mirror of
https://github.com/VictoriaMetrics/VictoriaMetrics.git
synced 2024-12-21 07:56:26 +01:00
909 lines
27 KiB
Go
909 lines
27 KiB
Go
package promql
|
|
|
|
import (
|
|
"flag"
|
|
"fmt"
|
|
"math"
|
|
"strings"
|
|
"sync"
|
|
|
|
"github.com/VictoriaMetrics/VictoriaMetrics/app/vmselect/netstorage"
|
|
"github.com/VictoriaMetrics/VictoriaMetrics/app/vmselect/searchutils"
|
|
"github.com/VictoriaMetrics/VictoriaMetrics/lib/bytesutil"
|
|
"github.com/VictoriaMetrics/VictoriaMetrics/lib/cgroup"
|
|
"github.com/VictoriaMetrics/VictoriaMetrics/lib/decimal"
|
|
"github.com/VictoriaMetrics/VictoriaMetrics/lib/logger"
|
|
"github.com/VictoriaMetrics/VictoriaMetrics/lib/memory"
|
|
"github.com/VictoriaMetrics/VictoriaMetrics/lib/storage"
|
|
"github.com/VictoriaMetrics/metrics"
|
|
"github.com/VictoriaMetrics/metricsql"
|
|
)
|
|
|
|
var (
|
|
disableCache = flag.Bool("search.disableCache", false, "Whether to disable response caching. This may be useful during data backfilling")
|
|
maxPointsPerTimeseries = flag.Int("search.maxPointsPerTimeseries", 30e3, "The maximum points per a single timeseries returned from /api/v1/query_range. "+
|
|
"This option doesn't limit the number of scanned raw samples in the database. The main purpose of this option is to limit the number of per-series points "+
|
|
"returned to graphing UI such as Grafana. There is no sense in setting this limit to values bigger than the horizontal resolution of the graph")
|
|
noStaleMarkers = flag.Bool("search.noStaleMarkers", false, "Set this flag to true if the database doesn't contain Prometheus stale markers, so there is no need in spending additional CPU time on its handling. Staleness markers may exist only in data obtained from Prometheus scrape targets")
|
|
)
|
|
|
|
// The minimum number of points per timeseries for enabling time rounding.
|
|
// This improves cache hit ratio for frequently requested queries over
|
|
// big time ranges.
|
|
const minTimeseriesPointsForTimeRounding = 50
|
|
|
|
// ValidateMaxPointsPerTimeseries checks the maximum number of points that
|
|
// may be returned per each time series.
|
|
//
|
|
// The number mustn't exceed -search.maxPointsPerTimeseries.
|
|
func ValidateMaxPointsPerTimeseries(start, end, step int64) error {
|
|
points := (end-start)/step + 1
|
|
if uint64(points) > uint64(*maxPointsPerTimeseries) {
|
|
return fmt.Errorf(`too many points for the given step=%d, start=%d and end=%d: %d; cannot exceed -search.maxPointsPerTimeseries=%d`,
|
|
step, start, end, uint64(points), *maxPointsPerTimeseries)
|
|
}
|
|
return nil
|
|
}
|
|
|
|
// AdjustStartEnd adjusts start and end values, so response caching may be enabled.
|
|
//
|
|
// See EvalConfig.mayCache for details.
|
|
func AdjustStartEnd(start, end, step int64) (int64, int64) {
|
|
if *disableCache {
|
|
// Do not adjust start and end values when cache is disabled.
|
|
// See https://github.com/VictoriaMetrics/VictoriaMetrics/issues/563
|
|
return start, end
|
|
}
|
|
points := (end-start)/step + 1
|
|
if points < minTimeseriesPointsForTimeRounding {
|
|
// Too small number of points for rounding.
|
|
return start, end
|
|
}
|
|
|
|
// Round start and end to values divisible by step in order
|
|
// to enable response caching (see EvalConfig.mayCache).
|
|
start, end = alignStartEnd(start, end, step)
|
|
|
|
// Make sure that the new number of points is the same as the initial number of points.
|
|
newPoints := (end-start)/step + 1
|
|
for newPoints > points {
|
|
end -= step
|
|
newPoints--
|
|
}
|
|
|
|
return start, end
|
|
}
|
|
|
|
func alignStartEnd(start, end, step int64) (int64, int64) {
|
|
// Round start to the nearest smaller value divisible by step.
|
|
start -= start % step
|
|
// Round end to the nearest bigger value divisible by step.
|
|
adjust := end % step
|
|
if adjust > 0 {
|
|
end += step - adjust
|
|
}
|
|
return start, end
|
|
}
|
|
|
|
// EvalConfig is the configuration required for query evaluation via Exec
|
|
type EvalConfig struct {
|
|
Start int64
|
|
End int64
|
|
Step int64
|
|
|
|
// QuotedRemoteAddr contains quoted remote address.
|
|
QuotedRemoteAddr string
|
|
|
|
Deadline searchutils.Deadline
|
|
|
|
MayCache bool
|
|
|
|
// LookbackDelta is analog to `-query.lookback-delta` from Prometheus.
|
|
LookbackDelta int64
|
|
|
|
// How many decimal digits after the point to leave in response.
|
|
RoundDigits int
|
|
|
|
// EnforcedTagFilterss may contain additional label filters to use in the query.
|
|
EnforcedTagFilterss [][]storage.TagFilter
|
|
|
|
timestamps []int64
|
|
timestampsOnce sync.Once
|
|
}
|
|
|
|
// newEvalConfig returns new EvalConfig copy from src.
|
|
func newEvalConfig(src *EvalConfig) *EvalConfig {
|
|
var ec EvalConfig
|
|
ec.Start = src.Start
|
|
ec.End = src.End
|
|
ec.Step = src.Step
|
|
ec.Deadline = src.Deadline
|
|
ec.MayCache = src.MayCache
|
|
ec.LookbackDelta = src.LookbackDelta
|
|
ec.RoundDigits = src.RoundDigits
|
|
ec.EnforcedTagFilterss = src.EnforcedTagFilterss
|
|
|
|
// do not copy src.timestamps - they must be generated again.
|
|
return &ec
|
|
}
|
|
|
|
func (ec *EvalConfig) validate() {
|
|
if ec.Start > ec.End {
|
|
logger.Panicf("BUG: start cannot exceed end; got %d vs %d", ec.Start, ec.End)
|
|
}
|
|
if ec.Step <= 0 {
|
|
logger.Panicf("BUG: step must be greater than 0; got %d", ec.Step)
|
|
}
|
|
}
|
|
|
|
func (ec *EvalConfig) mayCache() bool {
|
|
if *disableCache {
|
|
return false
|
|
}
|
|
if !ec.MayCache {
|
|
return false
|
|
}
|
|
if ec.Start%ec.Step != 0 {
|
|
return false
|
|
}
|
|
if ec.End%ec.Step != 0 {
|
|
return false
|
|
}
|
|
return true
|
|
}
|
|
|
|
func (ec *EvalConfig) getSharedTimestamps() []int64 {
|
|
ec.timestampsOnce.Do(ec.timestampsInit)
|
|
return ec.timestamps
|
|
}
|
|
|
|
func (ec *EvalConfig) timestampsInit() {
|
|
ec.timestamps = getTimestamps(ec.Start, ec.End, ec.Step)
|
|
}
|
|
|
|
func getTimestamps(start, end, step int64) []int64 {
|
|
// Sanity checks.
|
|
if step <= 0 {
|
|
logger.Panicf("BUG: Step must be bigger than 0; got %d", step)
|
|
}
|
|
if start > end {
|
|
logger.Panicf("BUG: Start cannot exceed End; got %d vs %d", start, end)
|
|
}
|
|
if err := ValidateMaxPointsPerTimeseries(start, end, step); err != nil {
|
|
logger.Panicf("BUG: %s; this must be validated before the call to getTimestamps", err)
|
|
}
|
|
|
|
// Prepare timestamps.
|
|
points := 1 + (end-start)/step
|
|
timestamps := make([]int64, points)
|
|
for i := range timestamps {
|
|
timestamps[i] = start
|
|
start += step
|
|
}
|
|
return timestamps
|
|
}
|
|
|
|
func evalExpr(ec *EvalConfig, e metricsql.Expr) ([]*timeseries, error) {
|
|
if me, ok := e.(*metricsql.MetricExpr); ok {
|
|
re := &metricsql.RollupExpr{
|
|
Expr: me,
|
|
}
|
|
rv, err := evalRollupFunc(ec, "default_rollup", rollupDefault, e, re, nil)
|
|
if err != nil {
|
|
return nil, fmt.Errorf(`cannot evaluate %q: %w`, me.AppendString(nil), err)
|
|
}
|
|
return rv, nil
|
|
}
|
|
if re, ok := e.(*metricsql.RollupExpr); ok {
|
|
rv, err := evalRollupFunc(ec, "default_rollup", rollupDefault, e, re, nil)
|
|
if err != nil {
|
|
return nil, fmt.Errorf(`cannot evaluate %q: %w`, re.AppendString(nil), err)
|
|
}
|
|
return rv, nil
|
|
}
|
|
if fe, ok := e.(*metricsql.FuncExpr); ok {
|
|
nrf := getRollupFunc(fe.Name)
|
|
if nrf == nil {
|
|
args, err := evalExprs(ec, fe.Args)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
tf := getTransformFunc(fe.Name)
|
|
if tf == nil {
|
|
return nil, fmt.Errorf(`unknown func %q`, fe.Name)
|
|
}
|
|
tfa := &transformFuncArg{
|
|
ec: ec,
|
|
fe: fe,
|
|
args: args,
|
|
}
|
|
rv, err := tf(tfa)
|
|
if err != nil {
|
|
return nil, fmt.Errorf(`cannot evaluate %q: %w`, fe.AppendString(nil), err)
|
|
}
|
|
return rv, nil
|
|
}
|
|
args, re, err := evalRollupFuncArgs(ec, fe)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
rf, err := nrf(args)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
rv, err := evalRollupFunc(ec, fe.Name, rf, e, re, nil)
|
|
if err != nil {
|
|
return nil, fmt.Errorf(`cannot evaluate %q: %w`, fe.AppendString(nil), err)
|
|
}
|
|
return rv, nil
|
|
}
|
|
if ae, ok := e.(*metricsql.AggrFuncExpr); ok {
|
|
if callbacks := getIncrementalAggrFuncCallbacks(ae.Name); callbacks != nil {
|
|
fe, nrf := tryGetArgRollupFuncWithMetricExpr(ae)
|
|
if fe != nil {
|
|
// There is an optimized path for calculating metricsql.AggrFuncExpr over rollupFunc over metricsql.MetricExpr.
|
|
// The optimized path saves RAM for aggregates over big number of time series.
|
|
args, re, err := evalRollupFuncArgs(ec, fe)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
rf, err := nrf(args)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
iafc := newIncrementalAggrFuncContext(ae, callbacks)
|
|
return evalRollupFunc(ec, fe.Name, rf, e, re, iafc)
|
|
}
|
|
}
|
|
args, err := evalExprs(ec, ae.Args)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
af := getAggrFunc(ae.Name)
|
|
if af == nil {
|
|
return nil, fmt.Errorf(`unknown func %q`, ae.Name)
|
|
}
|
|
afa := &aggrFuncArg{
|
|
ae: ae,
|
|
args: args,
|
|
ec: ec,
|
|
}
|
|
rv, err := af(afa)
|
|
if err != nil {
|
|
return nil, fmt.Errorf(`cannot evaluate %q: %w`, ae.AppendString(nil), err)
|
|
}
|
|
return rv, nil
|
|
}
|
|
if be, ok := e.(*metricsql.BinaryOpExpr); ok {
|
|
// Execute left and right sides of the binary operation in parallel.
|
|
// This should reduce execution times for heavy queries.
|
|
// On the other side this can increase CPU and RAM usage when executing heavy queries.
|
|
// TODO: think on how to limit CPU and RAM usage while leaving short execution times.
|
|
var left, right []*timeseries
|
|
var mu sync.Mutex
|
|
var wg sync.WaitGroup
|
|
var errGlobal error
|
|
wg.Add(1)
|
|
go func() {
|
|
defer wg.Done()
|
|
ecCopy := newEvalConfig(ec)
|
|
tss, err := evalExpr(ecCopy, be.Left)
|
|
mu.Lock()
|
|
if err != nil {
|
|
if errGlobal == nil {
|
|
errGlobal = err
|
|
}
|
|
}
|
|
left = tss
|
|
mu.Unlock()
|
|
}()
|
|
wg.Add(1)
|
|
go func() {
|
|
defer wg.Done()
|
|
ecCopy := newEvalConfig(ec)
|
|
tss, err := evalExpr(ecCopy, be.Right)
|
|
mu.Lock()
|
|
if err != nil {
|
|
if errGlobal == nil {
|
|
errGlobal = err
|
|
}
|
|
}
|
|
right = tss
|
|
mu.Unlock()
|
|
}()
|
|
wg.Wait()
|
|
if errGlobal != nil {
|
|
return nil, errGlobal
|
|
}
|
|
|
|
bf := getBinaryOpFunc(be.Op)
|
|
if bf == nil {
|
|
return nil, fmt.Errorf(`unknown binary op %q`, be.Op)
|
|
}
|
|
bfa := &binaryOpFuncArg{
|
|
be: be,
|
|
left: left,
|
|
right: right,
|
|
}
|
|
rv, err := bf(bfa)
|
|
if err != nil {
|
|
return nil, fmt.Errorf(`cannot evaluate %q: %w`, be.AppendString(nil), err)
|
|
}
|
|
return rv, nil
|
|
}
|
|
if ne, ok := e.(*metricsql.NumberExpr); ok {
|
|
rv := evalNumber(ec, ne.N)
|
|
return rv, nil
|
|
}
|
|
if se, ok := e.(*metricsql.StringExpr); ok {
|
|
rv := evalString(ec, se.S)
|
|
return rv, nil
|
|
}
|
|
if de, ok := e.(*metricsql.DurationExpr); ok {
|
|
d := de.Duration(ec.Step)
|
|
dSec := float64(d) / 1000
|
|
rv := evalNumber(ec, dSec)
|
|
return rv, nil
|
|
}
|
|
return nil, fmt.Errorf("unexpected expression %q", e.AppendString(nil))
|
|
}
|
|
|
|
func tryGetArgRollupFuncWithMetricExpr(ae *metricsql.AggrFuncExpr) (*metricsql.FuncExpr, newRollupFunc) {
|
|
if len(ae.Args) != 1 {
|
|
return nil, nil
|
|
}
|
|
e := ae.Args[0]
|
|
// Make sure e contains one of the following:
|
|
// - metricExpr
|
|
// - metricExpr[d]
|
|
// - rollupFunc(metricExpr)
|
|
// - rollupFunc(metricExpr[d])
|
|
|
|
if me, ok := e.(*metricsql.MetricExpr); ok {
|
|
// e = metricExpr
|
|
if me.IsEmpty() {
|
|
return nil, nil
|
|
}
|
|
fe := &metricsql.FuncExpr{
|
|
Name: "default_rollup",
|
|
Args: []metricsql.Expr{me},
|
|
}
|
|
nrf := getRollupFunc(fe.Name)
|
|
return fe, nrf
|
|
}
|
|
if re, ok := e.(*metricsql.RollupExpr); ok {
|
|
if me, ok := re.Expr.(*metricsql.MetricExpr); !ok || me.IsEmpty() || re.ForSubquery() {
|
|
return nil, nil
|
|
}
|
|
// e = metricExpr[d]
|
|
fe := &metricsql.FuncExpr{
|
|
Name: "default_rollup",
|
|
Args: []metricsql.Expr{re},
|
|
}
|
|
nrf := getRollupFunc(fe.Name)
|
|
return fe, nrf
|
|
}
|
|
fe, ok := e.(*metricsql.FuncExpr)
|
|
if !ok {
|
|
return nil, nil
|
|
}
|
|
nrf := getRollupFunc(fe.Name)
|
|
if nrf == nil {
|
|
return nil, nil
|
|
}
|
|
rollupArgIdx := getRollupArgIdx(fe)
|
|
if rollupArgIdx >= len(fe.Args) {
|
|
// Incorrect number of args for rollup func.
|
|
return nil, nil
|
|
}
|
|
arg := fe.Args[rollupArgIdx]
|
|
if me, ok := arg.(*metricsql.MetricExpr); ok {
|
|
if me.IsEmpty() {
|
|
return nil, nil
|
|
}
|
|
// e = rollupFunc(metricExpr)
|
|
return &metricsql.FuncExpr{
|
|
Name: fe.Name,
|
|
Args: []metricsql.Expr{me},
|
|
}, nrf
|
|
}
|
|
if re, ok := arg.(*metricsql.RollupExpr); ok {
|
|
if me, ok := re.Expr.(*metricsql.MetricExpr); !ok || me.IsEmpty() || re.ForSubquery() {
|
|
return nil, nil
|
|
}
|
|
// e = rollupFunc(metricExpr[d])
|
|
return fe, nrf
|
|
}
|
|
return nil, nil
|
|
}
|
|
|
|
func evalExprs(ec *EvalConfig, es []metricsql.Expr) ([][]*timeseries, error) {
|
|
var rvs [][]*timeseries
|
|
for _, e := range es {
|
|
rv, err := evalExpr(ec, e)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
rvs = append(rvs, rv)
|
|
}
|
|
return rvs, nil
|
|
}
|
|
|
|
func evalRollupFuncArgs(ec *EvalConfig, fe *metricsql.FuncExpr) ([]interface{}, *metricsql.RollupExpr, error) {
|
|
var re *metricsql.RollupExpr
|
|
rollupArgIdx := getRollupArgIdx(fe)
|
|
if len(fe.Args) <= rollupArgIdx {
|
|
return nil, nil, fmt.Errorf("expecting at least %d args to %q; got %d args; expr: %q", rollupArgIdx+1, fe.Name, len(fe.Args), fe.AppendString(nil))
|
|
}
|
|
args := make([]interface{}, len(fe.Args))
|
|
for i, arg := range fe.Args {
|
|
if i == rollupArgIdx {
|
|
re = getRollupExprArg(arg)
|
|
args[i] = re
|
|
continue
|
|
}
|
|
ts, err := evalExpr(ec, arg)
|
|
if err != nil {
|
|
return nil, nil, fmt.Errorf("cannot evaluate arg #%d for %q: %w", i+1, fe.AppendString(nil), err)
|
|
}
|
|
args[i] = ts
|
|
}
|
|
return args, re, nil
|
|
}
|
|
|
|
func getRollupExprArg(arg metricsql.Expr) *metricsql.RollupExpr {
|
|
re, ok := arg.(*metricsql.RollupExpr)
|
|
if !ok {
|
|
// Wrap non-rollup arg into metricsql.RollupExpr.
|
|
return &metricsql.RollupExpr{
|
|
Expr: arg,
|
|
}
|
|
}
|
|
if !re.ForSubquery() {
|
|
// Return standard rollup if it doesn't contain subquery.
|
|
return re
|
|
}
|
|
me, ok := re.Expr.(*metricsql.MetricExpr)
|
|
if !ok {
|
|
// arg contains subquery.
|
|
return re
|
|
}
|
|
// Convert me[w:step] -> default_rollup(me)[w:step]
|
|
reNew := *re
|
|
reNew.Expr = &metricsql.FuncExpr{
|
|
Name: "default_rollup",
|
|
Args: []metricsql.Expr{
|
|
&metricsql.RollupExpr{Expr: me},
|
|
},
|
|
}
|
|
return &reNew
|
|
}
|
|
|
|
func evalRollupFunc(ec *EvalConfig, funcName string, rf rollupFunc, expr metricsql.Expr, re *metricsql.RollupExpr, iafc *incrementalAggrFuncContext) ([]*timeseries, error) {
|
|
funcName = strings.ToLower(funcName)
|
|
ecNew := ec
|
|
var offset int64
|
|
if re.Offset != nil {
|
|
offset = re.Offset.Duration(ec.Step)
|
|
ecNew = newEvalConfig(ecNew)
|
|
ecNew.Start -= offset
|
|
ecNew.End -= offset
|
|
// There is no need in calling AdjustStartEnd() on ecNew if ecNew.MayCache is set to true,
|
|
// since the time range alignment has been already performed by the caller,
|
|
// so cache hit rate should be quite good.
|
|
// See also https://github.com/VictoriaMetrics/VictoriaMetrics/issues/976
|
|
}
|
|
if funcName == "rollup_candlestick" {
|
|
// Automatically apply `offset -step` to `rollup_candlestick` function
|
|
// in order to obtain expected OHLC results.
|
|
// See https://github.com/VictoriaMetrics/VictoriaMetrics/issues/309#issuecomment-582113462
|
|
step := ecNew.Step
|
|
ecNew = newEvalConfig(ecNew)
|
|
ecNew.Start += step
|
|
ecNew.End += step
|
|
offset -= step
|
|
}
|
|
var rvs []*timeseries
|
|
var err error
|
|
if me, ok := re.Expr.(*metricsql.MetricExpr); ok {
|
|
rvs, err = evalRollupFuncWithMetricExpr(ecNew, funcName, rf, expr, me, iafc, re.Window)
|
|
} else {
|
|
if iafc != nil {
|
|
logger.Panicf("BUG: iafc must be nil for rollup %q over subquery %q", funcName, re.AppendString(nil))
|
|
}
|
|
rvs, err = evalRollupFuncWithSubquery(ecNew, funcName, rf, expr, re)
|
|
}
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
if offset != 0 && len(rvs) > 0 {
|
|
// Make a copy of timestamps, since they may be used in other values.
|
|
srcTimestamps := rvs[0].Timestamps
|
|
dstTimestamps := append([]int64{}, srcTimestamps...)
|
|
for i := range dstTimestamps {
|
|
dstTimestamps[i] += offset
|
|
}
|
|
for _, ts := range rvs {
|
|
ts.Timestamps = dstTimestamps
|
|
}
|
|
}
|
|
return rvs, nil
|
|
}
|
|
|
|
func evalRollupFuncWithSubquery(ec *EvalConfig, funcName string, rf rollupFunc, expr metricsql.Expr, re *metricsql.RollupExpr) ([]*timeseries, error) {
|
|
// TODO: determine whether to use rollupResultCacheV here.
|
|
step := re.Step.Duration(ec.Step)
|
|
if step == 0 {
|
|
step = ec.Step
|
|
}
|
|
window := re.Window.Duration(ec.Step)
|
|
|
|
ecSQ := newEvalConfig(ec)
|
|
ecSQ.Start -= window + maxSilenceInterval + step
|
|
ecSQ.End += step
|
|
ecSQ.Step = step
|
|
if err := ValidateMaxPointsPerTimeseries(ecSQ.Start, ecSQ.End, ecSQ.Step); err != nil {
|
|
return nil, err
|
|
}
|
|
// unconditionally align start and end args to step for subquery as Prometheus does.
|
|
ecSQ.Start, ecSQ.End = alignStartEnd(ecSQ.Start, ecSQ.End, ecSQ.Step)
|
|
tssSQ, err := evalExpr(ecSQ, re.Expr)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
if len(tssSQ) == 0 {
|
|
if funcName == "absent_over_time" {
|
|
tss := evalNumber(ec, 1)
|
|
return tss, nil
|
|
}
|
|
return nil, nil
|
|
}
|
|
sharedTimestamps := getTimestamps(ec.Start, ec.End, ec.Step)
|
|
preFunc, rcs, err := getRollupConfigs(funcName, rf, expr, ec.Start, ec.End, ec.Step, window, ec.LookbackDelta, sharedTimestamps)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
tss := make([]*timeseries, 0, len(tssSQ)*len(rcs))
|
|
var tssLock sync.Mutex
|
|
doParallel(tssSQ, func(tsSQ *timeseries, values []float64, timestamps []int64) ([]float64, []int64) {
|
|
values, timestamps = removeNanValues(values[:0], timestamps[:0], tsSQ.Values, tsSQ.Timestamps)
|
|
preFunc(values, timestamps)
|
|
for _, rc := range rcs {
|
|
if tsm := newTimeseriesMap(funcName, sharedTimestamps, &tsSQ.MetricName); tsm != nil {
|
|
rc.DoTimeseriesMap(tsm, values, timestamps)
|
|
tssLock.Lock()
|
|
tss = tsm.AppendTimeseriesTo(tss)
|
|
tssLock.Unlock()
|
|
continue
|
|
}
|
|
var ts timeseries
|
|
doRollupForTimeseries(funcName, rc, &ts, &tsSQ.MetricName, values, timestamps, sharedTimestamps)
|
|
tssLock.Lock()
|
|
tss = append(tss, &ts)
|
|
tssLock.Unlock()
|
|
}
|
|
return values, timestamps
|
|
})
|
|
return tss, nil
|
|
}
|
|
|
|
func doParallel(tss []*timeseries, f func(ts *timeseries, values []float64, timestamps []int64) ([]float64, []int64)) {
|
|
concurrency := cgroup.AvailableCPUs()
|
|
if concurrency > len(tss) {
|
|
concurrency = len(tss)
|
|
}
|
|
workCh := make(chan *timeseries, concurrency)
|
|
var wg sync.WaitGroup
|
|
wg.Add(concurrency)
|
|
for i := 0; i < concurrency; i++ {
|
|
go func() {
|
|
defer wg.Done()
|
|
var tmpValues []float64
|
|
var tmpTimestamps []int64
|
|
for ts := range workCh {
|
|
tmpValues, tmpTimestamps = f(ts, tmpValues, tmpTimestamps)
|
|
}
|
|
}()
|
|
}
|
|
for _, ts := range tss {
|
|
workCh <- ts
|
|
}
|
|
close(workCh)
|
|
wg.Wait()
|
|
}
|
|
|
|
func removeNanValues(dstValues []float64, dstTimestamps []int64, values []float64, timestamps []int64) ([]float64, []int64) {
|
|
hasNan := false
|
|
for _, v := range values {
|
|
if math.IsNaN(v) {
|
|
hasNan = true
|
|
}
|
|
}
|
|
if !hasNan {
|
|
// Fast path - no NaNs.
|
|
dstValues = append(dstValues, values...)
|
|
dstTimestamps = append(dstTimestamps, timestamps...)
|
|
return dstValues, dstTimestamps
|
|
}
|
|
|
|
// Slow path - remove NaNs.
|
|
for i, v := range values {
|
|
if math.IsNaN(v) {
|
|
continue
|
|
}
|
|
dstValues = append(dstValues, v)
|
|
dstTimestamps = append(dstTimestamps, timestamps[i])
|
|
}
|
|
return dstValues, dstTimestamps
|
|
}
|
|
|
|
var (
|
|
rollupResultCacheFullHits = metrics.NewCounter(`vm_rollup_result_cache_full_hits_total`)
|
|
rollupResultCachePartialHits = metrics.NewCounter(`vm_rollup_result_cache_partial_hits_total`)
|
|
rollupResultCacheMiss = metrics.NewCounter(`vm_rollup_result_cache_miss_total`)
|
|
)
|
|
|
|
func evalRollupFuncWithMetricExpr(ec *EvalConfig, funcName string, rf rollupFunc,
|
|
expr metricsql.Expr, me *metricsql.MetricExpr, iafc *incrementalAggrFuncContext, windowExpr *metricsql.DurationExpr) ([]*timeseries, error) {
|
|
if me.IsEmpty() {
|
|
return evalNumber(ec, nan), nil
|
|
}
|
|
window := windowExpr.Duration(ec.Step)
|
|
|
|
// Search for partial results in cache.
|
|
tssCached, start := rollupResultCacheV.Get(ec, expr, window)
|
|
if start > ec.End {
|
|
// The result is fully cached.
|
|
rollupResultCacheFullHits.Inc()
|
|
return tssCached, nil
|
|
}
|
|
if start > ec.Start {
|
|
rollupResultCachePartialHits.Inc()
|
|
} else {
|
|
rollupResultCacheMiss.Inc()
|
|
}
|
|
|
|
// Obtain rollup configs before fetching data from db,
|
|
// so type errors can be caught earlier.
|
|
sharedTimestamps := getTimestamps(start, ec.End, ec.Step)
|
|
preFunc, rcs, err := getRollupConfigs(funcName, rf, expr, start, ec.End, ec.Step, window, ec.LookbackDelta, sharedTimestamps)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
// Fetch the remaining part of the result.
|
|
tfs := searchutils.ToTagFilters(me.LabelFilters)
|
|
tfss := searchutils.JoinTagFilterss([][]storage.TagFilter{tfs}, ec.EnforcedTagFilterss)
|
|
minTimestamp := start - maxSilenceInterval
|
|
if window > ec.Step {
|
|
minTimestamp -= window
|
|
} else {
|
|
minTimestamp -= ec.Step
|
|
}
|
|
sq := storage.NewSearchQuery(minTimestamp, ec.End, tfss)
|
|
rss, err := netstorage.ProcessSearchQuery(sq, true, ec.Deadline)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
rssLen := rss.Len()
|
|
if rssLen == 0 {
|
|
rss.Cancel()
|
|
var tss []*timeseries
|
|
if funcName == "absent_over_time" {
|
|
tss = getAbsentTimeseries(ec, me)
|
|
}
|
|
// Add missing points until ec.End.
|
|
// Do not cache the result, since missing points
|
|
// may be backfilled in the future.
|
|
tss = mergeTimeseries(tssCached, tss, start, ec)
|
|
return tss, nil
|
|
}
|
|
|
|
// Verify timeseries fit available memory after the rollup.
|
|
// Take into account points from tssCached.
|
|
pointsPerTimeseries := 1 + (ec.End-ec.Start)/ec.Step
|
|
timeseriesLen := rssLen
|
|
if iafc != nil {
|
|
// Incremental aggregates require holding only GOMAXPROCS timeseries in memory.
|
|
timeseriesLen = cgroup.AvailableCPUs()
|
|
if iafc.ae.Modifier.Op != "" {
|
|
if iafc.ae.Limit > 0 {
|
|
// There is an explicit limit on the number of output time series.
|
|
timeseriesLen *= iafc.ae.Limit
|
|
} else {
|
|
// Increase the number of timeseries for non-empty group list: `aggr() by (something)`,
|
|
// since each group can have own set of time series in memory.
|
|
timeseriesLen *= 1000
|
|
}
|
|
}
|
|
// The maximum number of output time series is limited by rssLen.
|
|
if timeseriesLen > rssLen {
|
|
timeseriesLen = rssLen
|
|
}
|
|
}
|
|
rollupPoints := mulNoOverflow(pointsPerTimeseries, int64(timeseriesLen*len(rcs)))
|
|
rollupMemorySize := mulNoOverflow(rollupPoints, 16)
|
|
rml := getRollupMemoryLimiter()
|
|
if !rml.Get(uint64(rollupMemorySize)) {
|
|
rss.Cancel()
|
|
return nil, fmt.Errorf("not enough memory for processing %d data points across %d time series with %d points in each time series; "+
|
|
"total available memory for concurrent requests: %d bytes; "+
|
|
"requested memory: %d bytes; "+
|
|
"possible solutions are: reducing the number of matching time series; switching to node with more RAM; "+
|
|
"increasing -memory.allowedPercent; increasing `step` query arg (%gs)",
|
|
rollupPoints, timeseriesLen*len(rcs), pointsPerTimeseries, rml.MaxSize, uint64(rollupMemorySize), float64(ec.Step)/1e3)
|
|
}
|
|
defer rml.Put(uint64(rollupMemorySize))
|
|
|
|
// Evaluate rollup
|
|
var tss []*timeseries
|
|
if iafc != nil {
|
|
tss, err = evalRollupWithIncrementalAggregate(funcName, iafc, rss, rcs, preFunc, sharedTimestamps)
|
|
} else {
|
|
tss, err = evalRollupNoIncrementalAggregate(funcName, rss, rcs, preFunc, sharedTimestamps)
|
|
}
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
tss = mergeTimeseries(tssCached, tss, start, ec)
|
|
rollupResultCacheV.Put(ec, expr, window, tss)
|
|
return tss, nil
|
|
}
|
|
|
|
var (
|
|
rollupMemoryLimiter memoryLimiter
|
|
rollupMemoryLimiterOnce sync.Once
|
|
)
|
|
|
|
func getRollupMemoryLimiter() *memoryLimiter {
|
|
rollupMemoryLimiterOnce.Do(func() {
|
|
rollupMemoryLimiter.MaxSize = uint64(memory.Allowed()) / 4
|
|
})
|
|
return &rollupMemoryLimiter
|
|
}
|
|
|
|
func evalRollupWithIncrementalAggregate(funcName string, iafc *incrementalAggrFuncContext, rss *netstorage.Results, rcs []*rollupConfig,
|
|
preFunc func(values []float64, timestamps []int64), sharedTimestamps []int64) ([]*timeseries, error) {
|
|
err := rss.RunParallel(func(rs *netstorage.Result, workerID uint) error {
|
|
rs.Values, rs.Timestamps = dropStaleNaNs(funcName, rs.Values, rs.Timestamps)
|
|
preFunc(rs.Values, rs.Timestamps)
|
|
ts := getTimeseries()
|
|
defer putTimeseries(ts)
|
|
for _, rc := range rcs {
|
|
if tsm := newTimeseriesMap(funcName, sharedTimestamps, &rs.MetricName); tsm != nil {
|
|
rc.DoTimeseriesMap(tsm, rs.Values, rs.Timestamps)
|
|
for _, ts := range tsm.m {
|
|
iafc.updateTimeseries(ts, workerID)
|
|
}
|
|
continue
|
|
}
|
|
ts.Reset()
|
|
doRollupForTimeseries(funcName, rc, ts, &rs.MetricName, rs.Values, rs.Timestamps, sharedTimestamps)
|
|
iafc.updateTimeseries(ts, workerID)
|
|
|
|
// ts.Timestamps points to sharedTimestamps. Zero it, so it can be re-used.
|
|
ts.Timestamps = nil
|
|
ts.denyReuse = false
|
|
}
|
|
return nil
|
|
})
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
tss := iafc.finalizeTimeseries()
|
|
return tss, nil
|
|
}
|
|
|
|
func evalRollupNoIncrementalAggregate(funcName string, rss *netstorage.Results, rcs []*rollupConfig,
|
|
preFunc func(values []float64, timestamps []int64), sharedTimestamps []int64) ([]*timeseries, error) {
|
|
tss := make([]*timeseries, 0, rss.Len()*len(rcs))
|
|
var tssLock sync.Mutex
|
|
err := rss.RunParallel(func(rs *netstorage.Result, workerID uint) error {
|
|
rs.Values, rs.Timestamps = dropStaleNaNs(funcName, rs.Values, rs.Timestamps)
|
|
preFunc(rs.Values, rs.Timestamps)
|
|
for _, rc := range rcs {
|
|
if tsm := newTimeseriesMap(funcName, sharedTimestamps, &rs.MetricName); tsm != nil {
|
|
rc.DoTimeseriesMap(tsm, rs.Values, rs.Timestamps)
|
|
tssLock.Lock()
|
|
tss = tsm.AppendTimeseriesTo(tss)
|
|
tssLock.Unlock()
|
|
continue
|
|
}
|
|
var ts timeseries
|
|
doRollupForTimeseries(funcName, rc, &ts, &rs.MetricName, rs.Values, rs.Timestamps, sharedTimestamps)
|
|
tssLock.Lock()
|
|
tss = append(tss, &ts)
|
|
tssLock.Unlock()
|
|
}
|
|
return nil
|
|
})
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
return tss, nil
|
|
}
|
|
|
|
func doRollupForTimeseries(funcName string, rc *rollupConfig, tsDst *timeseries, mnSrc *storage.MetricName, valuesSrc []float64, timestampsSrc []int64,
|
|
sharedTimestamps []int64) {
|
|
tsDst.MetricName.CopyFrom(mnSrc)
|
|
if len(rc.TagValue) > 0 {
|
|
tsDst.MetricName.AddTag("rollup", rc.TagValue)
|
|
}
|
|
if !rollupFuncsKeepMetricGroup[funcName] {
|
|
tsDst.MetricName.ResetMetricGroup()
|
|
}
|
|
tsDst.Values = rc.Do(tsDst.Values[:0], valuesSrc, timestampsSrc)
|
|
tsDst.Timestamps = sharedTimestamps
|
|
tsDst.denyReuse = true
|
|
}
|
|
|
|
var bbPool bytesutil.ByteBufferPool
|
|
|
|
func evalNumber(ec *EvalConfig, n float64) []*timeseries {
|
|
var ts timeseries
|
|
ts.denyReuse = true
|
|
timestamps := ec.getSharedTimestamps()
|
|
values := make([]float64, len(timestamps))
|
|
for i := range timestamps {
|
|
values[i] = n
|
|
}
|
|
ts.Values = values
|
|
ts.Timestamps = timestamps
|
|
return []*timeseries{&ts}
|
|
}
|
|
|
|
func evalString(ec *EvalConfig, s string) []*timeseries {
|
|
rv := evalNumber(ec, nan)
|
|
rv[0].MetricName.MetricGroup = append(rv[0].MetricName.MetricGroup[:0], s...)
|
|
return rv
|
|
}
|
|
|
|
func evalTime(ec *EvalConfig) []*timeseries {
|
|
rv := evalNumber(ec, nan)
|
|
timestamps := rv[0].Timestamps
|
|
values := rv[0].Values
|
|
for i, ts := range timestamps {
|
|
values[i] = float64(ts) / 1e3
|
|
}
|
|
return rv
|
|
}
|
|
|
|
func mulNoOverflow(a, b int64) int64 {
|
|
if math.MaxInt64/b < a {
|
|
// Overflow
|
|
return math.MaxInt64
|
|
}
|
|
return a * b
|
|
}
|
|
|
|
func dropStaleNaNs(funcName string, values []float64, timestamps []int64) ([]float64, []int64) {
|
|
if *noStaleMarkers || funcName == "default_rollup" {
|
|
// Do not drop Prometheus staleness marks (aka stale NaNs) for default_rollup() function,
|
|
// since it uses them for Prometheus-style staleness detection.
|
|
return values, timestamps
|
|
}
|
|
// Remove Prometheus staleness marks, so non-default rollup functions don't hit NaN values.
|
|
hasStaleSamples := false
|
|
for _, v := range values {
|
|
if decimal.IsStaleNaN(v) {
|
|
hasStaleSamples = true
|
|
break
|
|
}
|
|
}
|
|
if !hasStaleSamples {
|
|
// Fast path: values have no Prometheus staleness marks.
|
|
return values, timestamps
|
|
}
|
|
// Slow path: drop Prometheus staleness marks from values.
|
|
dstValues := values[:0]
|
|
dstTimestamps := timestamps[:0]
|
|
for i, v := range values {
|
|
if decimal.IsStaleNaN(v) {
|
|
continue
|
|
}
|
|
dstValues = append(dstValues, v)
|
|
dstTimestamps = append(dstTimestamps, timestamps[i])
|
|
}
|
|
return dstValues, dstTimestamps
|
|
}
|