VictoriaMetrics/lib/protoparser/opentelemetry/stream/streamparser.go
Andrii Chubatiuk 68b6834542
lib/protoparser/opentelemetry: added exponential histograms support (#6354)
### Describe Your Changes

added opentelemetry exponential histograms support. Such histograms are automatically converted into
VictoriaMetrics histogram with `vmrange` buckets.

### Checklist

The following checks are **mandatory**:

- [ ] My change adheres [VictoriaMetrics contributing
guidelines](https://docs.victoriametrics.com/contributing/).

---------

Signed-off-by: hagen1778 <roman@victoriametrics.com>
Co-authored-by: hagen1778 <roman@victoriametrics.com>
(cherry picked from commit 9eb0c1fd86)
2024-10-11 14:28:19 +02:00

363 lines
12 KiB
Go

package stream
import (
"fmt"
"io"
"math"
"strconv"
"sync"
"github.com/VictoriaMetrics/metrics"
"github.com/VictoriaMetrics/VictoriaMetrics/lib/bytesutil"
"github.com/VictoriaMetrics/VictoriaMetrics/lib/decimal"
"github.com/VictoriaMetrics/VictoriaMetrics/lib/fasttime"
"github.com/VictoriaMetrics/VictoriaMetrics/lib/logger"
"github.com/VictoriaMetrics/VictoriaMetrics/lib/prompbmarshal"
"github.com/VictoriaMetrics/VictoriaMetrics/lib/protoparser/common"
"github.com/VictoriaMetrics/VictoriaMetrics/lib/protoparser/opentelemetry/pb"
"github.com/VictoriaMetrics/VictoriaMetrics/lib/writeconcurrencylimiter"
)
// ParseStream parses OpenTelemetry protobuf or json data from r and calls callback for the parsed rows.
//
// callback shouldn't hold tss items after returning.
//
// optional processBody can be used for pre-processing the read request body from r before parsing it in OpenTelemetry format.
func ParseStream(r io.Reader, isGzipped bool, processBody func([]byte) ([]byte, error), callback func(tss []prompbmarshal.TimeSeries) error) error {
wcr := writeconcurrencylimiter.GetReader(r)
defer writeconcurrencylimiter.PutReader(wcr)
r = wcr
if isGzipped {
zr, err := common.GetGzipReader(r)
if err != nil {
return fmt.Errorf("cannot read gzip-compressed OpenTelemetry protocol data: %w", err)
}
defer common.PutGzipReader(zr)
r = zr
}
wr := getWriteContext()
defer putWriteContext(wr)
req, err := wr.readAndUnpackRequest(r, processBody)
if err != nil {
return fmt.Errorf("cannot unpack OpenTelemetry metrics: %w", err)
}
wr.parseRequestToTss(req)
if err := callback(wr.tss); err != nil {
return fmt.Errorf("error when processing OpenTelemetry samples: %w", err)
}
return nil
}
func (wr *writeContext) appendSamplesFromScopeMetrics(sc *pb.ScopeMetrics) {
for _, m := range sc.Metrics {
if len(m.Name) == 0 {
// skip metrics without names
continue
}
metricName := sanitizeMetricName(m)
switch {
case m.Gauge != nil:
for _, p := range m.Gauge.DataPoints {
wr.appendSampleFromNumericPoint(metricName, p)
}
case m.Sum != nil:
if m.Sum.AggregationTemporality != pb.AggregationTemporalityCumulative {
rowsDroppedUnsupportedSum.Inc()
continue
}
for _, p := range m.Sum.DataPoints {
wr.appendSampleFromNumericPoint(metricName, p)
}
case m.Summary != nil:
for _, p := range m.Summary.DataPoints {
wr.appendSamplesFromSummary(metricName, p)
}
case m.Histogram != nil:
if m.Histogram.AggregationTemporality != pb.AggregationTemporalityCumulative {
rowsDroppedUnsupportedHistogram.Inc()
continue
}
for _, p := range m.Histogram.DataPoints {
wr.appendSamplesFromHistogram(metricName, p)
}
case m.ExponentialHistogram != nil:
if m.ExponentialHistogram.AggregationTemporality != pb.AggregationTemporalityCumulative {
rowsDroppedUnsupportedExponentialHistogram.Inc()
continue
}
for _, p := range m.ExponentialHistogram.DataPoints {
wr.appendSamplesFromExponentialHistogram(metricName, p)
}
default:
rowsDroppedUnsupportedMetricType.Inc()
logger.Warnf("unsupported type for metric %q", metricName)
}
}
}
// appendSampleFromNumericPoint appends p to wr.tss
func (wr *writeContext) appendSampleFromNumericPoint(metricName string, p *pb.NumberDataPoint) {
var v float64
switch {
case p.IntValue != nil:
v = float64(*p.IntValue)
case p.DoubleValue != nil:
v = *p.DoubleValue
}
t := int64(p.TimeUnixNano / 1e6)
isStale := (p.Flags)&uint32(1) != 0
wr.pointLabels = appendAttributesToPromLabels(wr.pointLabels[:0], p.Attributes)
wr.appendSample(metricName, t, v, isStale)
}
// appendSamplesFromSummary appends summary p to wr.tss
func (wr *writeContext) appendSamplesFromSummary(metricName string, p *pb.SummaryDataPoint) {
t := int64(p.TimeUnixNano / 1e6)
isStale := (p.Flags)&uint32(1) != 0
wr.pointLabels = appendAttributesToPromLabels(wr.pointLabels[:0], p.Attributes)
wr.appendSample(metricName+"_sum", t, p.Sum, isStale)
wr.appendSample(metricName+"_count", t, float64(p.Count), isStale)
for _, q := range p.QuantileValues {
qValue := strconv.FormatFloat(q.Quantile, 'f', -1, 64)
wr.appendSampleWithExtraLabel(metricName, "quantile", qValue, t, q.Value, isStale)
}
}
// appendSamplesFromHistogram appends histogram p to wr.tss
func (wr *writeContext) appendSamplesFromHistogram(metricName string, p *pb.HistogramDataPoint) {
if len(p.BucketCounts) == 0 {
// nothing to append
return
}
if len(p.BucketCounts) != len(p.ExplicitBounds)+1 {
// fast path, broken data format
logger.Warnf("opentelemetry bad histogram format: %q, size of buckets: %d, size of bounds: %d", metricName, len(p.BucketCounts), len(p.ExplicitBounds))
return
}
t := int64(p.TimeUnixNano / 1e6)
isStale := (p.Flags)&uint32(1) != 0
wr.pointLabels = appendAttributesToPromLabels(wr.pointLabels[:0], p.Attributes)
wr.appendSample(metricName+"_count", t, float64(p.Count), isStale)
if p.Sum == nil {
// fast path, convert metric as simple counter.
// given buckets cannot be used for histogram functions.
// Negative threshold buckets MAY be used, but then the Histogram MetricPoint MUST NOT contain a sum value as it would no longer be a counter semantically.
// https://github.com/OpenObservability/OpenMetrics/blob/main/specification/OpenMetrics.md#histogram
return
}
wr.appendSample(metricName+"_sum", t, *p.Sum, isStale)
var cumulative uint64
for index, bound := range p.ExplicitBounds {
cumulative += p.BucketCounts[index]
boundLabelValue := strconv.FormatFloat(bound, 'f', -1, 64)
wr.appendSampleWithExtraLabel(metricName+"_bucket", "le", boundLabelValue, t, float64(cumulative), isStale)
}
cumulative += p.BucketCounts[len(p.BucketCounts)-1]
wr.appendSampleWithExtraLabel(metricName+"_bucket", "le", "+Inf", t, float64(cumulative), isStale)
}
// appendSamplesFromExponentialHistogram appends histogram p to wr.tss
func (wr *writeContext) appendSamplesFromExponentialHistogram(metricName string, p *pb.ExponentialHistogramDataPoint) {
t := int64(p.TimeUnixNano / 1e6)
isStale := (p.Flags)&uint32(1) != 0
wr.pointLabels = appendAttributesToPromLabels(wr.pointLabels[:0], p.Attributes)
wr.appendSample(metricName+"_count", t, float64(p.Count), isStale)
if p.Sum == nil {
// fast path, convert metric as simple counter.
// given buckets cannot be used for histogram functions.
// Negative threshold buckets MAY be used, but then the Histogram MetricPoint MUST NOT contain a sum value as it would no longer be a counter semantically.
// https://github.com/OpenObservability/OpenMetrics/blob/main/specification/OpenMetrics.md#histogram
return
}
wr.appendSample(metricName+"_sum", t, *p.Sum, isStale)
if p.ZeroCount > 0 {
vmRange := fmt.Sprintf("%.3e...%.3e", 0.0, p.ZeroThreshold)
wr.appendSampleWithExtraLabel(metricName+"_bucket", "vmrange", vmRange, t, float64(p.ZeroCount), isStale)
}
ratio := math.Pow(2, -float64(p.Scale))
base := math.Pow(2, ratio)
if p.Positive != nil {
bound := math.Pow(2, float64(p.Positive.Offset)*ratio)
for i, s := range p.Positive.BucketCounts {
if s > 0 {
lowerBound := bound * math.Pow(base, float64(i))
upperBound := lowerBound * base
vmRange := fmt.Sprintf("%.3e...%.3e", lowerBound, upperBound)
wr.appendSampleWithExtraLabel(metricName+"_bucket", "vmrange", vmRange, t, float64(s), isStale)
}
}
}
if p.Negative != nil {
bound := math.Pow(2, -float64(p.Negative.Offset)*ratio)
for i, s := range p.Negative.BucketCounts {
if s > 0 {
upperBound := bound * math.Pow(base, float64(i))
lowerBound := upperBound / base
vmRange := fmt.Sprintf("%.3e...%.3e", lowerBound, upperBound)
wr.appendSampleWithExtraLabel(metricName+"_bucket", "vmrange", vmRange, t, float64(s), isStale)
}
}
}
}
// appendSample appends sample with the given metricName to wr.tss
func (wr *writeContext) appendSample(metricName string, t int64, v float64, isStale bool) {
wr.appendSampleWithExtraLabel(metricName, "", "", t, v, isStale)
}
// appendSampleWithExtraLabel appends sample with the given metricName and the given (labelName=labelValue) extra label to wr.tss
func (wr *writeContext) appendSampleWithExtraLabel(metricName, labelName, labelValue string, t int64, v float64, isStale bool) {
if isStale {
v = decimal.StaleNaN
}
if t <= 0 {
// Set the current timestamp if t isn't set.
t = int64(fasttime.UnixTimestamp()) * 1000
}
labelsPool := wr.labelsPool
labelsLen := len(labelsPool)
labelsPool = append(labelsPool, prompbmarshal.Label{
Name: "__name__",
Value: metricName,
})
labelsPool = append(labelsPool, wr.baseLabels...)
labelsPool = append(labelsPool, wr.pointLabels...)
if labelName != "" && labelValue != "" {
labelsPool = append(labelsPool, prompbmarshal.Label{
Name: labelName,
Value: labelValue,
})
}
samplesPool := wr.samplesPool
samplesLen := len(samplesPool)
samplesPool = append(samplesPool, prompbmarshal.Sample{
Timestamp: t,
Value: v,
})
wr.tss = append(wr.tss, prompbmarshal.TimeSeries{
Labels: labelsPool[labelsLen:],
Samples: samplesPool[samplesLen:],
})
wr.labelsPool = labelsPool
wr.samplesPool = samplesPool
rowsRead.Inc()
}
// appendAttributesToPromLabels appends attributes to dst and returns the result.
func appendAttributesToPromLabels(dst []prompbmarshal.Label, attributes []*pb.KeyValue) []prompbmarshal.Label {
for _, at := range attributes {
dst = append(dst, prompbmarshal.Label{
Name: sanitizeLabelName(at.Key),
Value: at.Value.FormatString(),
})
}
return dst
}
type writeContext struct {
// bb holds the original data (json or protobuf), which must be parsed.
bb bytesutil.ByteBuffer
// tss holds parsed time series
tss []prompbmarshal.TimeSeries
// baseLabels are labels, which must be added to all the ingested samples
baseLabels []prompbmarshal.Label
// pointLabels are labels, which must be added to the ingested OpenTelemetry points
pointLabels []prompbmarshal.Label
// pools are used for reducing memory allocations when parsing time series
labelsPool []prompbmarshal.Label
samplesPool []prompbmarshal.Sample
}
func (wr *writeContext) reset() {
wr.bb.Reset()
clear(wr.tss)
wr.tss = wr.tss[:0]
wr.baseLabels = resetLabels(wr.baseLabels)
wr.pointLabels = resetLabels(wr.pointLabels)
wr.labelsPool = resetLabels(wr.labelsPool)
wr.samplesPool = wr.samplesPool[:0]
}
func resetLabels(labels []prompbmarshal.Label) []prompbmarshal.Label {
clear(labels)
return labels[:0]
}
func (wr *writeContext) readAndUnpackRequest(r io.Reader, processBody func([]byte) ([]byte, error)) (*pb.ExportMetricsServiceRequest, error) {
if _, err := wr.bb.ReadFrom(r); err != nil {
return nil, fmt.Errorf("cannot read request: %w", err)
}
var req pb.ExportMetricsServiceRequest
if processBody != nil {
data, err := processBody(wr.bb.B)
if err != nil {
return nil, fmt.Errorf("cannot process request body: %w", err)
}
wr.bb.B = append(wr.bb.B[:0], data...)
}
if err := req.UnmarshalProtobuf(wr.bb.B); err != nil {
return nil, fmt.Errorf("cannot unmarshal request from %d bytes: %w", len(wr.bb.B), err)
}
return &req, nil
}
func (wr *writeContext) parseRequestToTss(req *pb.ExportMetricsServiceRequest) {
for _, rm := range req.ResourceMetrics {
var attributes []*pb.KeyValue
if rm.Resource != nil {
attributes = rm.Resource.Attributes
}
wr.baseLabels = appendAttributesToPromLabels(wr.baseLabels[:0], attributes)
for _, sc := range rm.ScopeMetrics {
wr.appendSamplesFromScopeMetrics(sc)
}
}
}
var wrPool sync.Pool
func getWriteContext() *writeContext {
v := wrPool.Get()
if v == nil {
return &writeContext{}
}
return v.(*writeContext)
}
func putWriteContext(wr *writeContext) {
wr.reset()
wrPool.Put(wr)
}
var (
rowsRead = metrics.NewCounter(`vm_protoparser_rows_read_total{type="opentelemetry"}`)
rowsDroppedUnsupportedHistogram = metrics.NewCounter(`vm_protoparser_rows_dropped_total{type="opentelemetry",reason="unsupported_histogram_aggregation"}`)
rowsDroppedUnsupportedExponentialHistogram = metrics.NewCounter(`vm_protoparser_rows_dropped_total{type="opentelemetry",reason="unsupported_exponential_histogram_aggregation"}`)
rowsDroppedUnsupportedSum = metrics.NewCounter(`vm_protoparser_rows_dropped_total{type="opentelemetry",reason="unsupported_sum_aggregation"}`)
rowsDroppedUnsupportedMetricType = metrics.NewCounter(`vm_protoparser_rows_dropped_total{type="opentelemetry",reason="unsupported_metric_type"}`)
)