VictoriaMetrics/lib/decimal/decimal.go

477 lines
9.4 KiB
Go

package decimal
import (
"math"
"sync"
"github.com/VictoriaMetrics/VictoriaMetrics/lib/fastnum"
)
// CalibrateScale calibrates a and b with the corresponding exponents ae, be
// and returns the resulting exponent e.
func CalibrateScale(a []int64, ae int16, b []int64, be int16) (e int16) {
if ae == be {
// Fast path - exponents are equal.
return ae
}
if len(a) == 0 {
return be
}
if len(b) == 0 {
return ae
}
if ae < be {
a, b = b, a
ae, be = be, ae
}
upExp := ae - be
downExp := int16(0)
for _, v := range a {
maxUpExp := maxUpExponent(v)
if upExp-maxUpExp > downExp {
downExp = upExp - maxUpExp
}
}
upExp -= downExp
for i, v := range a {
if v == vInfPos || v == vInfNeg {
continue
}
adjExp := upExp
for adjExp > 0 {
v *= 10
adjExp--
}
a[i] = v
}
if downExp > 0 {
for i, v := range b {
if v == vInfPos || v == vInfNeg {
continue
}
adjExp := downExp
for adjExp > 0 {
v /= 10
adjExp--
}
b[i] = v
}
}
return be + downExp
}
// ExtendFloat64sCapacity extends dst capacity to hold additionalItems
// and returns the extended dst.
func ExtendFloat64sCapacity(dst []float64, additionalItems int) []float64 {
dstLen := len(dst)
if n := dstLen + additionalItems - cap(dst); n > 0 {
dst = append(dst[:cap(dst)], make([]float64, n)...)
}
return dst[:dstLen]
}
// ExtendInt64sCapacity extends dst capacity to hold additionalItems
// and returns the extended dst.
func ExtendInt64sCapacity(dst []int64, additionalItems int) []int64 {
dstLen := len(dst)
if n := dstLen + additionalItems - cap(dst); n > 0 {
dst = append(dst[:cap(dst)], make([]int64, n)...)
}
return dst[:dstLen]
}
func extendInt16sCapacity(dst []int16, additionalItems int) []int16 {
dstLen := len(dst)
if n := dstLen + additionalItems - cap(dst); n > 0 {
dst = append(dst[:cap(dst)], make([]int16, n)...)
}
return dst[:dstLen]
}
// AppendDecimalToFloat converts each item in va to f=v*10^e, appends it
// to dst and returns the resulting dst.
func AppendDecimalToFloat(dst []float64, va []int64, e int16) []float64 {
// Extend dst capacity in order to eliminate memory allocations below.
dst = ExtendFloat64sCapacity(dst, len(va))
a := dst[len(dst) : len(dst)+len(va)]
if fastnum.IsInt64Zeros(va) {
return fastnum.AppendFloat64Zeros(dst, len(va))
}
if e == 0 {
if fastnum.IsInt64Ones(va) {
return fastnum.AppendFloat64Ones(dst, len(va))
}
_ = a[len(va)-1]
for i, v := range va {
f := float64(v)
if v == vInfPos {
f = infPos
} else if v == vInfNeg {
f = infNeg
}
a[i] = f
}
return dst[:len(dst)+len(va)]
}
// increase conversion precision for negative exponents by dividing by e10
if e < 0 {
e10 := math.Pow10(int(-e))
_ = a[len(va)-1]
for i, v := range va {
f := float64(v) / e10
if v == vInfPos {
f = infPos
} else if v == vInfNeg {
f = infNeg
}
a[i] = f
}
return dst[:len(dst)+len(va)]
}
e10 := math.Pow10(int(e))
_ = a[len(va)-1]
for i, v := range va {
f := float64(v) * e10
if v == vInfPos {
f = infPos
} else if v == vInfNeg {
f = infNeg
}
a[i] = f
}
return dst[:len(dst)+len(va)]
}
// AppendFloatToDecimal converts each item in src to v*10^e and appends
// each v to dst returning it as va.
//
// It tries minimizing each item in dst.
func AppendFloatToDecimal(dst []int64, src []float64) ([]int64, int16) {
if len(src) == 0 {
return dst, 0
}
if fastnum.IsFloat64Zeros(src) {
dst = fastnum.AppendInt64Zeros(dst, len(src))
return dst, 0
}
if fastnum.IsFloat64Ones(src) {
dst = fastnum.AppendInt64Ones(dst, len(src))
return dst, 0
}
vaev := vaeBufPool.Get()
if vaev == nil {
vaev = &vaeBuf{
va: make([]int64, len(src)),
ea: make([]int16, len(src)),
}
}
vae := vaev.(*vaeBuf)
va := vae.va[:0]
ea := vae.ea[:0]
va = ExtendInt64sCapacity(va, len(src))
va = va[:len(src)]
ea = extendInt16sCapacity(ea, len(src))
ea = ea[:len(src)]
// Determine the minimum exponent across all src items.
minExp := int16(1<<15 - 1)
for i, f := range src {
v, exp := FromFloat(f)
va[i] = v
ea[i] = exp
if exp < minExp && v != vInfPos && v != vInfNeg {
minExp = exp
}
}
// Determine whether all the src items may be upscaled to minExp.
// If not, adjust minExp accordingly.
downExp := int16(0)
_ = ea[len(va)-1]
for i, v := range va {
exp := ea[i]
upExp := exp - minExp
maxUpExp := maxUpExponent(v)
if upExp-maxUpExp > downExp {
downExp = upExp - maxUpExp
}
}
minExp += downExp
// Extend dst capacity in order to eliminate memory allocations below.
dst = ExtendInt64sCapacity(dst, len(src))
a := dst[len(dst) : len(dst)+len(src)]
// Scale each item in src to minExp and append it to dst.
_ = a[len(va)-1]
_ = ea[len(va)-1]
for i, v := range va {
if v == vInfPos || v == vInfNeg {
a[i] = v
continue
}
exp := ea[i]
adjExp := exp - minExp
for adjExp > 0 {
v *= 10
adjExp--
}
for adjExp < 0 {
v /= 10
adjExp++
}
a[i] = v
}
vae.va = va
vae.ea = ea
vaeBufPool.Put(vae)
return dst[:len(dst)+len(va)], minExp
}
type vaeBuf struct {
va []int64
ea []int16
}
var vaeBufPool sync.Pool
const int64Max = int64(1<<63 - 1)
func maxUpExponent(v int64) int16 {
if v == 0 || v == vInfPos || v == vInfNeg {
// Any exponent allowed.
return 1024
}
if v < 0 {
v = -v
}
if v < 0 {
// Handle corner case for v=-1<<63
return 0
}
switch {
case v <= int64Max/1e18:
return 18
case v <= int64Max/1e17:
return 17
case v <= int64Max/1e16:
return 16
case v <= int64Max/1e15:
return 15
case v <= int64Max/1e14:
return 14
case v <= int64Max/1e13:
return 13
case v <= int64Max/1e12:
return 12
case v <= int64Max/1e11:
return 11
case v <= int64Max/1e10:
return 10
case v <= int64Max/1e9:
return 9
case v <= int64Max/1e8:
return 8
case v <= int64Max/1e7:
return 7
case v <= int64Max/1e6:
return 6
case v <= int64Max/1e5:
return 5
case v <= int64Max/1e4:
return 4
case v <= int64Max/1e3:
return 3
case v <= int64Max/1e2:
return 2
case v <= int64Max/1e1:
return 1
default:
return 0
}
}
// Round f to value with the given number of significant figures.
func Round(f float64, digits int) float64 {
if digits <= 0 || digits >= 18 {
return f
}
if math.IsNaN(f) || math.IsInf(f, 0) || f == 0 {
return f
}
n := int64(math.Pow10(digits))
isNegative := f < 0
if isNegative {
f = -f
}
v, e := positiveFloatToDecimal(f)
if v > vMax {
v = vMax
}
var rem int64
for v > n {
rem = v % 10
v /= 10
e++
}
if rem >= 5 {
v++
}
if isNegative {
v = -v
}
return ToFloat(v, e)
}
// ToFloat returns f=v*10^e.
func ToFloat(v int64, e int16) float64 {
if v == vInfPos {
return infPos
}
if v == vInfNeg {
return infNeg
}
f := float64(v)
// increase conversion precision for negative exponents by dividing by e10
if e < 0 {
return f / math.Pow10(int(-e))
}
return f * math.Pow10(int(e))
}
var (
infPos = math.Inf(1)
infNeg = math.Inf(-1)
)
const (
vInfPos = 1<<63 - 1
vInfNeg = -1 << 63
vMax = 1<<63 - 3
vMin = -1<<63 + 1
)
// FromFloat converts f to v*10^e.
//
// It tries minimizing v.
// For instance, for f = -1.234 it returns v = -1234, e = -3.
//
// FromFloat doesn't work properly with NaN values, so don't pass them here.
func FromFloat(f float64) (int64, int16) {
if f == 0 {
return 0, 0
}
if math.IsInf(f, 0) {
return fromFloatInf(f)
}
if f > 0 {
v, e := positiveFloatToDecimal(f)
if v > vMax {
v = vMax
}
return v, e
}
v, e := positiveFloatToDecimal(-f)
v = -v
if v < vMin {
v = vMin
}
return v, e
}
func fromFloatInf(f float64) (int64, int16) {
// Limit infs by max and min values for int64
if math.IsInf(f, 1) {
return vInfPos, 0
}
return vInfNeg, 0
}
func positiveFloatToDecimal(f float64) (int64, int16) {
// There is no need in checking for f == 0, since it should be already checked by the caller.
u := uint64(f)
if float64(u) != f {
return positiveFloatToDecimalSlow(f)
}
// Fast path for integers.
if u < 1<<55 && u%10 != 0 {
return int64(u), 0
}
return getDecimalAndScale(u)
}
func getDecimalAndScale(u uint64) (int64, int16) {
var scale int16
for u >= 1<<55 {
// Remove trailing garbage bits left after float64->uint64 conversion,
// since float64 contains only 53 significant bits.
// See https://en.wikipedia.org/wiki/Double-precision_floating-point_format
u /= 10
scale++
}
if u%10 != 0 {
return int64(u), scale
}
// Minimize v by converting trailing zeros to scale.
u /= 10
scale++
for u != 0 && u%10 == 0 {
u /= 10
scale++
}
return int64(u), scale
}
func positiveFloatToDecimalSlow(f float64) (int64, int16) {
// Slow path for floating point numbers.
var scale int16
prec := conversionPrecision
if f > 1e6 || f < 1e-6 {
// Normalize f, so it is in the small range suitable
// for the next loop.
if f > 1e6 {
// Increase conversion precision for big numbers.
// See https://github.com/VictoriaMetrics/VictoriaMetrics/issues/213
prec = 1e15
}
_, exp := math.Frexp(f)
scale = int16(float64(exp) * (math.Ln2 / math.Ln10))
f *= math.Pow10(-int(scale))
}
// Multiply f by 100 until the fractional part becomes
// too small comparing to integer part.
for f < prec {
x, frac := math.Modf(f)
if frac*prec < x {
f = x
break
}
if (1-frac)*prec < x {
f = x + 1
break
}
f *= 100
scale -= 2
}
u := uint64(f)
if u%10 != 0 {
return int64(u), scale
}
// Minimize u by converting trailing zero to scale.
u /= 10
scale++
return int64(u), scale
}
const conversionPrecision = 1e12