VictoriaMetrics/app/vmselect/promql/aggr.go
Aliaksandr Valialkin f877e703c8 app/vmselect/promql: fix mode_over_time calculations
Previously `mode_over_time` could return garbage due to improper shuffling of input data points.
2020-10-13 11:58:30 +03:00

863 lines
19 KiB
Go

package promql
import (
"fmt"
"math"
"sort"
"strconv"
"strings"
"github.com/VictoriaMetrics/VictoriaMetrics/lib/logger"
"github.com/VictoriaMetrics/VictoriaMetrics/lib/storage"
"github.com/VictoriaMetrics/metrics"
"github.com/VictoriaMetrics/metricsql"
"github.com/valyala/histogram"
)
var aggrFuncs = map[string]aggrFunc{
// See https://prometheus.io/docs/prometheus/latest/querying/operators/#aggregation-operators
"sum": newAggrFunc(aggrFuncSum),
"min": newAggrFunc(aggrFuncMin),
"max": newAggrFunc(aggrFuncMax),
"avg": newAggrFunc(aggrFuncAvg),
"stddev": newAggrFunc(aggrFuncStddev),
"stdvar": newAggrFunc(aggrFuncStdvar),
"count": newAggrFunc(aggrFuncCount),
"count_values": aggrFuncCountValues,
"bottomk": newAggrFuncTopK(true),
"topk": newAggrFuncTopK(false),
"quantile": aggrFuncQuantile,
"group": newAggrFunc(aggrFuncGroup),
// PromQL extension funcs
"median": aggrFuncMedian,
"limitk": aggrFuncLimitK,
"distinct": newAggrFunc(aggrFuncDistinct),
"sum2": newAggrFunc(aggrFuncSum2),
"geomean": newAggrFunc(aggrFuncGeomean),
"histogram": newAggrFunc(aggrFuncHistogram),
"topk_min": newAggrFuncRangeTopK(minValue, false),
"topk_max": newAggrFuncRangeTopK(maxValue, false),
"topk_avg": newAggrFuncRangeTopK(avgValue, false),
"topk_median": newAggrFuncRangeTopK(medianValue, false),
"bottomk_min": newAggrFuncRangeTopK(minValue, true),
"bottomk_max": newAggrFuncRangeTopK(maxValue, true),
"bottomk_avg": newAggrFuncRangeTopK(avgValue, true),
"bottomk_median": newAggrFuncRangeTopK(medianValue, true),
"any": aggrFuncAny,
"outliersk": aggrFuncOutliersK,
"mode": newAggrFunc(aggrFuncMode),
"zscore": aggrFuncZScore,
}
type aggrFunc func(afa *aggrFuncArg) ([]*timeseries, error)
type aggrFuncArg struct {
args [][]*timeseries
ae *metricsql.AggrFuncExpr
ec *EvalConfig
}
func getAggrFunc(s string) aggrFunc {
s = strings.ToLower(s)
return aggrFuncs[s]
}
func newAggrFunc(afe func(tss []*timeseries) []*timeseries) aggrFunc {
return func(afa *aggrFuncArg) ([]*timeseries, error) {
tss, err := getAggrTimeseries(afa.args)
if err != nil {
return nil, err
}
return aggrFuncExt(afe, tss, &afa.ae.Modifier, afa.ae.Limit, false)
}
}
func getAggrTimeseries(args [][]*timeseries) ([]*timeseries, error) {
if len(args) == 0 {
return nil, fmt.Errorf("expecting at least one arg")
}
tss := args[0]
for _, arg := range args[1:] {
tss = append(tss, arg...)
}
return tss, nil
}
func removeGroupTags(metricName *storage.MetricName, modifier *metricsql.ModifierExpr) {
groupOp := strings.ToLower(modifier.Op)
switch groupOp {
case "", "by":
metricName.RemoveTagsOn(modifier.Args)
case "without":
metricName.RemoveTagsIgnoring(modifier.Args)
// Reset metric group as Prometheus does on `aggr(...) without (...)` call.
metricName.ResetMetricGroup()
default:
logger.Panicf("BUG: unknown group modifier: %q", groupOp)
}
}
func aggrFuncExt(afe func(tss []*timeseries) []*timeseries, argOrig []*timeseries, modifier *metricsql.ModifierExpr, maxSeries int, keepOriginal bool) ([]*timeseries, error) {
arg := copyTimeseriesMetricNames(argOrig, keepOriginal)
// Perform grouping.
m := make(map[string][]*timeseries)
bb := bbPool.Get()
for i, ts := range arg {
removeGroupTags(&ts.MetricName, modifier)
bb.B = marshalMetricNameSorted(bb.B[:0], &ts.MetricName)
if keepOriginal {
ts = argOrig[i]
}
tss := m[string(bb.B)]
if tss == nil && maxSeries > 0 && len(m) >= maxSeries {
// We already reached time series limit after grouping. Skip other time series.
continue
}
tss = append(tss, ts)
m[string(bb.B)] = tss
}
bbPool.Put(bb)
srcTssCount := 0
dstTssCount := 0
rvs := make([]*timeseries, 0, len(m))
for _, tss := range m {
rv := afe(tss)
rvs = append(rvs, rv...)
srcTssCount += len(tss)
dstTssCount += len(rv)
if dstTssCount > 2000 && dstTssCount > 16*srcTssCount {
// This looks like count_values explosion.
return nil, fmt.Errorf(`too many timeseries after aggragation; got %d; want less than %d`, dstTssCount, 16*srcTssCount)
}
}
return rvs, nil
}
func aggrFuncAny(afa *aggrFuncArg) ([]*timeseries, error) {
tss, err := getAggrTimeseries(afa.args)
if err != nil {
return nil, err
}
afe := func(tss []*timeseries) []*timeseries {
return tss[:1]
}
limit := afa.ae.Limit
if limit > 1 {
// Only a single time series per group must be returned
limit = 1
}
return aggrFuncExt(afe, tss, &afa.ae.Modifier, limit, true)
}
func aggrFuncGroup(tss []*timeseries) []*timeseries {
// See https://github.com/prometheus/prometheus/commit/72425d4e3d14d209cc3f3f6e10e3240411303399
dst := tss[0]
for i := range dst.Values {
v := nan
for _, ts := range tss {
if math.IsNaN(ts.Values[i]) {
continue
}
v = 1
}
dst.Values[i] = v
}
return tss[:1]
}
func aggrFuncSum(tss []*timeseries) []*timeseries {
if len(tss) == 1 {
// Fast path - nothing to sum.
return tss
}
dst := tss[0]
for i := range dst.Values {
sum := float64(0)
count := 0
for _, ts := range tss {
if math.IsNaN(ts.Values[i]) {
continue
}
sum += ts.Values[i]
count++
}
if count == 0 {
sum = nan
}
dst.Values[i] = sum
}
return tss[:1]
}
func aggrFuncSum2(tss []*timeseries) []*timeseries {
dst := tss[0]
for i := range dst.Values {
sum2 := float64(0)
count := 0
for _, ts := range tss {
v := ts.Values[i]
if math.IsNaN(v) {
continue
}
sum2 += v * v
count++
}
if count == 0 {
sum2 = nan
}
dst.Values[i] = sum2
}
return tss[:1]
}
func aggrFuncGeomean(tss []*timeseries) []*timeseries {
if len(tss) == 1 {
// Fast path - nothing to geomean.
return tss
}
dst := tss[0]
for i := range dst.Values {
p := 1.0
count := 0
for _, ts := range tss {
v := ts.Values[i]
if math.IsNaN(v) {
continue
}
p *= v
count++
}
if count == 0 {
p = nan
}
dst.Values[i] = math.Pow(p, 1/float64(count))
}
return tss[:1]
}
func aggrFuncHistogram(tss []*timeseries) []*timeseries {
var h metrics.Histogram
m := make(map[string]*timeseries)
for i := range tss[0].Values {
h.Reset()
for _, ts := range tss {
v := ts.Values[i]
h.Update(v)
}
h.VisitNonZeroBuckets(func(vmrange string, count uint64) {
ts := m[vmrange]
if ts == nil {
ts = &timeseries{}
ts.CopyFromShallowTimestamps(tss[0])
ts.MetricName.RemoveTag("vmrange")
ts.MetricName.AddTag("vmrange", vmrange)
values := ts.Values
for k := range values {
values[k] = 0
}
m[vmrange] = ts
}
ts.Values[i] = float64(count)
})
}
rvs := make([]*timeseries, 0, len(m))
for _, ts := range m {
rvs = append(rvs, ts)
}
return vmrangeBucketsToLE(rvs)
}
func aggrFuncMin(tss []*timeseries) []*timeseries {
if len(tss) == 1 {
// Fast path - nothing to min.
return tss
}
dst := tss[0]
for i := range dst.Values {
min := dst.Values[i]
for _, ts := range tss {
if math.IsNaN(min) || ts.Values[i] < min {
min = ts.Values[i]
}
}
dst.Values[i] = min
}
return tss[:1]
}
func aggrFuncMax(tss []*timeseries) []*timeseries {
if len(tss) == 1 {
// Fast path - nothing to max.
return tss
}
dst := tss[0]
for i := range dst.Values {
max := dst.Values[i]
for _, ts := range tss {
if math.IsNaN(max) || ts.Values[i] > max {
max = ts.Values[i]
}
}
dst.Values[i] = max
}
return tss[:1]
}
func aggrFuncAvg(tss []*timeseries) []*timeseries {
if len(tss) == 1 {
// Fast path - nothing to avg.
return tss
}
dst := tss[0]
for i := range dst.Values {
// Do not use `Rapid calculation methods` at https://en.wikipedia.org/wiki/Standard_deviation,
// since it is slower and has no obvious benefits in increased precision.
var sum float64
count := 0
for _, ts := range tss {
v := ts.Values[i]
if math.IsNaN(v) {
continue
}
count++
sum += v
}
avg := nan
if count > 0 {
avg = sum / float64(count)
}
dst.Values[i] = avg
}
return tss[:1]
}
func aggrFuncStddev(tss []*timeseries) []*timeseries {
if len(tss) == 1 {
// Fast path - stddev over a single time series is zero
values := tss[0].Values
for i, v := range values {
if !math.IsNaN(v) {
values[i] = 0
}
}
return tss
}
rvs := aggrFuncStdvar(tss)
dst := rvs[0]
for i, v := range dst.Values {
dst.Values[i] = math.Sqrt(v)
}
return rvs
}
func aggrFuncStdvar(tss []*timeseries) []*timeseries {
if len(tss) == 1 {
// Fast path - stdvar over a single time series is zero
values := tss[0].Values
for i, v := range values {
if !math.IsNaN(v) {
values[i] = 0
}
}
return tss
}
dst := tss[0]
for i := range dst.Values {
// See `Rapid calculation methods` at https://en.wikipedia.org/wiki/Standard_deviation
var avg, count, q float64
for _, ts := range tss {
v := ts.Values[i]
if math.IsNaN(v) {
continue
}
count++
avgNew := avg + (v-avg)/count
q += (v - avg) * (v - avgNew)
avg = avgNew
}
if count == 0 {
q = nan
}
dst.Values[i] = q / count
}
return tss[:1]
}
func aggrFuncCount(tss []*timeseries) []*timeseries {
dst := tss[0]
for i := range dst.Values {
count := 0
for _, ts := range tss {
if math.IsNaN(ts.Values[i]) {
continue
}
count++
}
v := float64(count)
if count == 0 {
v = nan
}
dst.Values[i] = v
}
return tss[:1]
}
func aggrFuncDistinct(tss []*timeseries) []*timeseries {
dst := tss[0]
m := make(map[float64]struct{}, len(tss))
for i := range dst.Values {
for _, ts := range tss {
v := ts.Values[i]
if math.IsNaN(v) {
continue
}
m[v] = struct{}{}
}
n := float64(len(m))
if n == 0 {
n = nan
}
dst.Values[i] = n
for k := range m {
delete(m, k)
}
}
return tss[:1]
}
func aggrFuncMode(tss []*timeseries) []*timeseries {
dst := tss[0]
a := make([]float64, 0, len(tss))
for i := range dst.Values {
a := a[:0]
for _, ts := range tss {
v := ts.Values[i]
if !math.IsNaN(v) {
a = append(a, v)
}
}
dst.Values[i] = modeNoNaNs(nan, a)
}
return tss[:1]
}
func aggrFuncZScore(afa *aggrFuncArg) ([]*timeseries, error) {
tss, err := getAggrTimeseries(afa.args)
if err != nil {
return nil, err
}
afe := func(tss []*timeseries) []*timeseries {
for i := range tss[0].Values {
// Calculate avg and stddev for tss points at position i.
// See `Rapid calculation methods` at https://en.wikipedia.org/wiki/Standard_deviation
var avg, count, q float64
for _, ts := range tss {
v := ts.Values[i]
if math.IsNaN(v) {
continue
}
count++
avgNew := avg + (v-avg)/count
q += (v - avg) * (v - avgNew)
avg = avgNew
}
if count == 0 {
// Cannot calculate z-score for NaN points.
continue
}
// Calculate z-score for tss points at position i.
// See https://en.wikipedia.org/wiki/Standard_score
stddev := math.Sqrt(q / count)
for _, ts := range tss {
v := ts.Values[i]
if math.IsNaN(v) {
continue
}
ts.Values[i] = (v - avg) / stddev
}
}
// Remove MetricGroup from all the tss.
for _, ts := range tss {
ts.MetricName.ResetMetricGroup()
}
return tss
}
return aggrFuncExt(afe, tss, &afa.ae.Modifier, afa.ae.Limit, true)
}
// modeNoNaNs returns mode for a.
//
// It is expected that a doesn't contain NaNs.
//
// The function modifies contents for a, so the caller must prepare it accordingly.
//
// See https://en.wikipedia.org/wiki/Mode_(statistics)
func modeNoNaNs(prevValue float64, a []float64) float64 {
if len(a) == 0 {
return prevValue
}
sort.Float64s(a)
j := -1
dMax := 0
mode := prevValue
for i, v := range a {
if prevValue == v {
continue
}
if d := i - j; d > dMax || math.IsNaN(mode) {
dMax = d
mode = prevValue
}
j = i
prevValue = v
}
if d := len(a) - j; d > dMax || math.IsNaN(mode) {
mode = prevValue
}
return mode
}
func aggrFuncCountValues(afa *aggrFuncArg) ([]*timeseries, error) {
args := afa.args
if err := expectTransformArgsNum(args, 2); err != nil {
return nil, err
}
dstLabel, err := getString(args[0], 0)
if err != nil {
return nil, err
}
// Remove dstLabel from grouping like Prometheus does.
modifier := &afa.ae.Modifier
switch strings.ToLower(modifier.Op) {
case "without":
modifier.Args = append(modifier.Args, dstLabel)
case "by":
dstArgs := modifier.Args[:0]
for _, arg := range modifier.Args {
if arg == dstLabel {
continue
}
dstArgs = append(dstArgs, arg)
}
modifier.Args = dstArgs
default:
// Do nothing
}
afe := func(tss []*timeseries) []*timeseries {
m := make(map[float64]bool)
for _, ts := range tss {
for _, v := range ts.Values {
if math.IsNaN(v) {
continue
}
m[v] = true
}
}
values := make([]float64, 0, len(m))
for v := range m {
values = append(values, v)
}
sort.Float64s(values)
var rvs []*timeseries
for _, v := range values {
var dst timeseries
dst.CopyFromShallowTimestamps(tss[0])
dst.MetricName.RemoveTag(dstLabel)
dst.MetricName.AddTag(dstLabel, strconv.FormatFloat(v, 'g', -1, 64))
for i := range dst.Values {
count := 0
for _, ts := range tss {
if ts.Values[i] == v {
count++
}
}
n := float64(count)
if n == 0 {
n = nan
}
dst.Values[i] = n
}
rvs = append(rvs, &dst)
}
return rvs
}
return aggrFuncExt(afe, args[1], &afa.ae.Modifier, afa.ae.Limit, false)
}
func newAggrFuncTopK(isReverse bool) aggrFunc {
return func(afa *aggrFuncArg) ([]*timeseries, error) {
args := afa.args
if err := expectTransformArgsNum(args, 2); err != nil {
return nil, err
}
ks, err := getScalar(args[0], 0)
if err != nil {
return nil, err
}
afe := func(tss []*timeseries) []*timeseries {
for n := range tss[0].Values {
sort.Slice(tss, func(i, j int) bool {
a := tss[i].Values[n]
b := tss[j].Values[n]
if isReverse {
a, b = b, a
}
return lessWithNaNs(a, b)
})
fillNaNsAtIdx(n, ks[n], tss)
}
return removeNaNs(tss)
}
return aggrFuncExt(afe, args[1], &afa.ae.Modifier, afa.ae.Limit, true)
}
}
func newAggrFuncRangeTopK(f func(values []float64) float64, isReverse bool) aggrFunc {
return func(afa *aggrFuncArg) ([]*timeseries, error) {
args := afa.args
if err := expectTransformArgsNum(args, 2); err != nil {
return nil, err
}
ks, err := getScalar(args[0], 0)
if err != nil {
return nil, err
}
afe := func(tss []*timeseries) []*timeseries {
return getRangeTopKTimeseries(tss, ks, f, isReverse)
}
return aggrFuncExt(afe, args[1], &afa.ae.Modifier, afa.ae.Limit, true)
}
}
func getRangeTopKTimeseries(tss []*timeseries, ks []float64, f func(values []float64) float64, isReverse bool) []*timeseries {
type tsWithValue struct {
ts *timeseries
value float64
}
maxs := make([]tsWithValue, len(tss))
for i, ts := range tss {
value := f(ts.Values)
maxs[i] = tsWithValue{
ts: ts,
value: value,
}
}
sort.Slice(maxs, func(i, j int) bool {
a := maxs[i].value
b := maxs[j].value
if isReverse {
a, b = b, a
}
return lessWithNaNs(a, b)
})
for i := range maxs {
tss[i] = maxs[i].ts
}
for i, k := range ks {
fillNaNsAtIdx(i, k, tss)
}
return removeNaNs(tss)
}
func fillNaNsAtIdx(idx int, k float64, tss []*timeseries) {
if math.IsNaN(k) {
k = 0
}
kn := int(k)
if kn < 0 {
kn = 0
}
if kn > len(tss) {
kn = len(tss)
}
for _, ts := range tss[:len(tss)-kn] {
ts.Values[idx] = nan
}
}
func minValue(values []float64) float64 {
if len(values) == 0 {
return nan
}
min := values[0]
for _, v := range values[1:] {
if v < min {
min = v
}
}
return min
}
func maxValue(values []float64) float64 {
if len(values) == 0 {
return nan
}
max := values[0]
for _, v := range values[1:] {
if v > max {
max = v
}
}
return max
}
func avgValue(values []float64) float64 {
sum := float64(0)
count := 0
for _, v := range values {
if math.IsNaN(v) {
continue
}
count++
sum += v
}
if count == 0 {
return nan
}
return sum / float64(count)
}
func medianValue(values []float64) float64 {
h := histogram.GetFast()
for _, v := range values {
if !math.IsNaN(v) {
h.Update(v)
}
}
value := h.Quantile(0.5)
histogram.PutFast(h)
return value
}
func aggrFuncOutliersK(afa *aggrFuncArg) ([]*timeseries, error) {
args := afa.args
if err := expectTransformArgsNum(args, 2); err != nil {
return nil, err
}
ks, err := getScalar(args[0], 0)
if err != nil {
return nil, err
}
afe := func(tss []*timeseries) []*timeseries {
// Calculate medians for each point across tss.
medians := make([]float64, len(ks))
h := histogram.GetFast()
for n := range ks {
h.Reset()
for j := range tss {
v := tss[j].Values[n]
if !math.IsNaN(v) {
h.Update(v)
}
}
medians[n] = h.Quantile(0.5)
}
histogram.PutFast(h)
// Return topK time series with the highest variance from median.
f := func(values []float64) float64 {
sum2 := float64(0)
for n, v := range values {
d := v - medians[n]
sum2 += d * d
}
return sum2
}
return getRangeTopKTimeseries(tss, ks, f, false)
}
return aggrFuncExt(afe, args[1], &afa.ae.Modifier, afa.ae.Limit, true)
}
func aggrFuncLimitK(afa *aggrFuncArg) ([]*timeseries, error) {
args := afa.args
if err := expectTransformArgsNum(args, 2); err != nil {
return nil, err
}
ks, err := getScalar(args[0], 0)
if err != nil {
return nil, err
}
maxK := 0
for _, kf := range ks {
k := int(kf)
if k > maxK {
maxK = k
}
}
afe := func(tss []*timeseries) []*timeseries {
if len(tss) > maxK {
tss = tss[:maxK]
}
for i, kf := range ks {
k := int(kf)
if k < 0 {
k = 0
}
for j := k; j < len(tss); j++ {
tss[j].Values[i] = nan
}
}
return tss
}
return aggrFuncExt(afe, args[1], &afa.ae.Modifier, afa.ae.Limit, true)
}
func aggrFuncQuantile(afa *aggrFuncArg) ([]*timeseries, error) {
args := afa.args
if err := expectTransformArgsNum(args, 2); err != nil {
return nil, err
}
phis, err := getScalar(args[0], 0)
if err != nil {
return nil, err
}
afe := newAggrQuantileFunc(phis)
return aggrFuncExt(afe, args[1], &afa.ae.Modifier, afa.ae.Limit, false)
}
func aggrFuncMedian(afa *aggrFuncArg) ([]*timeseries, error) {
tss, err := getAggrTimeseries(afa.args)
if err != nil {
return nil, err
}
phis := evalNumber(afa.ec, 0.5)[0].Values
afe := newAggrQuantileFunc(phis)
return aggrFuncExt(afe, tss, &afa.ae.Modifier, afa.ae.Limit, false)
}
func newAggrQuantileFunc(phis []float64) func(tss []*timeseries) []*timeseries {
return func(tss []*timeseries) []*timeseries {
dst := tss[0]
h := histogram.GetFast()
defer histogram.PutFast(h)
for n := range dst.Values {
h.Reset()
for j := range tss {
v := tss[j].Values[n]
if !math.IsNaN(v) {
h.Update(v)
}
}
phi := phis[n]
dst.Values[n] = h.Quantile(phi)
}
tss[0] = dst
return tss[:1]
}
}
func lessWithNaNs(a, b float64) bool {
if math.IsNaN(a) {
return !math.IsNaN(b)
}
return a < b
}