VictoriaMetrics/vendor/github.com/klauspost/compress/s2/encode_best.go
Aliaksandr Valialkin 06ac40aafa
lib/httpserver: use github.com/klauspost/compress/gzhttp for compressing http responses
This allows removing gzip-related code from lib/httpserver.
2023-02-27 10:35:26 -08:00

794 lines
21 KiB
Go

// Copyright 2016 The Snappy-Go Authors. All rights reserved.
// Copyright (c) 2019 Klaus Post. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package s2
import (
"fmt"
"math"
"math/bits"
)
// encodeBlockBest encodes a non-empty src to a guaranteed-large-enough dst. It
// assumes that the varint-encoded length of the decompressed bytes has already
// been written.
//
// It also assumes that:
//
// len(dst) >= MaxEncodedLen(len(src)) &&
// minNonLiteralBlockSize <= len(src) && len(src) <= maxBlockSize
func encodeBlockBest(dst, src []byte, dict *Dict) (d int) {
// Initialize the hash tables.
const (
// Long hash matches.
lTableBits = 19
maxLTableSize = 1 << lTableBits
// Short hash matches.
sTableBits = 16
maxSTableSize = 1 << sTableBits
inputMargin = 8 + 2
debug = false
)
// sLimit is when to stop looking for offset/length copies. The inputMargin
// lets us use a fast path for emitLiteral in the main loop, while we are
// looking for copies.
sLimit := len(src) - inputMargin
if len(src) < minNonLiteralBlockSize {
return 0
}
sLimitDict := len(src) - inputMargin
if sLimitDict > MaxDictSrcOffset-inputMargin {
sLimitDict = MaxDictSrcOffset - inputMargin
}
var lTable [maxLTableSize]uint64
var sTable [maxSTableSize]uint64
// Bail if we can't compress to at least this.
dstLimit := len(src) - 5
// nextEmit is where in src the next emitLiteral should start from.
nextEmit := 0
// The encoded form must start with a literal, as there are no previous
// bytes to copy, so we start looking for hash matches at s == 1.
s := 1
repeat := 1
if dict != nil {
dict.initBest()
s = 0
repeat = len(dict.dict) - dict.repeat
}
cv := load64(src, s)
// We search for a repeat at -1, but don't output repeats when nextEmit == 0
const lowbitMask = 0xffffffff
getCur := func(x uint64) int {
return int(x & lowbitMask)
}
getPrev := func(x uint64) int {
return int(x >> 32)
}
const maxSkip = 64
for {
type match struct {
offset int
s int
length int
score int
rep, dict bool
}
var best match
for {
// Next src position to check
nextS := (s-nextEmit)>>8 + 1
if nextS > maxSkip {
nextS = s + maxSkip
} else {
nextS += s
}
if nextS > sLimit {
goto emitRemainder
}
if dict != nil && s >= MaxDictSrcOffset {
dict = nil
if repeat > s {
repeat = math.MinInt32
}
}
hashL := hash8(cv, lTableBits)
hashS := hash4(cv, sTableBits)
candidateL := lTable[hashL]
candidateS := sTable[hashS]
score := func(m match) int {
// Matches that are longer forward are penalized since we must emit it as a literal.
score := m.length - m.s
if nextEmit == m.s {
// If we do not have to emit literals, we save 1 byte
score++
}
offset := m.s - m.offset
if m.rep {
return score - emitRepeatSize(offset, m.length)
}
return score - emitCopySize(offset, m.length)
}
matchAt := func(offset, s int, first uint32, rep bool) match {
if best.length != 0 && best.s-best.offset == s-offset {
// Don't retest if we have the same offset.
return match{offset: offset, s: s}
}
if load32(src, offset) != first {
return match{offset: offset, s: s}
}
m := match{offset: offset, s: s, length: 4 + offset, rep: rep}
s += 4
for s < len(src) {
if len(src)-s < 8 {
if src[s] == src[m.length] {
m.length++
s++
continue
}
break
}
if diff := load64(src, s) ^ load64(src, m.length); diff != 0 {
m.length += bits.TrailingZeros64(diff) >> 3
break
}
s += 8
m.length += 8
}
m.length -= offset
m.score = score(m)
if m.score <= -m.s {
// Eliminate if no savings, we might find a better one.
m.length = 0
}
return m
}
matchDict := func(candidate, s int, first uint32, rep bool) match {
// Calculate offset as if in continuous array with s
offset := -len(dict.dict) + candidate
if best.length != 0 && best.s-best.offset == s-offset && !rep {
// Don't retest if we have the same offset.
return match{offset: offset, s: s}
}
if load32(dict.dict, candidate) != first {
return match{offset: offset, s: s}
}
m := match{offset: offset, s: s, length: 4 + candidate, rep: rep, dict: true}
s += 4
if !rep {
for s < sLimitDict && m.length < len(dict.dict) {
if len(src)-s < 8 || len(dict.dict)-m.length < 8 {
if src[s] == dict.dict[m.length] {
m.length++
s++
continue
}
break
}
if diff := load64(src, s) ^ load64(dict.dict, m.length); diff != 0 {
m.length += bits.TrailingZeros64(diff) >> 3
break
}
s += 8
m.length += 8
}
} else {
for s < len(src) && m.length < len(dict.dict) {
if len(src)-s < 8 || len(dict.dict)-m.length < 8 {
if src[s] == dict.dict[m.length] {
m.length++
s++
continue
}
break
}
if diff := load64(src, s) ^ load64(dict.dict, m.length); diff != 0 {
m.length += bits.TrailingZeros64(diff) >> 3
break
}
s += 8
m.length += 8
}
}
m.length -= candidate
m.score = score(m)
if m.score <= -m.s {
// Eliminate if no savings, we might find a better one.
m.length = 0
}
return m
}
bestOf := func(a, b match) match {
if b.length == 0 {
return a
}
if a.length == 0 {
return b
}
as := a.score + b.s
bs := b.score + a.s
if as >= bs {
return a
}
return b
}
if s > 0 {
best = bestOf(matchAt(getCur(candidateL), s, uint32(cv), false), matchAt(getPrev(candidateL), s, uint32(cv), false))
best = bestOf(best, matchAt(getCur(candidateS), s, uint32(cv), false))
best = bestOf(best, matchAt(getPrev(candidateS), s, uint32(cv), false))
}
if dict != nil {
candidateL := dict.bestTableLong[hashL]
candidateS := dict.bestTableShort[hashS]
best = bestOf(best, matchDict(int(candidateL&0xffff), s, uint32(cv), false))
best = bestOf(best, matchDict(int(candidateL>>16), s, uint32(cv), false))
best = bestOf(best, matchDict(int(candidateS&0xffff), s, uint32(cv), false))
best = bestOf(best, matchDict(int(candidateS>>16), s, uint32(cv), false))
}
{
if (dict == nil || repeat <= s) && repeat > 0 {
best = bestOf(best, matchAt(s-repeat+1, s+1, uint32(cv>>8), true))
} else if s-repeat < -4 && dict != nil {
candidate := len(dict.dict) - (repeat - s)
best = bestOf(best, matchDict(candidate, s, uint32(cv), true))
candidate++
best = bestOf(best, matchDict(candidate, s+1, uint32(cv>>8), true))
}
if best.length > 0 {
hashS := hash4(cv>>8, sTableBits)
// s+1
nextShort := sTable[hashS]
s := s + 1
cv := load64(src, s)
hashL := hash8(cv, lTableBits)
nextLong := lTable[hashL]
best = bestOf(best, matchAt(getCur(nextShort), s, uint32(cv), false))
best = bestOf(best, matchAt(getPrev(nextShort), s, uint32(cv), false))
best = bestOf(best, matchAt(getCur(nextLong), s, uint32(cv), false))
best = bestOf(best, matchAt(getPrev(nextLong), s, uint32(cv), false))
// Dict at + 1
if dict != nil {
candidateL := dict.bestTableLong[hashL]
candidateS := dict.bestTableShort[hashS]
best = bestOf(best, matchDict(int(candidateL&0xffff), s, uint32(cv), false))
best = bestOf(best, matchDict(int(candidateS&0xffff), s, uint32(cv), false))
}
// s+2
if true {
hashS := hash4(cv>>8, sTableBits)
nextShort = sTable[hashS]
s++
cv = load64(src, s)
hashL := hash8(cv, lTableBits)
nextLong = lTable[hashL]
if (dict == nil || repeat <= s) && repeat > 0 {
// Repeat at + 2
best = bestOf(best, matchAt(s-repeat, s, uint32(cv), true))
} else if repeat-s > 4 && dict != nil {
candidate := len(dict.dict) - (repeat - s)
best = bestOf(best, matchDict(candidate, s, uint32(cv), true))
}
best = bestOf(best, matchAt(getCur(nextShort), s, uint32(cv), false))
best = bestOf(best, matchAt(getPrev(nextShort), s, uint32(cv), false))
best = bestOf(best, matchAt(getCur(nextLong), s, uint32(cv), false))
best = bestOf(best, matchAt(getPrev(nextLong), s, uint32(cv), false))
// Dict at +2
// Very small gain
if dict != nil {
candidateL := dict.bestTableLong[hashL]
candidateS := dict.bestTableShort[hashS]
best = bestOf(best, matchDict(int(candidateL&0xffff), s, uint32(cv), false))
best = bestOf(best, matchDict(int(candidateS&0xffff), s, uint32(cv), false))
}
}
// Search for a match at best match end, see if that is better.
// Allow some bytes at the beginning to mismatch.
// Sweet spot is around 1-2 bytes, but depends on input.
// The skipped bytes are tested in Extend backwards,
// and still picked up as part of the match if they do.
const skipBeginning = 2
const skipEnd = 1
if sAt := best.s + best.length - skipEnd; sAt < sLimit {
sBack := best.s + skipBeginning - skipEnd
backL := best.length - skipBeginning
// Load initial values
cv = load64(src, sBack)
// Grab candidates...
next := lTable[hash8(load64(src, sAt), lTableBits)]
if checkAt := getCur(next) - backL; checkAt > 0 {
best = bestOf(best, matchAt(checkAt, sBack, uint32(cv), false))
}
if checkAt := getPrev(next) - backL; checkAt > 0 {
best = bestOf(best, matchAt(checkAt, sBack, uint32(cv), false))
}
// Disabled: Extremely small gain
if false {
next = sTable[hash4(load64(src, sAt), sTableBits)]
if checkAt := getCur(next) - backL; checkAt > 0 {
best = bestOf(best, matchAt(checkAt, sBack, uint32(cv), false))
}
if checkAt := getPrev(next) - backL; checkAt > 0 {
best = bestOf(best, matchAt(checkAt, sBack, uint32(cv), false))
}
}
}
}
}
// Update table
lTable[hashL] = uint64(s) | candidateL<<32
sTable[hashS] = uint64(s) | candidateS<<32
if best.length > 0 {
break
}
cv = load64(src, nextS)
s = nextS
}
// Extend backwards, not needed for repeats...
s = best.s
if !best.rep && !best.dict {
for best.offset > 0 && s > nextEmit && src[best.offset-1] == src[s-1] {
best.offset--
best.length++
s--
}
}
if false && best.offset >= s {
panic(fmt.Errorf("t %d >= s %d", best.offset, s))
}
// Bail if we exceed the maximum size.
if d+(s-nextEmit) > dstLimit {
return 0
}
base := s
offset := s - best.offset
s += best.length
if offset > 65535 && s-base <= 5 && !best.rep {
// Bail if the match is equal or worse to the encoding.
s = best.s + 1
if s >= sLimit {
goto emitRemainder
}
cv = load64(src, s)
continue
}
if debug && nextEmit != base {
fmt.Println("EMIT", base-nextEmit, "literals. base-after:", base)
}
d += emitLiteral(dst[d:], src[nextEmit:base])
if best.rep {
if nextEmit > 0 || best.dict {
if debug {
fmt.Println("REPEAT, length", best.length, "offset:", offset, "s-after:", s, "dict:", best.dict, "best:", best)
}
// same as `add := emitCopy(dst[d:], repeat, s-base)` but skips storing offset.
d += emitRepeat(dst[d:], offset, best.length)
} else {
// First match without dict cannot be a repeat.
if debug {
fmt.Println("COPY, length", best.length, "offset:", offset, "s-after:", s, "dict:", best.dict, "best:", best)
}
d += emitCopy(dst[d:], offset, best.length)
}
} else {
if debug {
fmt.Println("COPY, length", best.length, "offset:", offset, "s-after:", s, "dict:", best.dict, "best:", best)
}
d += emitCopy(dst[d:], offset, best.length)
}
repeat = offset
nextEmit = s
if s >= sLimit {
goto emitRemainder
}
if d > dstLimit {
// Do we have space for more, if not bail.
return 0
}
// Fill tables...
for i := best.s + 1; i < s; i++ {
cv0 := load64(src, i)
long0 := hash8(cv0, lTableBits)
short0 := hash4(cv0, sTableBits)
lTable[long0] = uint64(i) | lTable[long0]<<32
sTable[short0] = uint64(i) | sTable[short0]<<32
}
cv = load64(src, s)
}
emitRemainder:
if nextEmit < len(src) {
// Bail if we exceed the maximum size.
if d+len(src)-nextEmit > dstLimit {
return 0
}
if debug && nextEmit != s {
fmt.Println("emitted ", len(src)-nextEmit, "literals")
}
d += emitLiteral(dst[d:], src[nextEmit:])
}
return d
}
// encodeBlockBestSnappy encodes a non-empty src to a guaranteed-large-enough dst. It
// assumes that the varint-encoded length of the decompressed bytes has already
// been written.
//
// It also assumes that:
//
// len(dst) >= MaxEncodedLen(len(src)) &&
// minNonLiteralBlockSize <= len(src) && len(src) <= maxBlockSize
func encodeBlockBestSnappy(dst, src []byte) (d int) {
// Initialize the hash tables.
const (
// Long hash matches.
lTableBits = 19
maxLTableSize = 1 << lTableBits
// Short hash matches.
sTableBits = 16
maxSTableSize = 1 << sTableBits
inputMargin = 8 + 2
)
// sLimit is when to stop looking for offset/length copies. The inputMargin
// lets us use a fast path for emitLiteral in the main loop, while we are
// looking for copies.
sLimit := len(src) - inputMargin
if len(src) < minNonLiteralBlockSize {
return 0
}
var lTable [maxLTableSize]uint64
var sTable [maxSTableSize]uint64
// Bail if we can't compress to at least this.
dstLimit := len(src) - 5
// nextEmit is where in src the next emitLiteral should start from.
nextEmit := 0
// The encoded form must start with a literal, as there are no previous
// bytes to copy, so we start looking for hash matches at s == 1.
s := 1
cv := load64(src, s)
// We search for a repeat at -1, but don't output repeats when nextEmit == 0
repeat := 1
const lowbitMask = 0xffffffff
getCur := func(x uint64) int {
return int(x & lowbitMask)
}
getPrev := func(x uint64) int {
return int(x >> 32)
}
const maxSkip = 64
for {
type match struct {
offset int
s int
length int
score int
}
var best match
for {
// Next src position to check
nextS := (s-nextEmit)>>8 + 1
if nextS > maxSkip {
nextS = s + maxSkip
} else {
nextS += s
}
if nextS > sLimit {
goto emitRemainder
}
hashL := hash8(cv, lTableBits)
hashS := hash4(cv, sTableBits)
candidateL := lTable[hashL]
candidateS := sTable[hashS]
score := func(m match) int {
// Matches that are longer forward are penalized since we must emit it as a literal.
score := m.length - m.s
if nextEmit == m.s {
// If we do not have to emit literals, we save 1 byte
score++
}
offset := m.s - m.offset
return score - emitCopyNoRepeatSize(offset, m.length)
}
matchAt := func(offset, s int, first uint32) match {
if best.length != 0 && best.s-best.offset == s-offset {
// Don't retest if we have the same offset.
return match{offset: offset, s: s}
}
if load32(src, offset) != first {
return match{offset: offset, s: s}
}
m := match{offset: offset, s: s, length: 4 + offset}
s += 4
for s <= sLimit {
if diff := load64(src, s) ^ load64(src, m.length); diff != 0 {
m.length += bits.TrailingZeros64(diff) >> 3
break
}
s += 8
m.length += 8
}
m.length -= offset
m.score = score(m)
if m.score <= -m.s {
// Eliminate if no savings, we might find a better one.
m.length = 0
}
return m
}
bestOf := func(a, b match) match {
if b.length == 0 {
return a
}
if a.length == 0 {
return b
}
as := a.score + b.s
bs := b.score + a.s
if as >= bs {
return a
}
return b
}
best = bestOf(matchAt(getCur(candidateL), s, uint32(cv)), matchAt(getPrev(candidateL), s, uint32(cv)))
best = bestOf(best, matchAt(getCur(candidateS), s, uint32(cv)))
best = bestOf(best, matchAt(getPrev(candidateS), s, uint32(cv)))
{
best = bestOf(best, matchAt(s-repeat+1, s+1, uint32(cv>>8)))
if best.length > 0 {
// s+1
nextShort := sTable[hash4(cv>>8, sTableBits)]
s := s + 1
cv := load64(src, s)
nextLong := lTable[hash8(cv, lTableBits)]
best = bestOf(best, matchAt(getCur(nextShort), s, uint32(cv)))
best = bestOf(best, matchAt(getPrev(nextShort), s, uint32(cv)))
best = bestOf(best, matchAt(getCur(nextLong), s, uint32(cv)))
best = bestOf(best, matchAt(getPrev(nextLong), s, uint32(cv)))
// Repeat at + 2
best = bestOf(best, matchAt(s-repeat+1, s+1, uint32(cv>>8)))
// s+2
if true {
nextShort = sTable[hash4(cv>>8, sTableBits)]
s++
cv = load64(src, s)
nextLong = lTable[hash8(cv, lTableBits)]
best = bestOf(best, matchAt(getCur(nextShort), s, uint32(cv)))
best = bestOf(best, matchAt(getPrev(nextShort), s, uint32(cv)))
best = bestOf(best, matchAt(getCur(nextLong), s, uint32(cv)))
best = bestOf(best, matchAt(getPrev(nextLong), s, uint32(cv)))
}
// Search for a match at best match end, see if that is better.
if sAt := best.s + best.length; sAt < sLimit {
sBack := best.s
backL := best.length
// Load initial values
cv = load64(src, sBack)
// Search for mismatch
next := lTable[hash8(load64(src, sAt), lTableBits)]
//next := sTable[hash4(load64(src, sAt), sTableBits)]
if checkAt := getCur(next) - backL; checkAt > 0 {
best = bestOf(best, matchAt(checkAt, sBack, uint32(cv)))
}
if checkAt := getPrev(next) - backL; checkAt > 0 {
best = bestOf(best, matchAt(checkAt, sBack, uint32(cv)))
}
}
}
}
// Update table
lTable[hashL] = uint64(s) | candidateL<<32
sTable[hashS] = uint64(s) | candidateS<<32
if best.length > 0 {
break
}
cv = load64(src, nextS)
s = nextS
}
// Extend backwards, not needed for repeats...
s = best.s
if true {
for best.offset > 0 && s > nextEmit && src[best.offset-1] == src[s-1] {
best.offset--
best.length++
s--
}
}
if false && best.offset >= s {
panic(fmt.Errorf("t %d >= s %d", best.offset, s))
}
// Bail if we exceed the maximum size.
if d+(s-nextEmit) > dstLimit {
return 0
}
base := s
offset := s - best.offset
s += best.length
if offset > 65535 && s-base <= 5 {
// Bail if the match is equal or worse to the encoding.
s = best.s + 1
if s >= sLimit {
goto emitRemainder
}
cv = load64(src, s)
continue
}
d += emitLiteral(dst[d:], src[nextEmit:base])
d += emitCopyNoRepeat(dst[d:], offset, best.length)
repeat = offset
nextEmit = s
if s >= sLimit {
goto emitRemainder
}
if d > dstLimit {
// Do we have space for more, if not bail.
return 0
}
// Fill tables...
for i := best.s + 1; i < s; i++ {
cv0 := load64(src, i)
long0 := hash8(cv0, lTableBits)
short0 := hash4(cv0, sTableBits)
lTable[long0] = uint64(i) | lTable[long0]<<32
sTable[short0] = uint64(i) | sTable[short0]<<32
}
cv = load64(src, s)
}
emitRemainder:
if nextEmit < len(src) {
// Bail if we exceed the maximum size.
if d+len(src)-nextEmit > dstLimit {
return 0
}
d += emitLiteral(dst[d:], src[nextEmit:])
}
return d
}
// emitCopySize returns the size to encode the offset+length
//
// It assumes that:
//
// 1 <= offset && offset <= math.MaxUint32
// 4 <= length && length <= 1 << 24
func emitCopySize(offset, length int) int {
if offset >= 65536 {
i := 0
if length > 64 {
length -= 64
if length >= 4 {
// Emit remaining as repeats
return 5 + emitRepeatSize(offset, length)
}
i = 5
}
if length == 0 {
return i
}
return i + 5
}
// Offset no more than 2 bytes.
if length > 64 {
if offset < 2048 {
// Emit 8 bytes, then rest as repeats...
return 2 + emitRepeatSize(offset, length-8)
}
// Emit remaining as repeats, at least 4 bytes remain.
return 3 + emitRepeatSize(offset, length-60)
}
if length >= 12 || offset >= 2048 {
return 3
}
// Emit the remaining copy, encoded as 2 bytes.
return 2
}
// emitCopyNoRepeatSize returns the size to encode the offset+length
//
// It assumes that:
//
// 1 <= offset && offset <= math.MaxUint32
// 4 <= length && length <= 1 << 24
func emitCopyNoRepeatSize(offset, length int) int {
if offset >= 65536 {
return 5 + 5*(length/64)
}
// Offset no more than 2 bytes.
if length > 64 {
// Emit remaining as repeats, at least 4 bytes remain.
return 3 + 3*(length/60)
}
if length >= 12 || offset >= 2048 {
return 3
}
// Emit the remaining copy, encoded as 2 bytes.
return 2
}
// emitRepeatSize returns the number of bytes required to encode a repeat.
// Length must be at least 4 and < 1<<24
func emitRepeatSize(offset, length int) int {
// Repeat offset, make length cheaper
if length <= 4+4 || (length < 8+4 && offset < 2048) {
return 2
}
if length < (1<<8)+4+4 {
return 3
}
if length < (1<<16)+(1<<8)+4 {
return 4
}
const maxRepeat = (1 << 24) - 1
length -= (1 << 16) - 4
left := 0
if length > maxRepeat {
left = length - maxRepeat + 4
}
if left > 0 {
return 5 + emitRepeatSize(offset, left)
}
return 5
}