VictoriaMetrics/lib/uint64set/uint64set_test.go

760 lines
19 KiB
Go

package uint64set
import (
"fmt"
"math/rand"
"reflect"
"sort"
"testing"
"time"
)
func TestSetOps(t *testing.T) {
f := func(a, b []uint64) {
t.Helper()
mUnion := make(map[uint64]bool)
mIntersect := make(map[uint64]bool)
ma := make(map[uint64]bool)
sa := &Set{}
sb := &Set{}
for _, v := range a {
sa.Add(v)
ma[v] = true
mUnion[v] = true
}
for _, v := range b {
sb.Add(v)
mUnion[v] = true
if ma[v] {
mIntersect[v] = true
}
}
saOrig := sa.Clone()
if !saOrig.Equal(sa) {
t.Fatalf("saOrig must be equal to sa; got\n%v\nvs\n%v", saOrig, sa)
}
sbOrig := sb.Clone()
if !sbOrig.Equal(sb) {
t.Fatalf("sbOrig must be equal to sb; got\n%v\nvs\n%v", sbOrig, sb)
}
// Verify sa.Union(sb)
sa.Union(sb)
if err := expectEqual(sa, mUnion); err != nil {
t.Fatalf("ivalid sa.Union(sb): %s", err)
}
if !sbOrig.Equal(sb) {
t.Fatalf("sbOrig must be equal to sb after sa.Union(sb); got\n%v\nvs\n%v", sbOrig, sb)
}
// Verify sb.Union(sa)
sa = saOrig.Clone()
sb.Union(sa)
if err := expectEqual(sb, mUnion); err != nil {
t.Fatalf("invalid sb.Union(sa): %s", err)
}
if !saOrig.Equal(sa) {
t.Fatalf("saOrig must be equal to sa after sb.Union(sa); got\n%v\nvs\n%v", saOrig, sa)
}
// Verify sa.UnionMayOwn(sb)
sa = saOrig.Clone()
sb = sbOrig.Clone()
sa.UnionMayOwn(sb)
if err := expectEqual(sa, mUnion); err != nil {
t.Fatalf("invalid sa.UnionMayOwn(sb): %s", err)
}
if !sbOrig.Equal(sb) {
t.Fatalf("sbOrig must be equal to sb after sa.UnionMayOwn(sb); got\n%v\nvs\n%v", sbOrig, sb)
}
// Verify sb.UnionMayOwn(sa)
sa = saOrig.Clone()
sb.UnionMayOwn(sa)
if err := expectEqual(sb, mUnion); err != nil {
t.Fatalf("invalid sb.UnionMayOwn(sa): %s", err)
}
if !saOrig.Equal(sa) {
t.Fatalf("saOrig must be equal to sa after sb.UnionMayOwn(sa); got\n%v\nvs\n%v", saOrig, sa)
}
// Verify sa.Intersect(sb)
sa = saOrig.Clone()
sb = sbOrig.Clone()
sa.Intersect(sb)
if err := expectEqual(sa, mIntersect); err != nil {
t.Fatalf("invalid sa.Intersect(sb): %s", err)
}
if !sbOrig.Equal(sb) {
t.Fatalf("sbOrig must be equal to sb after sa.Intersect(sb); got\n%v\nvs\n%v", sbOrig, sb)
}
// Verify sb.Intersect(sa)
sa = saOrig.Clone()
sb.Intersect(sa)
if err := expectEqual(sb, mIntersect); err != nil {
t.Fatalf("invalid sb.Intersect(sa): %s", err)
}
if !saOrig.Equal(sa) {
t.Fatalf("saOrig must be equal to sa after sb.Intersect(sa); got\n%v\nvs\n%v", saOrig, sa)
}
// Verify sa.Subtract(sb)
mSubtractAB := make(map[uint64]bool)
for _, v := range a {
mSubtractAB[v] = true
}
for _, v := range b {
delete(mSubtractAB, v)
}
sa = saOrig.Clone()
sb = sbOrig.Clone()
sa.Subtract(sb)
if err := expectEqual(sa, mSubtractAB); err != nil {
t.Fatalf("invalid sa.Subtract(sb): %s", err)
}
if !sbOrig.Equal(sb) {
t.Fatalf("sbOrig must be equal to sb after sa.Subtract(sb); got\n%v\nvs\n%v", sbOrig, sb)
}
// Verify sb.Subtract(sa)
mSubtractBA := make(map[uint64]bool)
for _, v := range b {
mSubtractBA[v] = true
}
for _, v := range a {
delete(mSubtractBA, v)
}
sa = saOrig.Clone()
sb.Subtract(sa)
if err := expectEqual(sb, mSubtractBA); err != nil {
t.Fatalf("invalid sb.Subtract(sa): %s", err)
}
if !saOrig.Equal(sa) {
t.Fatalf("saOrig must be equal to sa after sb.Subtract(sa); got\n%v\nvs\n%v", saOrig, sa)
}
}
f(nil, nil)
f([]uint64{1}, nil)
f([]uint64{1, 2, 3}, nil)
f([]uint64{1, 2, 3, 1 << 16, 1 << 32, 2 << 32}, nil)
f([]uint64{1}, []uint64{1})
f([]uint64{0}, []uint64{1 << 16})
f([]uint64{1}, []uint64{1 << 16})
f([]uint64{1}, []uint64{4 << 16})
f([]uint64{1}, []uint64{1 << 32})
f([]uint64{1}, []uint64{1 << 32, 2 << 32})
f([]uint64{1}, []uint64{2 << 32})
f([]uint64{1, 1<<16 - 1}, []uint64{1 << 16})
f([]uint64{0, 1<<16 - 1}, []uint64{1 << 16, 1<<16 - 1})
f([]uint64{0, 1<<16 - 1}, []uint64{1 << 16, 1<<16 - 1, 2 << 16, 8 << 16})
f([]uint64{0}, []uint64{1 << 16, 1<<16 - 1, 2 << 16, 8 << 16})
f([]uint64{0, 2 << 16}, []uint64{1 << 16})
f([]uint64{0, 2 << 16}, []uint64{1 << 16, 3 << 16})
f([]uint64{0, 2 << 16}, []uint64{1 << 16, 2 << 16})
f([]uint64{0, 2 << 16}, []uint64{1 << 16, 2 << 16, 3 << 16})
f([]uint64{0, 2 << 32}, []uint64{1 << 32})
f([]uint64{0, 2 << 32}, []uint64{1 << 32, 3 << 32})
f([]uint64{0, 2 << 32}, []uint64{1 << 32, 2 << 32})
f([]uint64{0, 2 << 32}, []uint64{1 << 32, 2 << 32, 3 << 32})
var a []uint64
for i := 0; i < 100; i++ {
a = append(a, uint64(i))
}
var b []uint64
for i := 1 << 16; i < 1<<16+1000; i++ {
b = append(b, uint64(i))
}
f(a, b)
for i := 1<<16 - 100; i < 1<<16+100; i++ {
a = append(a, uint64(i))
}
for i := uint64(1) << 32; i < 1<<32+1<<16+200; i++ {
b = append(b, i)
}
f(a, b)
rng := rand.New(rand.NewSource(0))
for i := 0; i < 10; i++ {
a = nil
b = nil
for j := 0; j < 1000; j++ {
a = append(a, uint64(rng.Intn(1e6)))
b = append(b, uint64(rng.Intn(1e6)))
}
f(a, b)
}
}
func expectEqual(s *Set, m map[uint64]bool) error {
if s.Len() != len(m) {
return fmt.Errorf("unexpected s.Len(); got %d; want %d\ns=%v\nm=%v", s.Len(), len(m), s.AppendTo(nil), m)
}
for _, v := range s.AppendTo(nil) {
if !m[v] {
return fmt.Errorf("missing value %d in m; s=%v\nm=%v", v, s.AppendTo(nil), m)
}
}
// Additional check via s.Has()
for v := range m {
if !s.Has(v) {
return fmt.Errorf("missing value %d in s; s=%v\nm=%v", v, s.AppendTo(nil), m)
}
}
// Extra check via s.ForEach()
var err error
s.ForEach(func(part []uint64) bool {
for _, v := range part {
if !m[v] {
err = fmt.Errorf("missing value %d in m inside s.ForEach; s=%v\nm=%v", v, s.AppendTo(nil), m)
return false
}
}
return true
})
return err
}
func TestSetBasicOps(t *testing.T) {
for _, itemsCount := range []int{1, 2, 3, 4, 5, 6, 1e2, 1e3, 1e4, 1e5, 1e6} {
t.Run(fmt.Sprintf("items_%d", itemsCount), func(t *testing.T) {
testSetBasicOps(t, itemsCount)
})
}
}
func testSetBasicOps(t *testing.T, itemsCount int) {
var s Set
offset := uint64(time.Now().UnixNano())
// Verify operations on nil set
{
var sNil *Set
if n := sNil.SizeBytes(); n != 0 {
t.Fatalf("sNil.SizeBytes must return 0; got %d", n)
}
if sNil.Has(123) {
t.Fatalf("sNil shouldn't contain any item; found 123")
}
if n := sNil.Len(); n != 0 {
t.Fatalf("unexpected sNil.Len(); got %d; want 0", n)
}
result := sNil.AppendTo(nil)
if result != nil {
t.Fatalf("sNil.AppendTo(nil) must return nil")
}
buf := []uint64{1, 2, 3}
result = sNil.AppendTo(buf)
if !reflect.DeepEqual(result, buf) {
t.Fatalf("sNil.AppendTo(buf) must return buf")
}
sCopy := sNil.Clone()
if n := sCopy.Len(); n != 0 {
t.Fatalf("unexpected sCopy.Len() from nil set; got %d; want 0", n)
}
sCopy.Add(123)
if n := sCopy.Len(); n != 1 {
t.Fatalf("unexpected sCopy.Len() after adding an item; got %d; want 1", n)
}
sCopy.Add(123)
if n := sCopy.Len(); n != 1 {
t.Fatalf("unexpected sCopy.Len() after adding an item twice; got %d; want 1", n)
}
if !sCopy.Has(123) {
t.Fatalf("sCopy must contain 123")
}
sCopy.Del(123)
if n := sCopy.Len(); n != 0 {
t.Fatalf("unexpected sCopy.Len() after deleting the item; got %d; want 0", n)
}
sCopy.Del(123)
if n := sCopy.Len(); n != 0 {
t.Fatalf("unexpected sCopy.Len() after double deleting the item; got %d; want 0", n)
}
}
// Verify forward Add
itemsCount = (itemsCount / 2) * 2
for i := 0; i < itemsCount/2; i++ {
s.Add(uint64(i) + offset)
}
if n := s.Len(); n != itemsCount/2 {
t.Fatalf("unexpected s.Len() after forward Add; got %d; want %d", n, itemsCount/2)
}
if n := s.SizeBytes(); n == 0 {
t.Fatalf("s.SizeBytes() must be greater than 0")
}
// Verify backward Add
for i := 0; i < itemsCount/2; i++ {
s.Add(uint64(itemsCount-i-1) + offset)
}
if n := s.Len(); n != itemsCount {
t.Fatalf("unexpected s.Len() after backward Add; got %d; want %d", n, itemsCount)
}
// Verify repeated Add
for i := 0; i < itemsCount/2; i++ {
s.Add(uint64(i) + offset)
}
if n := s.Len(); n != itemsCount {
t.Fatalf("unexpected s.Len() after repeated Add; got %d; want %d", n, itemsCount)
}
// Verify Has on existing bits
for i := 0; i < itemsCount; i++ {
if !s.Has(uint64(i) + offset) {
t.Fatalf("missing bit %d", uint64(i)+offset)
}
}
// Verify Has on missing bits
for i := itemsCount; i < 2*itemsCount; i++ {
if s.Has(uint64(i) + offset) {
t.Fatalf("unexpected bit found: %d", uint64(i)+offset)
}
}
// Verify Clone and Equal
sCopy := s.Clone()
if n := sCopy.Len(); n != itemsCount {
t.Fatalf("unexpected sCopy.Len(); got %d; want %d", n, itemsCount)
}
for i := 0; i < itemsCount; i++ {
if !sCopy.Has(uint64(i) + offset) {
t.Fatalf("missing bit %d on sCopy", uint64(i)+offset)
}
}
if !sCopy.Equal(&s) {
t.Fatalf("s must equal to sCopy")
}
if !s.Equal(sCopy) {
t.Fatalf("sCopy must equal to s")
}
if s.Len() > 0 {
var sEmpty Set
if s.Equal(&sEmpty) {
t.Fatalf("s mustn't equal to sEmpty")
}
sNew := s.Clone()
sNew.Del(offset)
if sNew.Equal(&s) {
t.Fatalf("sNew mustn't equal to s")
}
if s.Equal(sNew) {
t.Fatalf("s mustn't equal to sNew")
}
sNew.Add(offset - 123)
if sNew.Equal(&s) {
t.Fatalf("sNew mustn't equal to s")
}
if s.Equal(sNew) {
t.Fatalf("s mustn't equal to sNew")
}
}
// Verify AppendTo
a := s.AppendTo(nil)
if len(a) != itemsCount {
t.Fatalf("unexpected len of exported array; got %d; want %d; array:\n%d", len(a), itemsCount, a)
}
if !sort.SliceIsSorted(a, func(i, j int) bool { return a[i] < a[j] }) {
t.Fatalf("unsorted result returned from AppendTo: %d", a)
}
m := make(map[uint64]bool)
for _, x := range a {
m[x] = true
}
for i := 0; i < itemsCount; i++ {
if !m[uint64(i)+offset] {
t.Fatalf("missing bit %d in the exported bits; array:\n%d", uint64(i)+offset, a)
}
}
// Verify ForEach
{
var s Set
m := make(map[uint64]bool)
for i := 0; i < itemsCount; i++ {
v := uint64(i) + offset
s.Add(v)
m[v] = true
}
// Verify visiting all the items.
s.ForEach(func(part []uint64) bool {
for _, v := range part {
if !m[v] {
t.Fatalf("unexpected value v=%d passed to ForEach", v)
}
delete(m, v)
}
return true
})
if len(m) != 0 {
t.Fatalf("ForEach didn't visit %d items; items: %v", len(m), m)
}
// Verify fast stop
calls := 0
s.ForEach(func(part []uint64) bool {
calls++
return false
})
if itemsCount > 0 && calls != 1 {
t.Fatalf("Unexpected number of ForEach callback calls; got %d; want %d", calls, 1)
}
// Verify ForEach on nil set.
var s1 *Set
s1.ForEach(func(part []uint64) bool {
t.Fatalf("callback shouldn't be called on empty set")
return true
})
}
// Verify union
{
const unionOffset = 12345
var s1, s2 Set
for i := 0; i < itemsCount; i++ {
s1.Add(uint64(i) + offset)
s2.Add(uint64(i) + offset + unionOffset)
}
s1.Union(&s2)
expectedLen := 2 * itemsCount
if itemsCount > unionOffset {
expectedLen = itemsCount + unionOffset
}
if n := s1.Len(); n != expectedLen {
t.Fatalf("unexpected s1.Len() after union; got %d; want %d", n, expectedLen)
}
// Verify union on empty set.
var s3 Set
s3.Union(&s1)
expectedLen = s1.Len()
if n := s3.Len(); n != expectedLen {
t.Fatalf("unexpected s3.Len() after union with empty set; got %d; want %d", n, expectedLen)
}
var s4 Set
expectedLen = s3.Len()
s3.Union(&s4)
if n := s3.Len(); n != expectedLen {
t.Fatalf("unexpected s3.Len() after union with empty set; got %d; want %d", n, expectedLen)
}
}
// Verify UnionMayOwn
{
const unionOffset = 12345
var s1, s2 Set
for i := 0; i < itemsCount; i++ {
s1.Add(uint64(i) + offset)
s2.Add(uint64(i) + offset + unionOffset)
}
s1.UnionMayOwn(&s2)
expectedLen := 2 * itemsCount
if itemsCount > unionOffset {
expectedLen = itemsCount + unionOffset
}
if n := s1.Len(); n != expectedLen {
t.Fatalf("unexpected s1.Len() after union; got %d; want %d", n, expectedLen)
}
// Verify union on empty set.
var s3 Set
expectedLen = s1.Len()
s3.UnionMayOwn(&s1)
if n := s3.Len(); n != expectedLen {
t.Fatalf("unexpected s3.Len() after union with empty set; got %d; want %d", n, expectedLen)
}
var s4 Set
expectedLen = s3.Len()
s3.UnionMayOwn(&s4)
if n := s3.Len(); n != expectedLen {
t.Fatalf("unexpected s3.Len() after union with empty set; got %d; want %d", n, expectedLen)
}
}
// Verify intersect
{
// Verify s1.Intersect(s2) and s2.Intersect(s1)
var s1, s2 Set
for _, intersectOffset := range []uint64{123, 12345, 1<<32 + 4343} {
s1 = Set{}
s2 = Set{}
for i := 0; i < itemsCount; i++ {
s1.Add(uint64(i) + offset)
s2.Add(uint64(i) + offset + intersectOffset)
}
expectedLen := 0
if uint64(itemsCount) > intersectOffset {
expectedLen = int(uint64(itemsCount) - intersectOffset)
}
s1Copy := s1.Clone()
s1Copy.Intersect(&s2)
if n := s1Copy.Len(); n != expectedLen {
t.Fatalf("unexpected s1.Len() after intersect; got %d; want %d", n, expectedLen)
}
s2.Intersect(&s1)
if n := s2.Len(); n != expectedLen {
t.Fatalf("unexpected s2.Len() after intersect; got %d; want %d", n, expectedLen)
}
}
// Verify intersect on empty set.
var s3 Set
s2.Intersect(&s3)
expectedLen := 0
if n := s2.Len(); n != expectedLen {
t.Fatalf("unexpected s3.Len() after intersect with empty set; got %d; want %d", n, expectedLen)
}
var s4 Set
s4.Intersect(&s1)
if n := s4.Len(); n != expectedLen {
t.Fatalf("unexpected s4.Len() after intersect with empty set; got %d; want %d", n, expectedLen)
}
}
// Verify subtract
{
const subtractOffset = 12345
var s1, s2 Set
for i := 0; i < itemsCount; i++ {
s1.Add(uint64(i) + offset)
s2.Add(uint64(i) + offset + subtractOffset)
}
s1.Subtract(&s2)
expectedLen := itemsCount
if itemsCount > subtractOffset {
expectedLen = subtractOffset
}
if n := s1.Len(); n != expectedLen {
t.Fatalf("unexpected s1.Len() after subtract; got %d; want %d", n, expectedLen)
}
// Verify subtract from empty set.
var s3 Set
s3.Subtract(&s2)
expectedLen = 0
if n := s3.Len(); n != 0 {
t.Fatalf("unexpected s3.Len() after subtract from empty set; got %d; want %d", n, expectedLen)
}
}
// Verify Del
itemsDeleted := 0
for i := itemsCount / 2; i < itemsCount-itemsCount/4; i++ {
s.Del(uint64(i) + offset)
itemsDeleted++
}
if n := s.Len(); n != itemsCount-itemsDeleted {
t.Fatalf("unexpected s.Len() after Del; got %d; want %d", n, itemsCount-itemsDeleted)
}
a = s.AppendTo(a[:0])
if len(a) != itemsCount-itemsDeleted {
t.Fatalf("unexpected len of exported array; got %d; want %d", len(a), itemsCount-itemsDeleted)
}
m = make(map[uint64]bool)
for _, x := range a {
m[x] = true
}
for i := 0; i < itemsCount; i++ {
if i >= itemsCount/2 && i < itemsCount-itemsCount/4 {
if m[uint64(i)+offset] {
t.Fatalf("unexpected bit found after deleting: %d", uint64(i)+offset)
}
} else {
if !m[uint64(i)+offset] {
t.Fatalf("missing bit %d in the exported bits after deleting", uint64(i)+offset)
}
}
}
// Try Del for non-existing items
for i := itemsCount / 2; i < itemsCount-itemsCount/4; i++ {
s.Del(uint64(i) + offset)
s.Del(uint64(i) + offset)
s.Del(uint64(i) + offset + uint64(itemsCount))
}
if n := s.Len(); n != itemsCount-itemsDeleted {
t.Fatalf("unexpected s.Len() after Del for non-existing items; got %d; want %d", n, itemsCount-itemsDeleted)
}
// Verify sCopy has the original data
if n := sCopy.Len(); n != itemsCount {
t.Fatalf("unexpected sCopy.Len(); got %d; want %d", n, itemsCount)
}
for i := 0; i < itemsCount; i++ {
if !sCopy.Has(uint64(i) + offset) {
t.Fatalf("missing bit %d on sCopy", uint64(i)+offset)
}
}
}
func TestSetSparseItems(t *testing.T) {
for _, itemsCount := range []int{1e2, 1e3, 1e4} {
t.Run(fmt.Sprintf("items_%d", itemsCount), func(t *testing.T) {
testSetSparseItems(t, itemsCount)
})
}
}
func testSetSparseItems(t *testing.T, itemsCount int) {
var s Set
m := make(map[uint64]bool)
for i := 0; i < itemsCount; i++ {
x := rand.Uint64()
s.Add(x)
m[x] = true
}
if n := s.Len(); n != len(m) {
t.Fatalf("unexpected Len(); got %d; want %d", n, len(m))
}
if n := s.SizeBytes(); n == 0 {
t.Fatalf("SizeBytes() must return value greater than 0")
}
// Check Has
for x := range m {
if !s.Has(x) {
t.Fatalf("missing item %d", x)
}
}
for i := 0; i < itemsCount; i++ {
x := uint64(i)
if m[x] {
continue
}
if s.Has(x) {
t.Fatalf("unexpected item found %d", x)
}
}
// Check Clone
sCopy := s.Clone()
if n := sCopy.Len(); n != len(m) {
t.Fatalf("unexpected sCopy.Len(); got %d; want %d", n, len(m))
}
for x := range m {
if !sCopy.Has(x) {
t.Fatalf("missing item %d on sCopy", x)
}
}
// Check AppendTo
a := s.AppendTo(nil)
if len(a) != len(m) {
t.Fatalf("unexpected len for AppendTo result; got %d; want %d", len(a), len(m))
}
if !sort.SliceIsSorted(a, func(i, j int) bool { return a[i] < a[j] }) {
t.Fatalf("unsorted result returned from AppendTo: %d", a)
}
for _, x := range a {
if !m[x] {
t.Fatalf("unexpected item found in AppendTo result: %d", x)
}
}
// Check Del
for x := range m {
s.Del(x)
s.Del(x)
s.Del(x + 1)
s.Del(x - 1)
}
if n := s.Len(); n != 0 {
t.Fatalf("unexpected number of items left after Del; got %d; want 0", n)
}
a = s.AppendTo(a[:0])
if len(a) != 0 {
t.Fatalf("unexpected number of items returned from AppendTo after Del; got %d; want 0; items\n%d", len(a), a)
}
// Check items in sCopy
if n := sCopy.Len(); n != len(m) {
t.Fatalf("unexpected sCopy.Len() after Del; got %d; want %d", n, len(m))
}
for x := range m {
if !sCopy.Has(x) {
t.Fatalf("missing item %d on sCopy after Del", x)
}
}
}
func TestAddMulti(t *testing.T) {
f := func(a []uint64) {
t.Helper()
var s1, s2 Set
s1.AddMulti(a)
for _, x := range a {
s2.Add(x)
}
if s1.Len() != s2.Len() {
t.Fatalf("unexpected number of items in the set; got %d; want %d\nset:\n%d", s1.Len(), s2.Len(), s1.AppendTo(nil))
}
for _, x := range a {
if !s1.Has(x) {
t.Fatalf("missing item %d in the set", x)
}
}
a1 := s1.AppendTo(nil)
a2 := s2.AppendTo(nil)
if !reflect.DeepEqual(a1, a2) {
t.Fatalf("unexpected items in the set;\ngot\n%d\nwant\n%d", a1, a2)
}
// Try removing and then adding again all the items via AddMulti() to s1.
for _, x := range a {
s1.Del(x)
}
if s1.Len() != 0 {
t.Fatalf("non-zero number of items left after deletion: %d", s1.Len())
}
s1.AddMulti(a)
if s1.Len() != s2.Len() {
t.Fatalf("unexpected number of items in the reused set; got %d; want %d", s1.Len(), s2.Len())
}
for _, x := range a {
if !s1.Has(x) {
t.Fatalf("missing item %d in the reused set", x)
}
}
a1 = s1.AppendTo(nil)
a2 = s2.AppendTo(nil)
if !reflect.DeepEqual(a1, a2) {
t.Fatalf("unexpected items in the reused set;\ngot\n%d\nwant\n%d", a1, a2)
}
}
f(nil)
f([]uint64{1})
f([]uint64{0, 1, 2, 3, 4, 5})
f([]uint64{0, 1 << 16, 2 << 16, 2<<16 + 1})
f([]uint64{0, 1 << 16, 2 << 16, 2<<16 + 1, 1 << 32, 2 << 32, 2<<32 + 1})
var a []uint64
for i := 0; i < 32000; i++ {
a = append(a, uint64(i))
}
f(a)
a = nil
for i := 0; i < 32000; i++ {
a = append(a, 1<<16+uint64(i))
}
f(a)
a = nil
for i := 0; i < 100000; i++ {
a = append(a, 1<<32+uint64(i))
}
f(a)
}