akascrape interval
.- Trigonometric functions -
sin(q)
,cos(q)
,asin(q)
,acos(q)
andpi()
. median_over_time(m[d])
- calculates median values form
overd
time window. Shorthand toquantile_over_time(0.5, m[d])
.median(q)
- median aggregate. Shorthand toquantile(0.5, q)
.limitk(k, q)
- limits the number of time series returned fromq
tok
.keep_last_value(q)
- fills missing data (gaps) inq
with the previous value.distinct_over_time(m[d])
- returns distinct number of values form
data points overd
duration.distinct(q)
- returns a time series with the number of unique values for each timestamp inq
.sum2_over_time(m[d])
- returns sum of squares for all them
values overd
duration.sum2(q)
- returns a time series with sum of square values for each timestamp inq
.geomean_over_time(m[d])
- returns geomean value for all them
value overd
duration.geomean(q)
- returns a time series with geomean value for each timestamp inq
.rand()
,rand_normal()
andrand_exponential()
functions - for generating pseudo-random series with even, normal and exponential distribution.increases_over_time(m[d])
anddecreases_over_time(m[d])
- returns the number ofm
increases or decreases over the given durationd
.prometheus_buckets(q)
- converts VictoriaMetrics histogram buckets to Prometheus buckets withle
labels.histogram(q)
- calculates aggregate histogram overq
time series for each point on the graph.