VictoriaMetrics/docs/anomaly-detection/components/scheduler.md
Artem Navoiev bdf4f0f1e2
docs: vmanomaly fix font matter
Signed-off-by: Artem Navoiev <tenmozes@gmail.com>
2024-01-17 00:12:05 +02:00

353 lines
11 KiB
Markdown
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

---
sort: 3
title: Scheduler
weight: 3
menu:
docs:
parent: "vmanomaly-components"
weight: 3
aliases:
- /anomaly-detection/components/scheduler.html
---
# Scheduler
Scheduler defines how often to run and make inferences, as well as what timerange to use to train the model.
Is specified in `scheduler` section of a config for VictoriaMetrics Anomaly Detection.
## Parameters
`class`: str, default=`"scheduler.periodic.PeriodicScheduler"`,
options={`"scheduler.periodic.PeriodicScheduler"`, `"scheduler.oneoff.OneoffScheduler"`, `"scheduler.backtesting.BacktestingScheduler"`}
- `"scheduler.periodic.PeriodicScheduler"`: periodically runs the models on new data. Useful for consecutive re-trainings to counter [data drift](https://www.datacamp.com/tutorial/understanding-data-drift-model-drift) and model degradation over time.
- `"scheduler.oneoff.OneoffScheduler"`: runs the process once and exits. Useful for testing.
- `"scheduler.backtesting.BacktestingScheduler"`: imitates consecutive backtesting runs of OneoffScheduler. Runs the process once and exits. Use to get more granular control over testing on historical data.
**Depending on selected class, different parameters should be used**
## Periodic scheduler
### Parameters
For periodic scheduler parameters are defined as differences in times, expressed in difference units, e.g. days, hours, minutes, seconds.
Examples: `"50s"`, `"4m"`, `"3h"`, `"2d"`, `"1w"`.
<table>
<thead>
<tr>
<th></th>
<th>Time granularity</th>
</tr>
</thead>
<tbody>
<tr>
<td>s</td>
<td>seconds</td>
</tr>
<tr>
<td>m</td>
<td>minutes</td>
</tr>
<tr>
<td>h</td>
<td>hours</td>
</tr>
<tr>
<td>d</td>
<td>days</td>
</tr>
<tr>
<td>w</td>
<td>weeks</td>
</tr>
</tbody>
</table>
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Type</th>
<th>Example</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>fit_window</code></td>
<td>str</td>
<td><code>"14d"</code></td>
<td>What time range to use for training the models. Must be at least 1 second.</td>
</tr>
<tr>
<td><code>infer_every</code></td>
<td>str</td>
<td><code>"1m"</code></td>
<td>How often a model will write its conclusions on newly added data. Must be at least 1 second.</td>
</tr>
<tr>
<td><code>fit_every</code></td>
<td>str, Optional</td>
<td><code>"1h"</code></td>
<td>How often to completely retrain the models. If missing value of <code>infer_every</code> is used and retrain on every inference run.</td>
</tr>
</tbody>
</table>
### Periodic scheduler config example
```yaml
scheduler:
class: "scheduler.periodic.PeriodicScheduler"
fit_window: "14d"
infer_every: "1m"
fit_every: "1h"
```
This part of the config means that `vmanomaly` will calculate the time window of the previous 14 days and use it to train a model. Every hour model will be retrained again on 14 days data, which will include + 1 hour of new data. The time window is strictly the same 14 days and doesn't extend for the next retrains. Every minute `vmanomaly` will produce model inferences for newly added data points by using the model that is kept in memory at that time.
## Oneoff scheduler
### Parameters
For Oneoff scheduler timeframes can be defined in Unix time in seconds or ISO 8601 string format.
ISO format supported time zone offset formats are:
* Z (UTC)
* ±HH:MM
* ±HHMM
* ±HH
If a time zone is omitted, a timezone-naive datetime is used.
### Defining fitting timeframe
<table>
<thead>
<tr>
<th>Format</th>
<th>Parameter</th>
<th>Type</th>
<th>Example</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ISO 8601</td>
<td><code>fit_start_iso</code></td>
<td>str</td>
<td><code>"2022-04-01T00:00:00Z", "2022-04-01T00:00:00+01:00", "2022-04-01T00:00:00+0100", "2022-04-01T00:00:00+01"</code></td>
<td rowspan=2>Start datetime to use for training a model. ISO string or UNIX time in seconds.</td>
</tr>
<tr>
<td>UNIX time</td>
<td><code>fit_start_s</code></td>
<td>float</td>
<td>1648771200</td>
</tr>
<tr>
<td>ISO 8601</td>
<td><code>fit_end_iso</code></td>
<td>str</td>
<td><code>"2022-04-10T00:00:00Z", "2022-04-10T00:00:00+01:00", "2022-04-10T00:00:00+0100", "2022-04-10T00:00:00+01"</code></td>
<td rowspan=2>End datetime to use for training a model. Must be greater than <code>fit_start_*</code>. ISO string or UNIX time in seconds.</td>
</tr>
<tr>
<td>UNIX time</td>
<td><code>fit_end_s</code></td>
<td>float</td>
<td>1649548800</td>
</tr>
</tbody>
</table>
### Defining inference timeframe
<table>
<thead>
<tr>
<th>Format</th>
<th>Parameter</th>
<th>Type</th>
<th>Example</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ISO 8601</td>
<td><code>infer_start_iso</code></td>
<td>str</td>
<td><code>"2022-04-11T00:00:00Z", "2022-04-11T00:00:00+01:00", "2022-04-11T00:00:00+0100", "2022-04-11T00:00:00+01"</code></td>
<td rowspan=2>Start datetime to use for a model inference. ISO string or UNIX time in seconds.</td>
</tr>
<tr>
<td>UNIX time</td>
<td><code>infer_start_s</code></td>
<td>float</td>
<td>1649635200</td>
</tr>
<tr>
<td>ISO 8601</td>
<td><code>infer_end_iso</code></td>
<td>str</td>
<td><code>"2022-04-14T00:00:00Z", "2022-04-14T00:00:00+01:00", "2022-04-14T00:00:00+0100", "2022-04-14T00:00:00+01"</code></td>
<td rowspan=2>End datetime to use for a model inference. Must be greater than <code>infer_start_*</code>. ISO string or UNIX time in seconds.</td>
</tr>
<tr>
<td>UNIX time</td>
<td><code>infer_end_s</code></td>
<td>float</td>
<td>1649894400</td>
</tr>
</tbody>
</table>
### ISO format scheduler config example
```yaml
scheduler:
class: "scheduler.oneoff.OneoffScheduler"
fit_start_iso: "2022-04-01T00:00:00Z"
fit_end_iso: "2022-04-10T00:00:00Z"
infer_start_iso: "2022-04-11T00:00:00Z"
infer_end_iso: "2022-04-14T00:00:00Z"
```
### UNIX time format scheduler config example
```yaml
scheduler:
class: "scheduler.oneoff.OneoffScheduler"
fit_start_iso: 1648771200
fit_end_iso: 1649548800
infer_start_iso: 1649635200
infer_end_iso: 1649894400
```
## Backtesting scheduler
### Parameters
As for [Oneoff scheduler](#oneoff-scheduler), timeframes can be defined in Unix time in seconds or ISO 8601 string format.
ISO format supported time zone offset formats are:
* Z (UTC)
* ±HH:MM
* ±HHMM
* ±HH
If a time zone is omitted, a timezone-naive datetime is used.
### Defining overall timeframe
This timeframe will be used for slicing on intervals `(fit_window, infer_window == fit_every)`, starting from the *latest available* time point, which is `to_*` and going back, until no full `fit_window + infer_window` interval exists within the provided timeframe.
<table>
<thead>
<tr>
<th>Format</th>
<th>Parameter</th>
<th>Type</th>
<th>Example</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ISO 8601</td>
<td><code>from_iso</code></td>
<td>str</td>
<td><code>"2022-04-01T00:00:00Z", "2022-04-01T00:00:00+01:00", "2022-04-01T00:00:00+0100", "2022-04-01T00:00:00+01"</code></td>
<td rowspan=2>Start datetime to use for backtesting.</td>
</tr>
<tr>
<td>UNIX time</td>
<td><code>from_s</code></td>
<td>float</td>
<td>1648771200</td>
</tr>
<tr>
<td>ISO 8601</td>
<td><code>to_iso</code></td>
<td>str</td>
<td><code>"2022-04-10T00:00:00Z", "2022-04-10T00:00:00+01:00", "2022-04-10T00:00:00+0100", "2022-04-10T00:00:00+01"</code></td>
<td rowspan=2>End datetime to use for backtesting. Must be greater than <code>from_start_*</code>.</td>
</tr>
<tr>
<td>UNIX time</td>
<td><code>to_s</code></td>
<td>float</td>
<td>1649548800</td>
</tr>
</tbody>
</table>
### Defining training timeframe
The same *explicit* logic as in [Periodic scheduler](#periodic-scheduler)
<table>
<thead>
<tr>
<th>Format</th>
<th>Parameter</th>
<th>Type</th>
<th>Example</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ISO 8601</td>
<td rowspan=2><code>fit_window</code></td>
<td rowspan=2>str</td>
<td><code>"PT1M", "P1H"</code></td>
<td rowspan=2>What time range to use for training the models. Must be at least 1 second.</td>
</tr>
<tr>
<td>Prometheus-compatible</td>
<td><code>"1m", "1h"</code></td>
</tr>
</tbody>
</table>
### Defining inference timeframe
In `BacktestingScheduler`, the inference window is *implicitly* defined as a period between 2 consecutive model `fit_every` runs. The *latest* inference window starts from `to_s` - `fit_every` and ends on the *latest available* time point, which is `to_s`. The previous periods for fit/infer are defined the same way, by shifting `fit_every` seconds backwards until we get the last full fit period of `fit_window` size, which start is >= `from_s`.
<table>
<thead>
<tr>
<th>Format</th>
<th>Parameter</th>
<th>Type</th>
<th>Example</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ISO 8601</td>
<td rowspan=2><code>fit_every</code></td>
<td rowspan=2>str</td>
<td><code>"PT1M", "P1H"</code></td>
<td rowspan=2>What time range to use previously trained model to infer on new data until next retrain happens.</td>
</tr>
<tr>
<td>Prometheus-compatible</td>
<td><code>"1m", "1h"</code></td>
</tr>
</tbody>
</table>
### ISO format scheduler config example
```yaml
scheduler:
class: "scheduler.backtesting.BacktestingScheduler"
from_start_iso: '2021-01-01T00:00:00Z'
to_end_iso: '2021-01-14T00:00:00Z'
fit_window: 'P14D'
fit_every: 'PT1H'
```
### UNIX time format scheduler config example
```yaml
scheduler:
class: "scheduler.backtesting.BacktestingScheduler"
from_start_s: 167253120
to_end_s: 167443200
fit_window: '14d'
fit_every: '1h'
```