VictoriaMetrics/lib/workingsetcache/cache.go
Aliaksandr Valialkin e86b7cc9a5
lib/workingsetcache: use the original cache size limits when rotating caches
Previously limits for new caches were taken from cache stats.
These limits could mismatch the original limits. This could result in failed cache load
if the stored cache has been created with the limits obtained from cache stats.
2022-02-08 00:10:14 +02:00

363 lines
9.4 KiB
Go

package workingsetcache
import (
"sync"
"sync/atomic"
"time"
"github.com/VictoriaMetrics/VictoriaMetrics/lib/bytesutil"
"github.com/VictoriaMetrics/VictoriaMetrics/lib/cgroup"
"github.com/VictoriaMetrics/fastcache"
)
// Cache modes.
const (
split = 0
switching = 1
whole = 2
)
// Cache is a cache for working set entries.
//
// The cache evicts inactive entries after the given expireDuration.
// Recently accessed entries survive expireDuration.
type Cache struct {
curr atomic.Value
prev atomic.Value
// cs holds cache stats
cs fastcache.Stats
// mode indicates whether to use only curr and skip prev.
//
// This flag is set to switching if curr is filled for more than 50% space.
// In this case using prev would result in RAM waste,
// it is better to use only curr cache with doubled size.
// After the process of switching, this flag will be set to whole.
mode uint32
// The maxBytes value passed to New() or to Load().
maxBytes int
// mu serializes access to curr, prev and mode
// in expirationWatcher and cacheSizeWatcher.
mu sync.Mutex
wg sync.WaitGroup
stopCh chan struct{}
}
// Load loads the cache from filePath and limits its size to maxBytes
// and evicts inactive entires after expireDuration.
//
// Stop must be called on the returned cache when it is no longer needed.
func Load(filePath string, maxBytes int, expireDuration time.Duration) *Cache {
curr := fastcache.LoadFromFileOrNew(filePath, maxBytes)
var cs fastcache.Stats
curr.UpdateStats(&cs)
if cs.EntriesCount == 0 {
curr.Reset()
// The cache couldn't be loaded with maxBytes size.
// This may mean that the cache is split into curr and prev caches.
// Try loading it again with maxBytes / 2 size.
curr := fastcache.LoadFromFileOrNew(filePath, maxBytes/2)
prev := fastcache.New(maxBytes / 2)
c := newCacheInternal(curr, prev, split, maxBytes)
c.runWatchers(expireDuration)
return c
}
// The cache has been successfully loaded in full.
// Set its' mode to `whole`.
// There is no need in runWatchers call.
prev := fastcache.New(1024)
return newCacheInternal(curr, prev, whole, maxBytes)
}
// New creates new cache with the given maxBytes capacity and the given expireDuration
// for inactive entries.
//
// Stop must be called on the returned cache when it is no longer needed.
func New(maxBytes int, expireDuration time.Duration) *Cache {
curr := fastcache.New(maxBytes / 2)
prev := fastcache.New(1024)
c := newCacheInternal(curr, prev, split, maxBytes)
c.runWatchers(expireDuration)
return c
}
func newCacheInternal(curr, prev *fastcache.Cache, mode, maxBytes int) *Cache {
var c Cache
c.maxBytes = maxBytes
c.curr.Store(curr)
c.prev.Store(prev)
c.stopCh = make(chan struct{})
c.setMode(mode)
return &c
}
func (c *Cache) runWatchers(expireDuration time.Duration) {
c.wg.Add(1)
go func() {
defer c.wg.Done()
c.expirationWatcher(expireDuration)
}()
c.wg.Add(1)
go func() {
defer c.wg.Done()
c.cacheSizeWatcher()
}()
}
func (c *Cache) expirationWatcher(expireDuration time.Duration) {
t := time.NewTicker(expireDuration / 2)
for {
select {
case <-c.stopCh:
t.Stop()
return
case <-t.C:
}
c.mu.Lock()
if atomic.LoadUint32(&c.mode) != split {
// Stop the expirationWatcher on non-split mode.
c.mu.Unlock()
return
}
// Expire prev cache and create fresh curr cache with the same capacity.
// Do not reuse prev cache, since it can occupy too big amounts of memory.
prev := c.prev.Load().(*fastcache.Cache)
prev.Reset()
curr := c.curr.Load().(*fastcache.Cache)
var cs fastcache.Stats
curr.UpdateStats(&cs)
c.prev.Store(curr)
// Use c.maxBytes/2 instead of cs.MaxBytesSize for creating new cache,
// since cs.MaxBytesSize may not match c.maxBytes/2, so the created cache
// couldn't be loaded from file with c.maxBytes/2 limit after saving with cs.MaxBytesSize size.
curr = fastcache.New(c.maxBytes / 2)
c.curr.Store(curr)
c.mu.Unlock()
}
}
func (c *Cache) cacheSizeWatcher() {
t := time.NewTicker(time.Minute)
defer t.Stop()
var maxBytesSize uint64
for {
select {
case <-c.stopCh:
return
case <-t.C:
}
var cs fastcache.Stats
curr := c.curr.Load().(*fastcache.Cache)
curr.UpdateStats(&cs)
if cs.BytesSize >= uint64(0.9*float64(cs.MaxBytesSize)) {
maxBytesSize = cs.MaxBytesSize
break
}
}
// curr cache size exceeds 90% of its capacity. It is better
// to double the size of curr cache and stop using prev cache,
// since this will result in higher summary cache capacity.
//
// Do this in the following steps:
// 1) switch to mode=switching
// 2) move curr cache to prev
// 3) create curr with the double size
// 4) wait until curr size exceeds maxBytesSize, i.e. it is populated with new data
// 5) switch to mode=whole
// 6) drop prev
c.mu.Lock()
c.setMode(switching)
prev := c.prev.Load().(*fastcache.Cache)
prev.Reset()
curr := c.curr.Load().(*fastcache.Cache)
c.prev.Store(curr)
// use c.maxBytes instead of maxBytesSize*2 for creating new cache, since otherwise the created cache
// couldn't be loaded from file with c.maxBytes limit after saving with maxBytesSize*2 limit.
c.curr.Store(fastcache.New(c.maxBytes))
c.mu.Unlock()
for {
select {
case <-c.stopCh:
return
case <-t.C:
}
var cs fastcache.Stats
curr := c.curr.Load().(*fastcache.Cache)
curr.UpdateStats(&cs)
if cs.BytesSize >= maxBytesSize {
break
}
}
c.mu.Lock()
c.setMode(whole)
prev = c.prev.Load().(*fastcache.Cache)
prev.Reset()
c.prev.Store(fastcache.New(1024))
c.mu.Unlock()
}
// Save saves the cache to filePath.
func (c *Cache) Save(filePath string) error {
curr := c.curr.Load().(*fastcache.Cache)
concurrency := cgroup.AvailableCPUs()
return curr.SaveToFileConcurrent(filePath, concurrency)
}
// Stop stops the cache.
//
// The cache cannot be used after the Stop call.
func (c *Cache) Stop() {
close(c.stopCh)
c.wg.Wait()
c.Reset()
}
// Reset resets the cache.
func (c *Cache) Reset() {
prev := c.prev.Load().(*fastcache.Cache)
prev.Reset()
curr := c.curr.Load().(*fastcache.Cache)
curr.Reset()
// Reset the mode to `split` in the hope the working set size becomes smaller after the reset.
c.setMode(split)
}
func (c *Cache) setMode(mode int) {
atomic.StoreUint32(&c.mode, uint32(mode))
}
func (c *Cache) loadMode() int {
return int(atomic.LoadUint32(&c.mode))
}
// UpdateStats updates fcs with cache stats.
func (c *Cache) UpdateStats(fcs *fastcache.Stats) {
var cs fastcache.Stats
curr := c.curr.Load().(*fastcache.Cache)
curr.UpdateStats(&cs)
fcs.Collisions += cs.Collisions
fcs.Corruptions += cs.Corruptions
fcs.EntriesCount += cs.EntriesCount
fcs.BytesSize += cs.BytesSize
fcs.MaxBytesSize += cs.MaxBytesSize
fcs.GetCalls += atomic.LoadUint64(&c.cs.GetCalls)
fcs.SetCalls += atomic.LoadUint64(&c.cs.SetCalls)
fcs.Misses += atomic.LoadUint64(&c.cs.Misses)
prev := c.prev.Load().(*fastcache.Cache)
cs.Reset()
prev.UpdateStats(&cs)
fcs.EntriesCount += cs.EntriesCount
fcs.BytesSize += cs.BytesSize
fcs.MaxBytesSize += cs.MaxBytesSize
}
// Get appends the found value for the given key to dst and returns the result.
func (c *Cache) Get(dst, key []byte) []byte {
atomic.AddUint64(&c.cs.GetCalls, 1)
curr := c.curr.Load().(*fastcache.Cache)
result := curr.Get(dst, key)
if len(result) > len(dst) {
// Fast path - the entry is found in the current cache.
return result
}
if c.loadMode() == whole {
// Nothing found.
atomic.AddUint64(&c.cs.Misses, 1)
return result
}
// Search for the entry in the previous cache.
prev := c.prev.Load().(*fastcache.Cache)
result = prev.Get(dst, key)
if len(result) <= len(dst) {
// Nothing found.
atomic.AddUint64(&c.cs.Misses, 1)
return result
}
// Cache the found entry in the current cache.
curr.Set(key, result[len(dst):])
return result
}
// Has verifies whether the cache contains the given key.
func (c *Cache) Has(key []byte) bool {
atomic.AddUint64(&c.cs.GetCalls, 1)
curr := c.curr.Load().(*fastcache.Cache)
if curr.Has(key) {
return true
}
if c.loadMode() == whole {
atomic.AddUint64(&c.cs.Misses, 1)
return false
}
prev := c.prev.Load().(*fastcache.Cache)
if !prev.Has(key) {
atomic.AddUint64(&c.cs.Misses, 1)
return false
}
// Cache the found entry in the current cache.
tmpBuf := tmpBufPool.Get()
tmpBuf.B = prev.Get(tmpBuf.B, key)
curr.Set(key, tmpBuf.B)
tmpBufPool.Put(tmpBuf)
return true
}
var tmpBufPool bytesutil.ByteBufferPool
// Set sets the given value for the given key.
func (c *Cache) Set(key, value []byte) {
atomic.AddUint64(&c.cs.SetCalls, 1)
curr := c.curr.Load().(*fastcache.Cache)
curr.Set(key, value)
}
// GetBig appends the found value for the given key to dst and returns the result.
func (c *Cache) GetBig(dst, key []byte) []byte {
atomic.AddUint64(&c.cs.GetCalls, 1)
curr := c.curr.Load().(*fastcache.Cache)
result := curr.GetBig(dst, key)
if len(result) > len(dst) {
// Fast path - the entry is found in the current cache.
return result
}
if c.loadMode() == whole {
// Nothing found.
atomic.AddUint64(&c.cs.Misses, 1)
return result
}
// Search for the entry in the previous cache.
prev := c.prev.Load().(*fastcache.Cache)
result = prev.GetBig(dst, key)
if len(result) <= len(dst) {
// Nothing found.
atomic.AddUint64(&c.cs.Misses, 1)
return result
}
// Cache the found entry in the current cache.
curr.SetBig(key, result[len(dst):])
return result
}
// SetBig sets the given value for the given key.
func (c *Cache) SetBig(key, value []byte) {
atomic.AddUint64(&c.cs.SetCalls, 1)
curr := c.curr.Load().(*fastcache.Cache)
curr.SetBig(key, value)
}